CN105729616B - 混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法 - Google Patents

混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法 Download PDF

Info

Publication number
CN105729616B
CN105729616B CN201610254043.1A CN201610254043A CN105729616B CN 105729616 B CN105729616 B CN 105729616B CN 201610254043 A CN201610254043 A CN 201610254043A CN 105729616 B CN105729616 B CN 105729616B
Authority
CN
China
Prior art keywords
fibre
concrete
self
ribbing
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610254043.1A
Other languages
English (en)
Other versions
CN105729616A (zh
Inventor
尤志国
杨志年
王宁
周云龙
付秀艳
韩建强
邱凯
陶志强
杨丽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Priority to CN201610254043.1A priority Critical patent/CN105729616B/zh
Publication of CN105729616A publication Critical patent/CN105729616A/zh
Application granted granted Critical
Publication of CN105729616B publication Critical patent/CN105729616B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/523Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement containing metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/04Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members the elements being stressed
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/262Concrete reinforced with steel fibres
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed

Abstract

本发明涉及一种混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法,其钢筋包括预应力钢筋、带肋钢筋和光圆钢筋,预应力钢筋包括预应力受拉钢筋,带肋钢筋包括带肋纵向受拉钢筋、带肋纵向受压钢筋、带肋腹板纵向受力钢筋和带肋抗剪箍筋,光圆钢筋包括固定箍筋的顶部架立筋;混凝土为抗压强度不大于50MPa的高性能的自密实混凝土;纤维是混杂于自密实混凝土中的增强增韧粗纤维,包括端部弯钩型钢纤维、仿钢丝合成粗纤维或玄武岩纤维,纤维长度不小于3cm,直径不小于0.4cm。优点:混凝土收缩小,减少裂缝产生,混凝土与钢筋握裹力好,避免出现蜂窝、麻面、空洞,减小钢筋腐蚀,增大箍筋间距,提高布置钢筋精度,提高构件耐久性。

Description

混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法
技术领域
本发明涉及混凝土桥梁,具体是一种混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法。
背景技术
目前,中小跨径公路桥梁的建设占公路桥梁总座数的98%。中小跨径公路桥梁可采用装配式先张法预应力混凝土简支空心板梁作为主要承重构件,空心板梁跨径最大不超过20米。
但是,预制预应力混凝土空心板梁由于混凝土收缩可引起表面龟裂;掺入氯盐等速凝剂易出现梁底纵向裂缝;由于先张法在两组张拉钢筋之间梁端混凝土处于受力区使梁端易产生水平裂缝,或因锚头处应力集中和锚头产生的楔形作用而使锚头附近产生细小水平裂缝;混凝土收缩和温差大易出现腹板收缩裂缝;箱梁底板上发生不规则裂缝,由于梁横向受力性能与横向不变形截面显得有很大的不同,即由于腹板与底板受力不均所致。
另外,箱型构件复杂,采用普通混凝土施工可操作性不好。箱型构件配筋过密或不当且传统混凝土工作性能低下,不能与钢筋形成有效握裹;箱梁底部易出现混凝土振捣不密实、不均匀,硬化成型的混凝土内部或表面形成众多的微孔隙、气穴和微裂缝,甚至形成蜂窝、麻面、空洞等,钢筋容易受周围环境腐蚀,结构耐久性降低。在构件截面狭窄处和配筋密集处,准确布置抗剪钢筋的难度非常大。调查表明,按设计要求,箍筋间距应为10cm,而几乎所有工地所见箍筋的间距均介于5cm到15cm之间,尽管总的箍筋数量在弯剪区满足设计要求。这就造成箱型构件耐腐蚀、耐久性差。受力性能与设计不符,带来安全隐患。
规范、专著和文献中提到的纤维对抗剪承载力的贡献值设计公式,只能计算单掺钢纤维或两种钢纤维混杂时的抗剪承载力贡献值。但是,混杂钢纤维和仿钢丝合成粗纤维或玄武岩纤维时,混杂纤维对抗剪承载力的贡献值计算还没有提出。而且,市场上纤维种类繁多,新型纤维不断出现,每种纤维的物理力学性能存在差异,已有公式的适用性受到检验。需要提出一种合理方法解决纤维对抗剪承载力的贡献值的设计。因而,混杂纤维替代钢筋的高性能自密实混凝土预制空心板梁没有被设计和应用。
发明内容
本发明的目的在于克服背景技术之不足,而提供一种混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法。
为实现上述目的,本发明采用以下技术方案:
一种混杂纤维替代钢筋的自密实混凝土预制空心板梁,包括:钢筋,混凝土,纤维;
钢筋包括预应力钢筋、带肋钢筋和光圆钢筋,预应力钢筋包括预应力受拉钢筋,带肋钢筋包括带肋纵向受拉钢筋、带肋纵向受压钢筋、带肋腹板纵向受力钢筋和带肋抗剪箍筋,光圆钢筋包括固定箍筋的顶部架立筋;
混凝土为抗压强度不大于50MPa的高性能的自密实混凝土;
纤维是混杂于自密实混凝土中的增强增韧粗纤维,包括端部弯钩型钢纤维、仿钢丝合成粗纤维或玄武岩纤维,纤维长度不小于3cm,直径不小于0.4cm。
钢纤维包括端部弯钩型钢纤维、平直形钢纤维、波纹形钢纤维。
上述混杂纤维替代钢筋的自密实混凝土预制空心板梁的制作方法,按下述步骤进行:
(1)按常规设计计算出预制空心板梁的几何尺寸,按设计和构造分别计算出所需预应力受拉钢筋、带肋纵向受拉钢筋、带肋腹板纵向受力钢筋、带肋抗剪箍筋、光圆钢筋的面积,并确定对应的钢筋类型、钢筋根数和钢筋间距;
(2)依据布置的钢筋间距,选定端部弯钩型钢纤维,选定仿钢丝合成粗纤维或玄武岩纤维其中的一种,并进行几种不同纤维掺量的混杂;
(3)按设计选定的抗压强度要求进行自密实混凝土配合比的设计,将选定的混杂纤维形式掺加到自密实混凝土中;
(4)按照自密实混凝土工作性能要求选定几种不同混杂纤维形式,将配置好的混杂纤维自密实混凝土按照欧洲材料与结构联合会标准采用的抗弯强度及弯曲韧性试验梁尺寸进行浇筑,并对梁按照标准进行试验,得到试验梁的荷载-挠度曲线;
(5)采用反分析法依据试验梁的荷载-挠度曲线求解混杂纤维自密实混凝土的应力-裂缝口宽度关系;
(6)依据应力-裂缝口宽度关系计算裂缝宽度为设计规定值时的平均设计剩余应力,依据平均设计剩余应力确定混杂纤维对抗剪承载力的贡献值;
(7)比较几种不同混杂纤维形式下混杂纤维对抗剪承载力的贡献值,确定其中一个为最大值时的纤维混杂形式;
(8)依据混杂纤维对抗剪承载力的贡献最大值,以对应的纤维混杂形式替代步骤(1)中的部分带肋抗剪箍筋,重新确定替代后的抗剪箍筋间距,抗剪箍筋间距扩大;
(9)绑扎钢筋骨架,并在模板中就位,固定,就位并张拉预应力钢筋,浇筑最终确定的混杂纤维高性能自密实混凝土,在标准养护室养护24小时后,拆模,待混凝土达到不低于混凝土设计强度值的75%时,放松预应力筋。
采用上述技术方案的本发明,与相应技术相比,其有益效果是:
本发明由于混杂纤维的掺入,收缩裂缝显著减小,不会出现梁底纵向裂缝,梁端混凝土处于受力区不产生水平裂缝,锚头附近不会产生细小水平裂缝;箱梁底板上不规则裂缝显著减小。由于采用混杂高性能自密实混凝土,与钢筋形成的有效握裹力更好;箱梁底部不会出现由于混凝土振捣不密实、不均匀造成的混凝土内部或表面的微孔隙、气穴、微裂缝、蜂窝、麻面、空洞等,减小了钢筋受周围环境腐蚀的程度。掺加混杂纤维,增大抗剪钢筋间距,显著提高了在构件截面狭窄处和配筋密集处准确布置抗剪钢筋的精确度,显著提高了构件的耐久性能。
附图说明
图1是本发明的立面透视示意图;
图2是本发明的截面示意图;
图中:带肋纵向受压钢筋1;带肋腹板纵向受力钢筋2;带肋纵向受拉钢筋3;顶部架立筋4;预应力受拉钢筋5;带肋抗剪箍筋6;端部弯钩型钢纤维7;防钢丝合成粗纤维8;自密实混凝土9。
具体实施方式
下面结合附图及实施例对本发明进行详细说明,但实施例对本发明不做任何形式的限定。
参见图1、图2,一种混杂纤维替代钢筋的自密实混凝土预制空心板梁,由钢筋、混凝土、纤维构成,钢筋包括预应力钢筋、带肋钢筋和光圆钢筋,预应力钢筋用于预应力受拉钢筋5,带肋钢筋分别用于带肋纵向受拉钢筋3、带肋纵向受压钢筋1、带肋腹板纵向受力钢筋2和带肋抗剪箍筋6,光圆钢筋用于固定箍筋的顶部架立筋4;混凝土为抗压强度不大于50MPa的高性能的自密实混凝土9,自密实混凝土9的组份包括425硅酸盐水泥、I级粉煤灰、中砂、粒径5-10mm的碎石、聚羧酸高效减水剂、水、消泡剂;纤维是混杂于自密实混凝土9中的增强增韧粗纤维,包括端部弯钩型钢纤维7、仿钢丝合成粗纤维8(或者是玄武岩纤维),纤维长度不小于3cm,直径不小于0.4cm。
制作这种混杂纤维替代钢筋的高性能自密实混凝土预制空心板梁的具体步骤如下:
(1)按常规设计计算出预制空心板梁的几何尺寸,按常规设计和构造分别计算出所需带肋纵向受压钢筋1、带肋腹板纵向受力钢筋2、带肋纵向受拉钢筋3、预应力受拉钢筋5、带肋抗剪箍筋6、顶部架立筋4的面积,并确定对应的钢筋类型、钢筋根数和钢筋间距。
(2)依据布置的钢筋间距,选定端部弯钩型钢纤维7,选定仿钢丝合成粗纤维8或玄武岩纤维其中的一种,并进行几种不同纤维掺量的混杂。
(3)按设计选定的抗压强度要求(配置混凝土的抗压强度不大于50MPa)进行自密实混凝土9配合比的设计,将选定的混杂纤维形式掺加到自密实混凝土9中。
(4)按照自密实混凝土工作性能要求选定几种不同混杂纤维形式。将配置好的混杂纤维自密实混凝土按照欧洲材料与结构联合会标准采用的抗弯强度及弯曲韧性试验梁尺寸进行浇筑,并对梁按照标准进行试验,得到试验梁的荷载-挠度曲线。
(5)采用反分析法依据试验梁的荷载-挠度曲线求解混杂纤维自密实混凝土的应力-裂缝口宽度关系。
(6)依据应力-裂缝口宽度关系计算裂缝宽度为设计规定值时的平均设计剩余应力,依据平均设计剩余应力确定混杂纤维对抗剪承载力的贡献值。
(7)比较几种不同混杂纤维形式下混杂纤维对抗剪承载力的贡献值,确定其中一个为最大值时的纤维混杂形式。
(8)依据混杂纤维对抗剪承载力的贡献最大值,以对应的纤维混杂形式替代步骤(1)中的部分带肋抗剪箍筋6,重新确定替代后的抗剪箍筋间距,抗剪箍筋间距扩大。
(9)将带肋纵向受压钢筋1、带肋腹板纵向受力钢筋2、带肋纵向受拉钢筋3、带肋抗剪箍筋6、顶部架立筋4绑扎成钢筋骨架,并在模板中就位,固定,就位并张拉预应力钢筋5,浇筑最终确定的掺加混杂纤维的高性能自密实混凝土9,在标准养护室养护24小时后,拆模,待自密实混凝土9达到不低于混凝土设计强度值的75%时,放松预应力筋5。
以上仅是本发明的优选实施方式,应当指出,尽管参照优选实施例对本发明专利作了详细说明,对于本领域的普通技术人员来说,可以对本发明的技术方案进行若干改进和润饰,但不脱离本发明技术方案的实质和范围,这些改进和润饰也视为本发明的保护范围。

Claims (1)

1.一种混杂纤维替代钢筋的自密实混凝土预制空心板梁的制作方法,所述的混杂纤维替代钢筋的自密实混凝土预制空心板梁,包括:钢筋,混凝土,纤维;
钢筋包括预应力钢筋、带肋钢筋和光圆钢筋,预应力钢筋包括预应力受拉钢筋,带肋钢筋包括带肋纵向受拉钢筋、带肋纵向受压钢筋、带肋腹板纵向受力钢筋和带肋抗剪箍筋,光圆钢筋包括固定箍筋的顶部架立筋;
混凝土为抗压强度不大于50MPa的高性能的自密实混凝土;
纤维是混杂于自密实混凝土中的增强增韧粗纤维,包括钢纤维、仿钢丝合成粗纤维或玄武岩纤维,纤维长度不小于3cm,直径不小于0.4cm;
钢纤维包括端部弯钩型钢纤维、平直形钢纤维、波纹形钢纤维;
其特征在于,所述的制作方法按下述步骤进行:
(1)按常规设计计算出预制空心板梁的几何尺寸,按设计和构造分别计算出所需预应力受拉钢筋、带肋纵向受拉钢筋、带肋腹板纵向受力钢筋、带肋抗剪箍筋、光圆钢筋的面积,并确定对应的钢筋类型、钢筋根数和钢筋间距;
(2)依据布置的钢筋间距,选定端部弯钩型钢纤维,选定仿钢丝合成粗纤维或玄武岩纤维其中的一种,并进行几种不同纤维掺量的混杂;
(3)按设计选定的抗压强度要求进行自密实混凝土配合比的设计,将选定的混杂纤维形式掺加到自密实混凝土中;
(4)按照自密实混凝土工作性能要求选定几种不同混杂纤维形式,将配置好的混杂纤维自密实混凝土按照欧洲材料与结构联合会标准采用的抗弯强度及弯曲韧性试验梁尺寸进行浇筑,并对梁按照标准进行试验,得到试验梁的荷载-挠度曲线;
(5)采用反分析法依据试验梁的荷载-挠度曲线求解混杂纤维自密实混凝土的应力-裂缝口宽度关系;
(6)依据应力-裂缝口宽度关系计算裂缝宽度为设计规定值时的平均设计剩余应力,依据平均设计剩余应力确定混杂纤维对抗剪承载力的贡献值;
(7)比较几种不同混杂纤维形式下混杂纤维对抗剪承载力的贡献值,确定其中一个为最大值时的纤维混杂形式;
(8)依据混杂纤维对抗剪承载力的贡献最大值,以对应的纤维混杂形式替代步骤(1)中的部分带肋抗剪箍筋,重新确定替代后的抗剪箍筋间距,抗剪箍筋间距扩大;
(9)绑扎钢筋骨架,并在模板中就位,固定,就位并张拉预应力钢筋,浇筑最终确定的混杂纤维高性能自密实混凝土,在标准养护室养护24小时后,拆模,待混凝土达到不低于混凝土设计强度值的75%时,放松预应力筋。
CN201610254043.1A 2016-04-23 2016-04-23 混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法 Expired - Fee Related CN105729616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610254043.1A CN105729616B (zh) 2016-04-23 2016-04-23 混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610254043.1A CN105729616B (zh) 2016-04-23 2016-04-23 混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法

Publications (2)

Publication Number Publication Date
CN105729616A CN105729616A (zh) 2016-07-06
CN105729616B true CN105729616B (zh) 2017-12-15

Family

ID=56255871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610254043.1A Expired - Fee Related CN105729616B (zh) 2016-04-23 2016-04-23 混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法

Country Status (1)

Country Link
CN (1) CN105729616B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106495580B (zh) * 2016-10-21 2019-05-28 长江宜昌航道工程局 一种钢纤维混凝土结构透水框架预制方法
CN106313272B (zh) * 2016-10-28 2018-07-03 同济大学 胶凝材料中增加基于配筋率的定向纤维的3d打印实施方法
CN106939962A (zh) * 2017-04-11 2017-07-11 中冶华天南京工程技术有限公司 可调压型圆筒型气柜活塞环梁
CN111187022B (zh) * 2018-11-14 2023-07-14 王子国 一种腐蚀致型形状记忆纤维及其制备方法和应用
CN112858039B (zh) * 2021-01-29 2022-11-01 郑州大学 一种钢纤维混凝土应力-裂缝宽度本构关系的反分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121418A (ja) * 1996-10-22 1998-05-12 P S Co Ltd プレキャストホロー桁の支承構造
KR20060010695A (ko) * 2005-01-11 2006-02-02 채성태 강관으로 보강한 중공 콘크리트 거더 및 이를 이용한 거더교
CN101769042A (zh) * 2009-12-28 2010-07-07 河海大学 匹配预制混凝土空心板梁结构
CN204081257U (zh) * 2014-09-26 2015-01-07 郑州大学 Frp筋纤维高强混凝土梁构件
CN205662833U (zh) * 2016-04-23 2016-10-26 华北理工大学 混杂纤维替代钢筋的自密实混凝土预制空心板梁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121418A (ja) * 1996-10-22 1998-05-12 P S Co Ltd プレキャストホロー桁の支承構造
KR20060010695A (ko) * 2005-01-11 2006-02-02 채성태 강관으로 보강한 중공 콘크리트 거더 및 이를 이용한 거더교
CN101769042A (zh) * 2009-12-28 2010-07-07 河海大学 匹配预制混凝土空心板梁结构
CN204081257U (zh) * 2014-09-26 2015-01-07 郑州大学 Frp筋纤维高强混凝土梁构件
CN205662833U (zh) * 2016-04-23 2016-10-26 华北理工大学 混杂纤维替代钢筋的自密实混凝土预制空心板梁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钢纤维替代自密实混凝土梁箍筋的试验研究;尤志国等;《建筑材料学报》;20101031;第13卷(第5期);第595-600页 *

Also Published As

Publication number Publication date
CN105729616A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105729616B (zh) 混杂纤维替代钢筋的自密实混凝土预制空心板梁及制作方法
Cuenca et al. Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams
Simasathien et al. Shear strength of steel-fiber-reinforced deep hollow-core slabs
Hojati et al. Barbed-wire reinforcement for 3D concrete printing
Zamri et al. The effects of inclined shear reinforcement in reinforced concrete beam
CN205662833U (zh) 混杂纤维替代钢筋的自密实混凝土预制空心板梁
Weldon et al. Feasibility analysis of ultra high performance concrete for prestressed concrete bridge applications.
Ahmed et al. Steel fiber as replacement of minimum shear reinforcement for one-way thick bridge slab
Lytvyniak et al. The suggestions as to the calculation bearing capacity of sandwich reinforced concrete—Foamed concrete floor slabs
Madadi et al. Evaluation of bond strength of reinforcement in concrete containing fibers, micro-silica and nano-silica
SCHAUmANN Hybrid FRP-lightweight concrete sandwich system for engineering structures
De Villiers Bond behaviour of deformed steel reinforcement in lightweight foamed concrete
Dybeł et al. Assessment of the casting position factor in reinforced concrete elements in view of experimental studies
CN110424600A (zh) 一种分布式后浇装配整体式预应力混凝土空心板肋梁楼盖及其施工方法
Mobin et al. Re-strengthening of reinforced concrete (RC) beam using near surface mounted (NSM) steel re-bars
Asp et al. Bond and re-anchoring tests of post-tensioned steel tendon in case of strand failure
Tavoussi et al. Long-Term Testing of Prefabricated Timber-Steel-Concrete Ribbed Decks
Cuenca et al. Ductility analysis on the post-peak behavior of self-compacting fiber reinforced concrete (SCFRC) beams subjected to shear
Ji Increasing residual structural capacity of cracked concrete railroad crossties with polypropylene fibers
Kchaitanya et al. An Experimental Studies of Mechanical Properties of Conventional Concrete With Fiber Reinforced Concrete
Prouty Sustainable and Durable Infrastructure with Advanced Construction Materials
De Pauw et al. Replacement of shear reinforcement by steel fibres in pretensioned concrete beams
Robins et al. 12 FLEXURAL STRENGTH MODELLING OF STEEL FIBRE REINFORCED SPRAYED CONCRETE
BSCE15060 et al. ENHANCEMENT OF DUCTILITY OF CONCRETE THROUGH THE INCLUSION OF NATURAL JUTE FIBER.
Herbrand et al. Shear Strengthening with Textile Reinforced Concrete

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171215