CN105680307A - Optical fiber output laser with three wavelengths of 872nm, 1319nm and 1500nm for laser radar - Google Patents
Optical fiber output laser with three wavelengths of 872nm, 1319nm and 1500nm for laser radar Download PDFInfo
- Publication number
- CN105680307A CN105680307A CN201510930989.0A CN201510930989A CN105680307A CN 105680307 A CN105680307 A CN 105680307A CN 201510930989 A CN201510930989 A CN 201510930989A CN 105680307 A CN105680307 A CN 105680307A
- Authority
- CN
- China
- Prior art keywords
- laser
- output
- optical fiber
- wavelength
- splitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08086—Multiple-wavelength emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
The invention discloses an optical fiber output laser with three wavelengths of 872nm, 1319nm and 1500nm for a laser radar. A bean splitting optical fiber coil with the wavelength of 1500nm is arranged at the tail section of the laser output optical fiber with the wavelength of 1500nm for splitting one path of the laser with the wavelength of 1500nm to output; a bean splitting optical fiber coil with the wavelength of 1319nm is arranged at the tail section of the laser output optical fiber with the wavelength of 1319nm for splitting one path of the laser with the wavelength of 1319nm to output; signal light with the wavelength of 872nm, idler frequency light with the wavelength of 1500nm, pump light I with the wavelength of 1319nm and pump light II with the wavelength of 808nm enter an 872nm-wavelenth four-wave mixing frequency period polarization lithium niobate laser resonant cavity to generate a four-wave mixing frequency reaction to generate the signal light with the wavelength of 872nm for outputting, and finally the optical fiber laser with the three wavelengths of 872nm, 1319nm and 1500nm is output.
Description
Technical field: laser instrument and applied technical field.
Technical background:
872nm, 1319nm, 1500nm tri-wavelength laser, it is the laser applied for laser radar spectral detection, lasing light emitter, instrumental analysis etc., it can pass 872nm, 1319nm, 1500nm tri-using light source such as analysis detection of wavelength sensor as laser radar optical fiber, and it is additionally operable to laser and the optoelectronic areas such as laser radar optical communication; Optical fiber laser, as the representative of third generation laser technology, has glass optical fiber low cost of manufacture and the having mercy on property of optical fiber, glass material and has an extremely low bulk area ratio, and rapid heat dissipation, loss are low with conversion efficiency relatively advantages of higher, and range of application constantly expands.
Summary of the invention:
A kind of laser radar 872nm, 1319nm, 1500nm tri-long wavelength fiber output laser, at 1500nm laser output optical fibre rear, 1500nm splitting optical fiber circle is set, the 1500nm laser output of beam splitting one road, at 1319nm laser output optical fibre rear, 1319nm splitting optical fiber circle is set, the 1319nm laser output of beam splitting one road, flashlight 872nm, ideler frequency light 1500nm, pump light I1319nm and pump light II808nm enters 872nm four-wave mixing periodically poled lithium niobate laserresonator, there is four-wave mixing effect, produce flashlight 872nm output, finally export 872nm, 1319nm, 1500nm tri-long wavelength fiber laser exports.
Scheme one, 872nm tetra-long wavelength fiber laser structure.
The structure that the periodically poled lithium niobate laserresonator 38 of four-wave mixing occurs with pump light II808nm for flashlight 872nm, ideler frequency light 1500nm, pump light I1319nm is set, 872nm is set at 872nm four-wave mixing periodically poled lithium niobate laserresonator outfan and focuses on output coupling mirror coupling access 872nm output optical fibre.
Scheme two, it is respectively provided with 1500nm, 1319nm laser beam splitter fiber turns
At 1500nm output optical fibre rear, 1500nm splitting optical fiber circle is set, beam splitting one road 1500nm laser exports through 1500nm laser output, arranging 1319nm splitting optical fiber circle at 1319nm laser output optical fibre rear, beam splitting one road 1319nm laser exports through 1319nm laser output.
Scheme three, 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber is set
1500nm periodically poled lithium niobate laser parameter oscillating tank chamber is set, set gradually from its input: 3-stage optical fiber input mirror, parametric oscillation basic frequency laser crystal, parametric oscillation input mirror, 1500nm periodically poled lithium niobate laser crystal, 1500nm outgoing mirror and the 1500nm focusing output coupling mirror of outfan, thus constitute 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber.
Scheme four, 808nm gain resonator cavity is set
808nm gain resonator cavity is set, sets gradually from its input: two grades input mirror, basic frequency laser crystal, 808nm gain crystal, 808nm outgoing mirror and the 808nm focusing output coupling mirror of outfan, thus constitute 808nm gain resonator cavity.
Scheme five, 1319nm resonator cavity is set
1319nm resonator cavity is set, 1319nm resonator cavity is set, set gradually from its input: one-level input mirror, 1319nm laser crystal, 1319nm outgoing mirror and the 1319nm focusing output coupling mirror of outfan, thus constitute 1319nm resonator cavity.
Scheme six, 3-stage optical fiber structure is set
3-stage optical fiber structure is set, 3-stage optical fiber structure is integrally connected by one-level fiber turns, secondary light fibre circle and 3-stage optical fiber circle and forms, one-level fiber turns is connected on semiconductor module by 808nm pumping coupler, semiconductor module is powered by semiconductor module block power supply, above-mentioned whole optical element is all arranged on optical rail and light facility, arranges fan 3 in optical rail and light facility.
The core content of the present invention:
A kind of laser radar 872nm, 1319nm, 1500nm tri-long wavelength fiber output laser, at 1500nm output optical fibre rear, 1500nm splitting optical fiber circle is set, beam splitting one road 1500nm laser exports through 1500nm laser output, at 1319nm laser output optical fibre rear, 1319nm splitting optical fiber circle is set, beam splitting one road 1319nm laser exports through 1319nm laser output, flashlight 872nm is set, ideler frequency light 1500nm, there is the structure of the periodically poled lithium niobate laserresonator of four-wave mixing in pump light I1319nm and pump light II808nm, four-wave mixing generates the output of 872nm optical-fiber laser, constitute 872nm, 1319nm, 1500nm tri-long wavelength fiber output laser structure.
Accompanying drawing illustrates:
Accompanying drawing is the structure chart of this patent, and accompanying drawing is wherein: 1, optical rail and light facility, 2, semiconductor module, 3, fan, 4, 808nm pumping coupler, 5, semiconductor module block power supply, 6, one-level fiber turns, 7, one-level fiber-optic output, 8, one-level fiber coupler, 9, one-level input mirror, 10, 1319nm laser crystal, 11, 1319nm outgoing mirror, 12, focus on output coupling mirror, 13, 1319nm output optical fibre, 14, 1319nm resonator cavity, 15, secondary light fibre circle, 16, secondary light fibre outfan, 17, secondary light fibre bonder, 18, 808nm focuses on output coupling mirror, and 19, 808nm output optical fibre, 20, 808nm gain crystal, 21, 808nm outgoing mirror, 22, basic frequency laser crystal, 23, two grades of input mirrors, 24, 808nm gain resonator cavity, 25, 3-stage optical fiber circle, 26, 1500nm output optical fibre, 27, 1500nm focuses on output coupling mirror, and 28, 1500nm outgoing mirror, 29, 1500nm periodically poled lithium niobate laser crystal, 30, parametric oscillation input mirror, 31, 1319nm parametric oscillation basic frequency laser crystal, 32, 3-stage optical fiber input mirror, 33, three wavelength parameter bonders, 34, 3-stage optical fiber bonder, 35, 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber, 36, 3-stage optical fiber outfan, 37, three wavelength parameter coupling transmission optical fibers, 38, 872nm four-wave mixing periodically poled lithium niobate laserresonator, 39, three wavelength input mirrors, 40, 872nm four-wave mixing periodically poled lithium niobate laser crystal, 41, 872nm outgoing mirror, 42, 872nm focuses on output coupling mirror, and 43, 872nm output optical fibre, 44, 872nm laser exports, and 45, 1319nm laser output optical fibre, 46, 1500nm output optical fibre, 47, 1319nm splitting optical fiber circle, 48, 1500nm splitting optical fiber circle, 49, 3-stage optical fiber structure.
Detailed description of the invention:
872nm four-wave mixing periodically poled lithium niobate laserresonator 38 is set, 1500nm splitting optical fiber circle 48 is set, 1319nm splitting optical fiber circle is set, flashlight 872nm is set, ideler frequency light 1500nm, there is the structure of the periodically poled lithium niobate laserresonator 38 of four-wave mixing in pump light I1319nm and pump light II808nm, 872nm is set at 872nm four-wave mixing periodically poled lithium niobate laserresonator 38 outfan and focuses on output coupling mirror 42 coupling access 872nm output optical fibre 43, rear at 1500nm output optical fibre 26 arranges 1500nm splitting optical fiber circle 48, the 1500nm laser output optical fibre 46 of 1500nm splitting optical fiber circle 48 is set, rear at 1319nm output optical fibre 13 arranges 1319nm splitting optical fiber circle 47, the 1319nm laser output 45 of 1319nm splitting optical fiber circle 47 is set, ideler frequency light 1500nm, pump light I1319nm and pump light II808nm with derive from three wavelength parameter coupling transmission optical fibers 37, three wavelength parameter bonders 33 are set before three wavelength parameter coupling transmission optical fibers 37, by 1319nm output optical fibre 13, 808nm output optical fibre 19 couples access three wavelength parameter bonders 33 with 1500nm output optical fibre 26, 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber 35 is set, 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber 35 focuses on output coupling mirror 27 by the 1500nm of its outfan and is linked in 1500nm output optical fibre 26, the input in 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber 35 is connected on 3-stage optical fiber outfan 36 by 3-stage optical fiber bonder 34, 3-stage optical fiber outfan 36 is drawn by the 3-stage optical fiber circle 25 of 3-stage optical fiber structure 49,808nm gain resonator cavity 24 is set, 808nm gain resonator cavity 24 focuses on output coupling mirror 18 by the 808nm of its outfan and is linked in 808nm output optical fibre 19,808nm gain resonator cavity 24 is connected on secondary light fibre outfan 16 by the secondary light fibre bonder 17 of its input, and secondary light fibre outfan 16 is drawn from the secondary light fibre circle 15 of 3-stage optical fiber structure 49, 1319nm resonator cavity 14 is set, the outfan of 1319nm resonator cavity 14 focuses on output coupling mirror 12 by 1319nm and is linked in 1319nm output optical fibre 13,1319nm resonator cavity 14 is connected on one-level fiber-optic output 7 by the one-level fiber coupler 8 of its input, and one-level fiber-optic output 7 is drawn by the one-level fiber turns 6 of 3-stage optical fiber structure 49, 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber 35 is set, set gradually from its input: 3-stage optical fiber input mirror 32,1319nm parametric oscillation basic frequency laser crystal 31, parametric oscillation input mirror 30,1500nm periodically poled lithium niobate laser crystal 29,1500nm outgoing mirror 28 and the 1500nm focusing output coupling mirror of outfan, thus constitute 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber 35, 808nm gain resonator cavity 24 is set, set gradually from its input: two grades input mirror 23, basic frequency laser crystal 22,808nm gain crystal 20,808nm outgoing mirror 21 and the 808nm focusing output coupling mirror 18 of outfan, thus constitute 808nm gain resonator cavity 24, 1319nm resonator cavity 14 is set, set gradually from its input: one-level input mirror 9, 1319nm laser crystal 10, the 1319nm of 1319nm outgoing mirror 11 and outfan focuses on output coupling mirror 12, thus constitute 1319nm resonator cavity 14, 3-stage optical fiber structure 49 is set, 3-stage optical fiber structure 49 is by one-level fiber turns 6, secondary light fibre circle 15 and 3-stage optical fiber circle 25 are integrally connected and form, one-level fiber turns 6 is connected on semiconductor module 2 by 808nm pumping coupler 4, semiconductor module 2 is powered by semiconductor module block power supply 5, above-mentioned whole optical element is all arranged on optical rail and light facility 1, optical rail and light facility 1 arrange fan 3, totally constitute 872nm, 1319nm, 1500nm tri-long wavelength fiber output laser structure.
Work process:
Semiconductor module block power supply 5 supplies electricity to semiconductor module 2 and powers, semiconductor module 2 is launched 808nm laser and is coupled into one-level fiber turns 6 through 808nm pumping coupler 4, secondary light fibre circle 15 and 3-stage optical fiber circle 25 hence into 3-stage optical fiber structure 49, 808nm laser obtains gain in 3-stage optical fiber structure 49, 3-stage optical fiber outfan 36 is drawn from by 3-stage optical fiber circle 25, input 808nm laser enters 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber 35, the 1319nm laser generated through the 1319nm parametric oscillation basic frequency laser crystal 31 in 1500nm periodically poled lithium niobate laser parameter oscillating tank chamber 35 goes pump optical parametric oscillation to generate 1500nm laser, focus on output coupling mirror 27 through 1500nm and be coupled in 1500nm output optical fibre 26, by in its input 1500nm laser to three wavelength parameter bonders 33, secondary light fibre outfan 16 is drawn from by secondary light fibre circle 15, input 808nm laser enters 808nm gain resonator cavity 24, generate fundamental frequency light through the basic frequency laser crystal 22 of 808nm gain resonator cavity 24, through 808nm gain resonator cavity 24, gain output 808nm laser occurs, focus on output coupling mirror 18 through 808nm and be coupled in 808nm output optical fibre 19, by its input 808nm laser to three wavelength parameter bonders 33,One-level fiber-optic output 7 is drawn from by one-level fiber turns 6, input 808nm laser enters 1319nm resonator cavity 14,1319nm resonator cavity 14 generates 1319nm basic frequency laser, focus on output coupling mirror 12 through 1319nm and be coupled in 1319nm output optical fibre 13, by its input 1319nm laser to three wavelength parameter bonders 33, thus, 1500nm laser, 1319nm laser and 808nm laser are coupled into 872nm four-wave mixing periodically poled lithium niobate laserresonator 38 through three wavelength parameter bonders 33, flashlight 872nm, ideler frequency light 1500nm, there is four-wave mixing effect in pump light I1319nm and pump light II808nm, flashlight 872nm is made to occur, gain, flashlight 872nm focuses on output coupling mirror 42 through 872nm and exports 872nm laser output 44 with 872nm output optical fibre 43, at the 1500nm splitting optical fiber circle 48 beam splitting output 1500nm laser that the rear of 1500nm output optical fibre 26 is arranged, 1500nm is exported through 1500nm laser output 46, at the 1319nm splitting optical fiber circle 47 beam splitting output 1319nm laser that the rear of 1319nm output optical fibre 13 is arranged, 1319nm is exported through outfan 45.
Claims (1)
1. a laser radar 872nm, 1319nm, 1500nm tri-long wavelength fiber output laser, it is characterized by, at 1500nm output optical fibre rear, 1500nm splitting optical fiber circle is set, beam splitting one road 1500nm laser exports through 1500nm laser output, at 1319nm laser output optical fibre rear, 1319nm splitting optical fiber circle is set, beam splitting one road 1319nm laser exports through 1319nm laser output, flashlight 872nm is set, ideler frequency light 1500nm, there is the structure of the periodically poled lithium niobate laserresonator of four-wave mixing in pump light I1319nm and pump light II808nm, four-wave mixing generates the output of 872nm optical-fiber laser, constitute 872nm, 1319nm, 1500nm tri-long wavelength fiber output laser structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510930989.0A CN105680307A (en) | 2015-12-11 | 2015-12-11 | Optical fiber output laser with three wavelengths of 872nm, 1319nm and 1500nm for laser radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510930989.0A CN105680307A (en) | 2015-12-11 | 2015-12-11 | Optical fiber output laser with three wavelengths of 872nm, 1319nm and 1500nm for laser radar |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105680307A true CN105680307A (en) | 2016-06-15 |
Family
ID=56189553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510930989.0A Pending CN105680307A (en) | 2015-12-11 | 2015-12-11 | Optical fiber output laser with three wavelengths of 872nm, 1319nm and 1500nm for laser radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105680307A (en) |
-
2015
- 2015-12-11 CN CN201510930989.0A patent/CN105680307A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105337155A (en) | 1764 nm, 830 nm, 905 nm and 1500 nm four-wavelength optical fiber output laser for laser radar | |
CN105375259A (en) | 10945nm 660nm 1064nm 1500nm four wavelength optical fiber output laser for laser radar | |
CN105680308A (en) | Optical fiber output laser with three wavelengths of 808nm, 872nm and 1319nm for laser radar | |
CN105680307A (en) | Optical fiber output laser with three wavelengths of 872nm, 1319nm and 1500nm for laser radar | |
CN105680305A (en) | Optical fiber output laser with dual wavelengths of 559nm and 1319nm for laser radar | |
CN105680311A (en) | Optical fiber output laser with three wavelengths of 2043nm, 780nm and 1500nm for laser radar | |
CN105680306A (en) | Optical fiber output laser with dual wavelengths of 702nm and 1319nm for laser radar | |
CN105680312A (en) | Optical fiber output laser with dual wavelengths of 2831nm and 705nm for laser radar | |
CN105680304A (en) | Optical fiber output laser with dual wavelengths of 2489nm and 730nm for laser radar | |
CN105680310A (en) | 2009nm, 785nm and 1500nm three-wavelength optical fiber output laser for laser radar | |
CN105680303A (en) | 2489nm, 730nm and 1500nm three-wavelength optical fiber output laser for laser radar | |
CN105680313A (en) | Optical fiber output laser with three wavelengths of 767nm, 1064nm and 660nm for sea wave generator | |
CN105375297A (en) | 872 nm and 1500 nm double-wavelength optical fibre output laser for laser radar | |
CN105390922A (en) | 660nm, 702nm, 1319nm and 1500nm four-wavelength optical fiber output laser for laser radar | |
CN105356236A (en) | 808nm, 872nm, 1319nm and 1500nm four-wavelength optical fiber output laser used for laser radar | |
CN105375298A (en) | 808 nm and 872 nm double-wavelength optical fibre output laser for laser radar | |
CN105390921A (en) | 2831nm, 905nm and 1500nm three-wavelength optical fiber output laser for laser radar | |
CN105655861A (en) | 485nm, 532nm, 1064nm and 1319nm four-wavelength optical fiber output laser for anemometers | |
CN105390920A (en) | Optical fiber output laser with dual-wavelength of 2043nm and 780nm for laser radar | |
CN105356222A (en) | 2009nm, 785nm, 905nm and 1500nm four-wavelength optical fiber output laser used for laser radar | |
CN105375300A (en) | 702 nm, 1319 nm and 1500 nm three-wavelength optical fibre output laser for laser radar | |
CN105375301A (en) | 660 nm, 702 nm and 1319 nm three-wavelength optical fibre output laser for laser radar | |
CN105356267A (en) | 2831nm, 705nm, 905nm and 1500nm four-wavelength optical fiber output laser used for laser radar | |
CN105356224A (en) | 2831nm, 705nm, 905nm and 1500nm four-wavelength optical fiber output laser used for laser radar | |
CN105337156A (en) | 2009 nm and 1500 nm dual-wavelength optical fiber output laser for laser radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160615 |