CN105676219A - Quadrature-phase modulation-based MIMO radar three-dimensional imaging method - Google Patents

Quadrature-phase modulation-based MIMO radar three-dimensional imaging method Download PDF

Info

Publication number
CN105676219A
CN105676219A CN201610014699.6A CN201610014699A CN105676219A CN 105676219 A CN105676219 A CN 105676219A CN 201610014699 A CN201610014699 A CN 201610014699A CN 105676219 A CN105676219 A CN 105676219A
Authority
CN
China
Prior art keywords
number
step
array
dimensional
dimensional imaging
Prior art date
Application number
CN201610014699.6A
Other languages
Chinese (zh)
Inventor
欧阳缮
刘威亚
刘庆华
谢跃雷
晋良念
周丽军
顾坤良
尚朝阳
Original Assignee
桂林电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林电子科技大学 filed Critical 桂林电子科技大学
Priority to CN201610014699.6A priority Critical patent/CN105676219A/en
Publication of CN105676219A publication Critical patent/CN105676219A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency- or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems

Abstract

The invention discloses a quadrature-phase modulation-based MIMO radar three-dimensional imaging method. According to the method, firstly, an orthogonal phase coding sequence of a corresponding class number is constructed according to the number of transmitting array elements. Secondly, received echo signals are filtered correspondingly, so that the corresponding echo signals of different transmitting array elements can be separated. Thirdly, an entire three-dimensional imaging area is divided, and each of all pixel points in the imaging area is traversed sequentially. In this way, the amplitude value corresponding to the time delay interval point of all transmitting array elements that corresponds to each pixel point can be obtained. Finally, the pixel information of all pixel points in the three-dimensional imaging area and the amplitude values thereof together form a three-dimensional matrix. The three-dimensional matrix is drawn according to the actual size ratio of the imaging area, so that the information of a three-dimensional space target can be obtained. According to the technical scheme of the invention, the three-dimensional target of a ground-penetrating radar can be imaged while the information of the three-dimensional target can be transmitted and received at the same time.

Description

基于正交相位调制的ΜI MO雷达三维成像方法 Based on the three-dimensional radar imaging method ΜI MO quadrature phase modulated

技术领域 FIELD

[0001]本发明涉及探地雷达成像技术领域,具体涉及一种基于正交相位调制的ΜΜ0雷达三维成像方法。 [0001] The present invention relates to the technical field penetrating imaging radar, radar ΜΜ0 particularly relates to three-dimensional imaging method based on the quadrature phase modulation.

背景技术 Background technique

[0002] 探地雷达是利用发射电磁波,获取地下浅表层未知目标信息的雷达系统。 [0002] The use of ground penetrating radar is transmitting electromagnetic waves, the radar acquisition system shallow subsurface target information unknown. 由于利用高分辨三维成像算法可以获知三维空间中不同面的隐藏目标大小,位置等信息,因而被广泛应用在打击反恐、医学诊断、灾害救援、安全防卫等方面。 Due to the use of high-resolution three-dimensional imaging algorithm can obtain information hidden object size three-dimensional space in a different plane, location, etc., which are widely used in the fight against terrorism, aspects of medical diagnostics, disaster relief, security and defense.

[0003] ΜΜ0雷达是多输入多输出的雷达,根据布置多个发射天线和接收天线,并且发射信号之间彼此正交,接收天线的不同阵元根据目标散射回波进行不同的匹配滤波,实现对不同信号的分离。 [0003] ΜΜ0 radar radar multiple-input multiple-output, according to the arrangement of the plurality of transmit antennas and receive antennas, and transmit signals orthogonal to each other between a receiving antenna array elements for various different target matched filter according to backscattering, to achieve separation of different signals. 与传统的相控阵雷达相比,ΜΠΚ)雷达可以显著改善参数可辨识性、有更好的分辨率,更高的灵敏度,受到国内外关注。 Compared with the conventional phased array radar, ΜΠΚ) can significantly improve the parameters of the radar identifiability, better resolution, higher sensitivity, by domestic and international concern. 然而,由于ΜΙΜΟ雷达的数据获取方式与传统的合成孔径雷达(synthetic aperture radar,SAR)不同,使得常规的雷达成像方法难以直接应用在ΜΙΜΟ雷达成像中。 However, since the ΜΙΜΟ radar data acquisition with the traditional SAR (synthetic aperture radar, SAR) differ, such that the conventional radar imaging method difficult to use in ΜΙΜΟ radar imaging. 如合成孔径成像算法中的距离多普勒(range Doppler,RD)算法、 距离偏移(range migration,RM)算法都是基于收发同置的均勾空间采样,这些均难以直接处理多收发的回波信号。 The synthetic aperture imaging distance Doppler algorithm (range Doppler, RD) algorithm, the offset distance (range migration, RM) algorithms are based on the same set of transceivers are hook spatial sampling, which are difficult to handle multi-transceiver directly back wave signal.

发明内容 SUMMARY

[0004] 本发明所要解决的是现有三维成像算法难以直接处理多收发的回波信号的问题, 提供一种基于正交相位调制的ΜΜ0雷达三维成像方法,其能够实现同时发射同时接收获取三维目标信息的探地雷达三维目标成像。 [0004] The present invention solves the conventional three-dimensional imaging algorithm is difficult to deal with multiple transmission and reception of the echo signals directly, there is provided a method of three-dimensional imaging radar ΜΜ0 quadrature phase modulation based, which enables simultaneous reception acquired simultaneously transmitting three-dimensional GPR imaging target three-dimensional object information.

[0005] 为解决上述问题,本发明是通过以下技术方案实现的: [0005] In order to solve the above problems, the present invention is achieved by the following technical solution:

[0006] 一种基于正交相位调制的Μπω雷达三维成像方法,包括以下步骤: [0006] A three-dimensional imaging radar Μπω orthogonal phase modulation based, comprising the steps of:

[0007] 步骤1,根据三维成像区域的大小设计满足要求的平面阵列,并指定平面阵列的发射阵元和接收阵元;每个接收阵元的输出端各接有数量与发射阵元的个数相同的匹配滤波器,每个匹配滤波器对应于一个发射阵元; [0007] Step 1, the planar array is sized to meet the requirements of the three-dimensional imaging area, and specify the planar array element transmitting array and the receiving array elements; the output of each receiver array element number of each connected with a transmit array elements the same number of matched filters, each matched filter corresponds to a transmit array elements;

[0008] 步骤2,根据发射阵元个数构造出相应组数的正交相位编码序列,每个发射阵元对应一组正交相位编码序列; [0008] Step 2. The coding sequence for transmitting quadrature phase array element number of the corresponding configuration of the number of groups, each transmit array element corresponding to a set of orthogonal phase-encoding sequence;

[0009] 步骤3,接收阵元接收回波信号,并将接收到的回波信号送入到匹配滤波器进行相关滤波,由此实现不同发射阵元对应的回波信号的分离; [0009] Step 3, the receiving array element echo signal is received, and the received echo signal is fed to the matched filter correlation filtering, thereby achieving separation of echo signals corresponding to the different emitting element array;

[0010] 步骤4,划分整个三维成像区域,依次遍历成像区域的每个像素点的收发阵元的时延间隔点处对应的回波信号的幅度值;依次累加求和该像素点对应的所有收发阵元的时延间隔点对应的回波信号的幅度值; [0010] Step 4, dividing the entire three-dimensional imaging area, traversing the amplitude value of the echo signal corresponding to the latency interval at point transceiver array elements of each pixel of the imaging region; sequentially accumulating the sum of all corresponding pixel the amplitude of the echo signal transceiver array elements latency interval value corresponding to the point;

[0011] 步骤5,整个三维成像空间像素点的坐标信息和所求幅度值即可组成三维矩阵,对三维矩阵按照成像区域的实际大小比例画图,就可得到三维空间目标信息。 [0011] Step 5, the entire three-dimensional space coordinate information of the pixel imaging and amplitude values ​​can ask a three dimensional matrix composed of a three-dimensional matrix according to the actual drawing area of ​​the image size ratio, can be obtained three-dimensional object information.

[0012] 上述步骤2中,根据发射阵元个数L构造相应组数的正交相位编码序列的过程如下, [0012] step 2 above, according to the transmitting array element number corresponding to the process of quadrature phase L configuration of the coding sequence of the following set of numbers,

[0013] 步骤2.1,设定编码长度N和编码相位的相数Μ; [0013] Step 2.1, the number of set code length N and the encoding phase phase [mu];

[0014] 步骤2.2,随机产生Τ组编码矩阵{S1(n)},每组编码矩阵的行数为L,列数为Ν,元素为si(n),其中 [0014] Step 2.2, Τ groups randomly generated coding matrices {S1 (n)}, the number of rows in each group encoding matrix is ​​L, v is the number of columns, the elements of si (n), wherein

[0015] si(n) = exp[ jih(n)] [0015] si (n) = exp [jih (n)]

[0016] 其中 [0016] in which

Figure CN105676219AD00041

;M为编码相位的相数;n=l,2,…,N,N 为编码长度;1 = 1,2,…,L,L为发射阵兀个数; ; M is the number of phases of the code phase; n = l, 2, ..., N, N length coding; 1 = 1,2, ..., L, L is the number of Wu-emitting array;

[0017] 步骤2.3,针对每一组编码矩阵,以行为单位,计算该组编码矩阵的每一行的自相关旁瓣能量A(l)及每两行的互相关能量B(p,q),并据此计算该组编码矩阵的目标函数值W: [0017] Step 2.3, for each set of coding matrices, in units, calculate the cross correlation energy B autocorrelation sidelobe energy of each row of the group A coding matrix (l) and every two lines (p, q), set and calculate the objective function value coding matrix W:

[0018] [0018]

Figure CN105676219AD00042

[0019] 其中,λ:为自相关加权系数,λ2为互相关加权系数, = l,2,,",L;p = l,2,,",L;q,=l,2,,",L; [0019] where, λ: autocorrelation coefficient weighting, λ2 weighted cross-correlation coefficient, = l, 2 ,, ", L; p = l, 2 ,,", L; q, = l, 2 ,, " , L;

[0020] 步骤2.4,将目标函数值W最小的那组编码矩阵进行保留,并根据遗传算法将其余T-1组编码矩阵进行交叉变异,由此形成新的T组的编码矩阵; [0020] Step 2.4, the smallest objective function value W set of coding matrices retained, according to the genetic algorithm and the remaining T-1 set of crossover and mutation encoding matrix, thereby forming a new group of the encoding matrix T;

[0021 ] 步骤2.5,重复步骤2.3-2.4,直至目标函数值W小于预设目标阈值或迭代次数达到预设迭代阈值时,则将本次迭代所保留的那组目标函数值W最小的编码矩阵的每一行各作为一个发射阵元的发射信号。 [0021] Step 2.5, 2.3-2.4 repeat step until the objective function value W is smaller than a preset target value or a threshold number of iterations of iterations reaches the preset threshold, then the current iteration of the reserved set of objective function value the smallest coding matrix W each row in each array element as a transmission signal transmission.

[0022]上述步骤2.2中,随机产生的编码矩阵的组数T应大于发射阵元的个数L。 [0022] Step 2.2 above, the number of groups randomly generated coding matrix T should be greater than the number of array elements emitted L.

[0023]上述步骤2.3中,自相关加权系数h大于互相关加权系数λ2。 [0023] Step 2.3 above, the autocorrelation is larger than the cross-correlation weighting coefficient weighting coefficients h λ2.

[0024] 上述步骤2.3中,自相关加权系数心为〇. 7,互相关加权系数人2为〇. 3。 [0024] Step 2.3 above, the heart of the autocorrelation coefficient weighting billion. 7, the cross-correlation of the weighting coefficient 2 billion people. 3.

[0025] 与现有技术相比,本发明具有以下优点: [0025] Compared with the prior art, the present invention has the following advantages:

[0026] (1)节省收发阵元。 [0026] (1) Save transceiver array elements. 根据ΜΜ0雷达具有Μ个发射阵元和Ν个接收阵元的特点,理论上可以得到ΜΝ个不同的目标回波信号。 Having Μ Ν transmit array elements and the received characteristic of the array elements, can theoretically ΜΝ different target echo signals obtained according ΜΜ0 radar. 这就比常规阵元获取同等数据量的条件下,节省了ΜΝ-(Μ+Ν)个阵元。 This is the same amount of data acquired array element than conventional conditions, saving ΜΝ- (Μ + Ν) array element.

[0027] (2)降低接收信号抗噪性。 [0027] (2) reducing the received signal noise immunity. 由于接收端采用相关接收,噪声信号与发射信号之间无相关性,所以经过相关之后,只有经过目标反射的发射信号及抑制的噪声信号。 Since the receiving side uses the received associated, no correlation between the noise signal and the transmit signal, after correlation, and only after the transmission signal reflected from the target signals and noise suppression.

附图说明 BRIEF DESCRIPTION

[0028]图1为ΜΜ0阵列布阵方式示意图,其中白色圆圈表示发射阵元,黑色圆圈表示接收阵元。 [0028] Figure 1 is a schematic view of an array ΜΜ0 manoeuvering mode, wherein a white circle represents the emission element array, a black circle represents the receiving array elements.

[0029] 图2为虚拟相位中心形成示意图,其中白色圆圈表示发射阵元,黑色圆圈表示接收阵元,灰色圆圈表示产生的虚拟阵元。 [0029] FIG. 2 is a schematic view of a virtual phase center is formed, wherein the white circle represents the emission element array, a black circle represents receiving element array, the gray circles represent the generated virtual array.

[0030] 图3为各信号的自相关函数图。 [0030] FIG. 3 is a chart of the autocorrelation function signal.

[0031]图4为各信号之间的互相关函数图。 [0031] FIG. 4 is a cross-correlation function between the signals of FIG.

[0032]图5为接收阵元处相关接收框图。 [0032] FIG. 5 is a block diagram of an associated receiver at the receiving array elements.

[0033]图6为多目标三维成像图;其中(a)是三维多目标ΒΡ成像结果,(b)是深度向0.2m处成像切片图,(c)是深度向0.3m处成像切片图,(d)是深度向0.6m处成像切片图。 [0033] FIG 6 is a three-dimensional image of FIG multiobjective; wherein (a) is a three-dimensional multi-target ΒΡ imaging result, (b) the depth to the image forming sections at FIG 0.2m, (c) the depth to the image forming sections at FIG 0.3m, (d) of the depth slice image at FIG 0.6m.

具体实施方式 Detailed ways

[0034] 基于正交相位调制的MBTO雷达三维成像方法,包括步骤如下: [0034] MBTO orthogonal three dimensional imaging radar based phase modulation, comprising the steps of:

[0035] 第一步,设计平面MBTO阵列,如图1所示。 [0035] The first step, MBTO planar array design, as shown in FIG.

[0036] 根据以下原则设计平面ΜΙΜΟ阵列:(1)节省收发阵元;(2)发射阵元尽量少;(3)发射阵元间隔大,既可以避免发射信号的能量重叠,又可以减少耦合干扰;(4)收发阵元的对称性,对各方向的目标均具有同样的成像能力。 [0036] The design based on the principle plane ΜΙΜΟ array: (1) save a transceiver array element; (2) emission array element as little as possible; (3) emitting a large array element spacing, to avoid overlapping both the energy of the transmitted signal, and can reduce coupling interference; (4) symmetry transceiver array elements, each target has the same direction of imaging capability.

[0037]图1设计平面ΜΜ0阵列的优势是:(1)尽可能大范围获取三维空间不同点处的回波信号。 [0037] FIG 1 ΜΜ0 planar array design advantages are: (1) obtain the largest possible range of the echo signals at different points in three-dimensional space. (2)节省收发阵元个数。 (2) save the array element number of a transceiver. (3)形成虚拟相位中心,降低接收天线阵列的栅瓣现象。 (3) forming virtual phase center, reducing the grating lobe phenomenon receive antenna array.

[0038]虚拟相位中心的形成,如图2所示。 Is formed [0038] of the virtual phase center, as shown in FIG.

[0039]发射阵元到目标距离Rt,根据菲涅尔近似有: [0039] emitting element array to the target distance Rt, according to the Fresnel approximation are:

[0040] [0040]

Figure CN105676219AD00051

[0041]同理,接收阵元到目标距离Rr,根据菲涅尔近似有: [0041] Similarly, the receiving array element distance Rr to the target, in accordance with a Fresnel approximation:

[0042] [0042]

[0043] 其中,JS f,尾.> >Μ: = [0043] wherein, JS f, tail>> Μ:. =

Figure CN105676219AD00052

,Rv为形成的虚拟阵元到目标距离,d为发射阵元到虚拟阵元距离,S为收发阵元所在水平线和虚拟阵元与目标所在水平线的夹角,λ为发射信号的波长;则 , Rv to form a virtual array to target distance, d is the array element to emit from the virtual array, S as a transceiver array element and where the angle between the horizontal and horizontal virtual array where the target, [lambda] is the wavelength of the transmitted signal; the

[0044] Rt+Rr « 2Rv [0044] Rt + Rr «2Rv

[0045] 即收发分置阵元等效为在收发阵元中间位置有一收发同置阵元。 [0045] That is bistatic array element equivalent to a set with a transceiver in the transceiver array element array element intermediate position.

[0046] 第二步,指定平面阵列具体的发射阵元和接收阵元。 [0046] The second step, to specify a specific planar array element transmitting array and the receiving array element. 按照发射阵元个数寻求包含相同数目的一组正交相位编码序列。 Seeking a set of orthogonal phase-encoding sequence comprises the same number of array elements in accordance with the number of emission. 其中要求各自发射阵元发射信号的自相关函数类似于冲击函数,而两两发射信号之间的互相关函数接近0。 Wherein each required array element transmitting the autocorrelation function of impulse function similar to the transmit signal, and the cross-correlation function between every two transmitted signal close to zero. 各发射信号之间的互相关函数的强弱直接影响接收阵元的回波信号。 The strength of the cross correlation function between the transmitted signal directly affects the array element received echo signals.

[0047] 具体相位编码序列产生过程如下: [0047] The particular phase of the coding sequence produced as follows:

[0048] 2.11^组发射波形阵元的第1个发射信号用{81(11),1 = 1,2,一14表示。 [0048] 2.11 ^ first set of transmit signal waveform a transmit array elements with {81 (11), 1 = 1, 2, 14 denotes a. 每个信号序列长度(即码元数)为N,采用Μ相相位编码,S1(n)的相位用!h(n)表示。 Each signal sequence length (i.e., number of symbols) is N, Μ phase using phase encoding, phase S1 (n) with the! H (n) represents. S1(n)的表达式为: Expression S1 (n) is:

[0049] si(n) = exp[ jih(n)] [0049] si (n) = exp [jih (n)]

[0050] 其中n=l,2,…,ΝΑΚη)为编码相位 [0050] wherein n = l, 2, ..., ΝΑΚη) coding phase

Figure CN105676219AD00053

二相编码矩阵中,Φι(η)只可取0或π。 Biphase coded matrix, Φι (η) can take only 0 or π. 相位组合{ih(l) ,ih(2) ,··· ,Φι(Ν)}决定了对应的相位编码矩阵{si(l) ,si(2) ,··· ,si(N)}的正交特性。 Phase combination {ih (l), ih (2), ···, Φι (Ν)} corresponding to the determined phase encoding matrix {si (l), si (2), ···, si (N)} of orthogonal property. si(n)的自相关函数用R(ih,k)表示,sP(n)与sq (η)的互相关函数用C(Hk)表示,其中_N〈k〈Np,qe {1,2,···υ,且p关q。 si (n) represented by the autocorrelation function R (ih, k), sP (n) and sq (η) is represented by the cross-correlation function C (Hk), where _N <k <Np, qe {1,2 , ··· υ, and p off q.

[0051] 2.2根据信号的自相关函数旁瓣能量和互相关函数能量构造目标函数W,优化最小化W来求得编码序列。 [0051] 2.2 The objective function W lobe energy and cross-correlation function the autocorrelation function of the signal energy of the next, to obtain W minimizing optimization coding sequence. 目标函数表示为: The objective function is expressed as:

[00521 [00521

[0053] 其中λ:,λ2是目标函数的加权系数,〇<λ: < 1,〇<λ2< 1且\1+\2 = 1,一般,可以达到抑制自相关旁瓣能量的目的。 [0053] wherein λ:, λ2 objective function is a weighting coefficient, square <λ: <1, square <λ2 <1 and \ 1 + \ 2 = 1, in general, can be attained to suppress the self-correlation side lobe energy. 只要给定L,M,N及具体的加权系数可以采用遗传优化算法优化目标函数。 As long as a given L, M, N and the specific weighting coefficients may be employed Genetic Algorithms to optimize the objective function.

[0054] 2.3随机产生T组相位编码矩阵,其中每一组都包含L个信号组,每一信号组码元长度都是N,M相编码。 [0054] 2.3 T randomly generated set of phase encoding matrix, wherein each set contains L signal group, each signal group the symbol length is N, M-phase encoder. 根据遗传算法,把随机产生的T组编码序列作为初始值,计算出这T组里每个码组信号的适应函数值(把构建的目标函数作为适应值函数),如果此值满足预先设置的结束条件,则结束。 The genetic algorithm, the coding sequence of the T group randomly generated as an initial value, the group T which is calculated fitness function value (the objective function constructed as a fitness function) code for each group of signals, if this value is set in advance to meet the end condition ends. 否则,重新对这T组信号进行优化,保留适应函数值小的信号组,交叉变异适应函数值大的其他函数组,作为新的初始值,再去判断是否满足循环结束条件,直至满足为止。 Otherwise, this re-group T signal is optimized to adapt to retain a small function value signal group, crossover and mutation to adapt to a large group of other functions of function values, as the new initial value, to determine whether to go to meet the end of the loop condition, until satisfied. 在已满足的T组信号里选择使目标函数E最小的一组编码序列作为最终的编码序列。 Selecting the objective function E of a minimal set as the final coding sequence for the T coding sequence has been met in the set of signals. 随机产生的编码矩阵的组数T可以根据需求进行任意设定,但为了得到较好的优化效果,随机产生的编码矩阵的组数T应远大于发射阵元个数L,即T> >L。 Group T-coding matrix number randomly generated can be arbitrarily set according to needs, but in order to obtain a better optimization results, set the number of randomly generated coding matrix T should be much larger than the number of transmitting array element L, i.e. T>> L .

[0055] 初始化1^ = 4,]\/[=4,~=120及加权系数人1 = 0.7,人2 = 0.3,根据上述过程产生相位编码序列。 [0055] Initialization 1 ^ = 4,] \ / [= 4, and the weighting factor = 120 ~ 1 person = 0.7, 2 people = 0.3, to generate the coding sequence of the above process phase. 即发射信号有四组,四相位编码,每组编码长度120码元,已产生的各信号自相关函数,互相关函数分别如图3和4所示。 That is four sets of transmit signals, four-phase coding, the code length 120 yards each element, the signals generated autocorrelation function, cross correlation function shown in Figures 3 and 4, respectively.

[0056]第三步,在每个接收端分别连接L个匹配滤波器,通过接收端的数据依次与所有的发射阵元信号做相关滤波的方式,实现分离不同发射阵元对应的回波信号的目的。 [0056] The third step, L connected matched filters each receiving end, respectively, associated with the filter to make all manner sequentially transmit array element signals by receiving-side data, separation of different emission element array corresponding to an echo signal purpose. 即ΜΙΜΟ 雷达同时发射同时接收方式可以获取远多于实际接收阵元个数的数据。 Radar ΜΙΜΟ i.e. simultaneous transmission and simultaneous reception of data can be acquired much more than the actual number of receiving array element. 相关接收过程如图5〇 Related receiving process shown in FIG 5〇

[0057] 由于在每一个接收端匹配滤波后,除了有有用新号的自相关信号还接收到其他发射信号的互相关信号,第j个接收阵元经匹配滤波分离后的来自发射阵元1的信号表示为: [0057] Since after each receiving terminal matched filter, in addition to auto-correlation signal has a useful new number is also received cross correlation signals from other transmitting signals, the j th receiving array element matched filter separation transmitting array from element 1 the signal is expressed as:

[0058] rij(n) =bi(n-(tiq(n)+Tjq(n)))+ Im=i;-L;m^ibim(n-(T mq(n)+Tjq(n))) [0058] rij (n) = bi (n- (tiq (n) + Tjq (n))) + Im = i; -L; m ^ ibim (n- (T mq (n) + Tjq (n)) )

[0059] 其中,接收阵元数目用J表示,j = l,2,…,JAKn)是发射阵元1对应的自相关函数,blm(n)表示发射阵元1与其他发射阵元信号m之间的互相关函数。 [0059] wherein the number of the receiving array element is represented by J, j = l, 2, ..., JAKn) is emitting array element 1 corresponding to the autocorrelation function, blm (n) represents the emission array element 1 and the other transmission array element signals m between the cross-correlation function. i lq(n)是发射阵元1到散射点q的距离对应的采样间隔点数。 i lq (n) is the transmit array elements 1 to scattering point q sampling intervals corresponding to the distance points. 由于噪声与发射信号没有相关性,所以在相关接收的过程中噪声就被减弱。 Since the noise signal is not correlated with the transmitter, so the process related to the received noise is reduced.

[0060] 第四步,由于ΜΜ0雷达数据的获取方式和传统的合成孔径雷达不同,使得常规的雷达成像方法难以直接应用在ΜΜ0雷达成像中。 [0060] The fourth step, due to the different ways of obtaining ΜΜ0 radar data and conventional synthetic aperture radar, radar imaging such conventional methods can not be applied directly in ΜΜ0 radar imaging. 如合成孔径成像算法中的距离多普勒算法、距离偏移算法都是基于收发同置的均匀空间采样,难以直接处理多收发的回波信号。 The synthetic aperture imaging algorithm from Doppler algorithm is based on the same set of transceivers uniformly offset from the spatial sampling algorithm, it is difficult to directly handle multi-transceiver of an echo signal. 而且一般现有的三维距离偏移成像算法是基于远场近似的。 And generally offset from the conventional three-dimensional imaging algorithm is based on a far-field approximation.

[0061 ]但是根据回波时域幅度信息的后向投影(back projection,BP)算法却可以处理不同阵列空间布置的回波信号,根据普通二维BP成像算法推导出应用于不同布阵方式的三维BP成像算法。 [0061] However, according to the time-domain echo amplitude information processing algorithm of the echo signal has different arrays can be arranged in the projection space (back projection, BP), BP according to the normal two-dimensional imaging algorithm is applied to derive different ways lineup BP-dimensional imaging algorithm.

[0062]划分整个三维成像区域EXFX Η,依次遍历每个像素点(xe,yf,zh),其中e = 1,…,E f = l,…,F h = l,···,H。 [0062] dividing the entire three-dimensional imaging region EXFX Η, sequentially through each pixel (xe, yf, zh), where e = 1, ..., E f = l, ..., F h = l, ···, H. 根据回波信号rij(n),计算每一个像素点的幅度值I(e,f,h)。 The echo signal rij (n), is calculated for each pixel of the amplitude value I (e, f, h).

[0063] [0063]

[0064] 1表示第1个发射阵元经过散射点U,yf,zh)到达第j个接收阵元的时延。 [0064] 1 denotes a transmit array elements after scattering point U, yf, zh) reaches the j-th delay element receiving transducer.

[0065]第五步,根据每个像素点(xe,yf,zh)求得对应点处的像素值I(e,f,h),整个三维成像空间像素点即可组成三维矩阵,对三维矩阵按照成像区域的实际大小比例画图,就可得到三维空间目标信息。 [0065] The fifth step, the pixel value obtained I (e, f, h) at the corresponding point in accordance with each pixel (xe, yf, zh), the entire space of the three-dimensional imaging pixels can form a three dimensional matrix, three-dimensional matrix according to the actual size ratio of the imaging area drawing, three-dimensional object information can be obtained.

[0066] 对于lmX lmX lm的均匀细沙介质,点目标位置分别设置在(0.2,0.8,0.6),(0.6, 0.2,0.3),(0.2,0.8,0.2),(0.5,0.5,0.2)处,根据步骤一到步骤五,三维成像结果如图6, 其中(a)是三维多目标BP成像结果,(b)是深度向0.2m处成像切片图,(c)是深度向0.3m处成像切片图,(d)是深度向0.6m处成像切片图。 [0066] For a uniform medium lmX lmX lm of sand, are provided at the position of the target point (0.2,0.8,0.6), (0.6, 0.2, 0.3), (0.2,0.8,0.2), (0.5,0.5,0.2) at a step according to step five, three-dimensional imaging results shown in Figure 6, wherein (a) is a three-dimensional multi-target BP imaging result, (b) is at a depth of 0.2m to FIG imaging slice, (c) is at a depth of 0.3m to FIG imaging slice, (d) is the depth of the imaging slice maps at 0.6m.

Claims (5)

1. 基于正交相位调制的Μπω雷达三维成像方法,其特征是,包括以下步骤: 步骤1,根据三维成像区域的大小设计满足要求的平面阵列,并指定平面阵列的发射阵元和接收阵元;每个接收阵元的输出端各接有数量与发射阵元的个数相同的匹配滤波器, 每个匹配滤波器对应于一个发射阵元; 步骤2,根据发射阵元个数构造出相应组数的正交相位编码序列,每个发射阵元对应一组正交相位编码序列; 步骤3,接收阵元接收回波信号,并将接收到的回波信号送入到匹配滤波器进行相关滤波,由此实现不同发射阵元对应的回波信号的分离; 步骤4,划分整个三维成像区域,依次遍历成像区域的每个像素点的收发阵元的时延间隔点处对应的回波信号的幅度值;依次累加求和该像素点对应的所有收发阵元的时延间隔点对应的回波信号的幅度值; 步骤5,整个三维成像空间 1. Μπω three dimensional imaging radar-based method of quadrature phase modulation, characterized by comprising the following steps: Step 1, the planar array is sized to meet the requirements of the three-dimensional imaging area, and specify the planar array element transmitting array and the receiving array element ; each output of the receiver connected with each array element number of the same number of array elements emitting matched filters, each matched filter corresponds to a transmit array element; step 2, constructed according to the array element number of the corresponding emission quadrature phase coding sequence number of groups, each transmit array element corresponding to a set of orthogonal sequences of phase encoding; step 3, the receiving array element received echo signals, and the received echo signal is fed to the matched filter correlation filter, thereby achieving separation of echo signals corresponding to the different emitting element array; step 4, dividing the entire area of ​​three-dimensional imaging, a transceiver array elements, traversing each pixel of the imaging region corresponding to the latency interval of the echo signals amplitude value; amplitude values ​​are sequentially accumulated sum of all array elements of the transceiver latency interval echo signals corresponding to the point corresponding to the pixel points; step 5, the entire three-dimensional imaging space 素点的坐标信息和所求幅度值即可组成三维矩阵,对三维矩阵按照成像区域的实际大小比例画图,就可得到三维空间目标信息。 Voxel points and the coordinate information of the required amplitude value of the composition can be a three dimensional matrix, three dimensional matrix of the actual drawing area of ​​the image size ratio, can be obtained three-dimensional object information.
2. 根据权利要求1所述基于正交相位调制的ΜΜΟ雷达三维成像方法,其特征是,步骤2 中,根据发射阵元个数构造相应组数的正交相位编码序列的过程如下, 步骤2.1,设定编码长度Ν和编码相位的相数Μ; 步骤2.2,随机产生Τ组编码矩阵{S1(n)},每组编码矩阵的行数为L,列数为Ν,元素为S1 (η),其中si(n)=exp[jih(n)] 2. The method of claim 1 ΜΜΟ three-dimensional imaging radar-based method of quadrature phase modulation, wherein, in step 2, the transmitting array element number of the corresponding configuration of the coding sequence of quadrature phase process number set as follows, step 2.1 setting the number of phases and the code length code phase of [mu] v; 2.2 steps, generating a random set of coding matrices Τ {S1 (n)}, the number of rows in each group encoding matrix is ​​L, v is the number of columns, elements S1 (η ), where si (n) = exp [jih (n)]
Figure CN105676219AC00021
;Μ为编码相位的相数;η = 1,2,…,Ν,N为编码长度;1 = 1,2,…,L,L为发射阵兀个数; 步骤2.3,针对每一组编码矩阵,以行为单位,计算该组编码矩阵的每一行的自相关旁瓣能量A(l)及每两行的互相关能量B(p,q),并据此计算该组编码矩阵的目标函数值W: ; [Mu] is the number of phase encoding phase; η = 1,2, ..., Ν, N is the code length; 1 = 1,2, ..., L, L is the number of Wu-emitting array; Step 2.3, the coding for each group B matrix of the cross-correlation energy, the autocorrelation sidelobe each row in units, is calculated energy of the set of coding matrices a (l) and every two lines (p, q), and calculate an objective function of the set of coding matrix value W:
Figure CN105676219AC00022
其中,h为自相关加权系数,λ2为互相关加权系数,(ΧλΚΙ,ίΧλ^Ι,Μ+λ^ίαιΙ, 2,,",L;p = l,2,,",L;q,=l,2,,",L; 步骤2.4,将目标函数值最小的那组编码矩阵进行保留,并根据遗传算法将其余Τ-l组编码矩阵进行交叉变异,由此形成新的Τ组的编码矩阵; 步骤2.5,重复步骤2.3-2.4,直至目标函数值小于预设目标阈值或迭代次数达到预设迭代阈值时,则将本次迭代所保留的那组目标函数值最小的编码矩阵的每一行各作为一个发射阵兀的发射信号。 Wherein, h is the autocorrelation weighting coefficient, λ2 cross-correlation weighting coefficients, (ΧλΚΙ, ίΧλ ^ Ι, Μ + λ ^ ίαιΙ, 2 ,, ", L; p = l, 2 ,,", L; q, = l, 2 ,, ", L; step 2.4, the minimum value of the objective function set of coding matrices retained, according to the genetic algorithm and the remaining group Τ-l coding matrix crossover and mutation, thereby forming a new group of encoded Τ matrix; step 2.5, 2.3-2.4 repeat step until the objective function value is less than the set minimum value of the objective function when the preset target encoding matrix threshold value or a preset number of iterations reaches the iteration threshold, then the present iteration of each row are retained as a transmission signal of each transmitting array Wu.
3. 根据权利要求2所述基于正交相位调制的ΜΙΜΟ雷达三维成像方法,其特征是,步骤2.2中,随机产生的编码矩阵的组数Τ大于发射阵元个数L, 3. The method of claim 2 ΜΙΜΟ three dimensional imaging radar-based method of quadrature phase modulation, wherein, in step 2.2, the number of groups Τ coding matrix generated random number is greater than the emission element array L,
4. 根据权利要求2所述基于正交相位调制的ΜΙΜΟ雷达三维成像方法,其特征是,步骤2.3中,自相关加权系数11大于互相关加权系数1 2,即\1>入2。 According to claim 2 ΜΙΜΟ three dimensional imaging radar-based method of quadrature phase modulation, wherein, in step 2.3, the autocorrelation is larger than the cross-correlation weighting coefficient 11 weighting coefficients 12, i.e. \ 1> into 2.
5. 根据权利要求4所述基于正交相位调制的ΜΙΜΟ雷达三维成像方法,其特征是,步骤2.3中,自相关加权系数人:为。 5. The method of claim 4 ΜΙΜΟ three dimensional imaging radar-based method of quadrature phase modulation, wherein, in step 2.3, the autocorrelation coefficients weighted by: is. .7,互相关加权系数λ 2为〇. 3。 .7, the cross-correlation of the weighting coefficient λ 2 billion. 3.
CN201610014699.6A 2016-01-11 2016-01-11 Quadrature-phase modulation-based MIMO radar three-dimensional imaging method CN105676219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610014699.6A CN105676219A (en) 2016-01-11 2016-01-11 Quadrature-phase modulation-based MIMO radar three-dimensional imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610014699.6A CN105676219A (en) 2016-01-11 2016-01-11 Quadrature-phase modulation-based MIMO radar three-dimensional imaging method

Publications (1)

Publication Number Publication Date
CN105676219A true CN105676219A (en) 2016-06-15

Family

ID=56299907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610014699.6A CN105676219A (en) 2016-01-11 2016-01-11 Quadrature-phase modulation-based MIMO radar three-dimensional imaging method

Country Status (1)

Country Link
CN (1) CN105676219A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263948A (en) * 2006-02-28 2007-10-11 Mitsubishi Electric Corp Imaging radar device
CN101509974A (en) * 2009-03-30 2009-08-19 电子科技大学 Three-dimensional target scattering coefficient measurement method based on MIMO array technology
CN102353938A (en) * 2011-07-25 2012-02-15 电子科技大学 Method for generating orthogonal phase coded signal
US20120217300A1 (en) * 2010-11-22 2012-08-30 Bitterroot Advanced Ballistics Research, Llc Ballistic Ranging Methods and Systems For Inclined Shooting
CN102866401A (en) * 2012-08-06 2013-01-09 西北工业大学 Three-dimensional imaging method based on multiple input multiple output (MIMO) technology
CN102999783A (en) * 2012-11-08 2013-03-27 哈尔滨工程大学 Method for generating MIMO (multiple-input and multiple-output) radar orthogonal polyphase code signals on the basis of genetic-tabu hybrid algorithm
CN103454631A (en) * 2013-08-31 2013-12-18 西北工业大学 Three-dimensional imaging method based on MIMO technology and sparse array technology
CN104280735A (en) * 2014-10-21 2015-01-14 内蒙古工业大学 MIMO-SAR imaging method and device based on arc-shaped array antenna
CN105068052A (en) * 2015-08-19 2015-11-18 西安电子科技大学 Design method for zero correlation zone like quadrature phase coding signals
CN105093190A (en) * 2015-07-16 2015-11-25 西安电子科技大学 Design method of quadrature phase coding signal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263948A (en) * 2006-02-28 2007-10-11 Mitsubishi Electric Corp Imaging radar device
CN101509974A (en) * 2009-03-30 2009-08-19 电子科技大学 Three-dimensional target scattering coefficient measurement method based on MIMO array technology
US20120217300A1 (en) * 2010-11-22 2012-08-30 Bitterroot Advanced Ballistics Research, Llc Ballistic Ranging Methods and Systems For Inclined Shooting
CN102353938A (en) * 2011-07-25 2012-02-15 电子科技大学 Method for generating orthogonal phase coded signal
CN102866401A (en) * 2012-08-06 2013-01-09 西北工业大学 Three-dimensional imaging method based on multiple input multiple output (MIMO) technology
CN102999783A (en) * 2012-11-08 2013-03-27 哈尔滨工程大学 Method for generating MIMO (multiple-input and multiple-output) radar orthogonal polyphase code signals on the basis of genetic-tabu hybrid algorithm
CN103454631A (en) * 2013-08-31 2013-12-18 西北工业大学 Three-dimensional imaging method based on MIMO technology and sparse array technology
CN104280735A (en) * 2014-10-21 2015-01-14 内蒙古工业大学 MIMO-SAR imaging method and device based on arc-shaped array antenna
CN105093190A (en) * 2015-07-16 2015-11-25 西安电子科技大学 Design method of quadrature phase coding signal
CN105068052A (en) * 2015-08-19 2015-11-18 西安电子科技大学 Design method for zero correlation zone like quadrature phase coding signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张远安等: ""MIMO雷达正交相位编码信号设计及分析"", 《火控雷达技术》 *
朱宇涛等: ""一种M2发N2收MIMO雷达平面阵列及其三维成像方法"", 《中国科学》 *

Similar Documents

Publication Publication Date Title
Bencheikh et al. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar
Blunt et al. Overview of radar waveform diversity
Yan et al. Multitarget identification and localization using bistatic MIMO radar systems
Nion et al. A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system
Wang Phased-MIMO radar with frequency diversity for range-dependent beamforming
WO2005111655A2 (en) System and method for concurrent operation of multiple radar or active sonar systems on a common frequency
CN104011558B (en) Coded aperture beam analyzing method and apparatus
US9435884B2 (en) Radar system and target detection method
EP2028508A1 (en) Method for the operation of an antenna group having a plurality of transmitters and a plurality of receivers, and associated apparatus
Hassanien et al. Transmit/receive beamforming for MIMO radar with colocated antennas
JP2016035440A (en) Radar system and object detection method
US8487808B2 (en) High resolution SAR imaging using non-uniform pulse timing
CN101251597B (en) Method for self-correction of array error of multi-input multi-output radar system
CN101369014B (en) Bilateral constraint self-adapting beam forming method used for MIMO radar
ES2461998T3 (en) Electronic countermeasures system
US9759806B2 (en) Radar apparatus
CN102279387B (en) Method for estimating target arrival angle of multiple input multiple output (MIMO) radar
Tabrikian et al. Transmission diversity smoothing for multi-target localization [radar/sonar systems]
Yu et al. Compressive sensing for MIMO radar
CN102073043B (en) Multi-frame phase coherence accumulation target tracking-before-detecting method
CN102156279B (en) Method for detecting moving target on ground by utilizing bistatic radar based on MIMO (Multiple Input Multiple Output)
CN102707264B (en) Estimating method of direction of arrival of bistatic MIMO (Multi-Input Multi-Output) radar based on circular array
Wang et al. Conjugate ESPRIT for DOA estimation in monostatic MIMO radar
CN101470202B (en) Pulse Doppler radar system and its signal processing method
Chen et al. Properties of the MIMO radar ambiguity function

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
WD01