CN105657826A - 使用无线电信号确定位置的方法和装置 - Google Patents

使用无线电信号确定位置的方法和装置 Download PDF

Info

Publication number
CN105657826A
CN105657826A CN201610029122.2A CN201610029122A CN105657826A CN 105657826 A CN105657826 A CN 105657826A CN 201610029122 A CN201610029122 A CN 201610029122A CN 105657826 A CN105657826 A CN 105657826A
Authority
CN
China
Prior art keywords
location
radio signals
bearing
estimate
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610029122.2A
Other languages
English (en)
Inventor
F·拜洛尼
I·A·泰卡里
V·兰基
A·凯努莱宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Priority to CN201610029122.2A priority Critical patent/CN105657826A/zh
Publication of CN105657826A publication Critical patent/CN105657826A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/24Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being pulses or equivalent modulations on carrier waves and the transit times being compared by measuring the difference in arrival time of a significant part of the modulations, e.g. LORAN systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种使用无线电信号确定位置的方法和装置。所述方法包括:在装置处检测来自第一位置的一个或多个无线电信号;使用一个或多个检测的无线电信号估算来自所述第一位置的方位;使用所述方位估算来确定在定位所述装置之前是否需要对一个或多个无线电信号的进一步检测;和使用方位和限制信息定位所述装置,所述限制信息包括定义所述第一位置的天线阵列的转移函数的信息,其中在所述装置的定位中的限制信息使用是基于所述方位估算的质量。

Description

使用无线电信号确定位置的方法和装置
本申请是分案申请,原申请的申请号为201080066547.1,申请日为2010年3月1日,发明名称为“使用无线电信号确定位置的方法和装置”。
技术领域
本发明的实施例涉及定位。更具体地,涉及使用无线电信号定位的方法、装置、模块、芯片集或计算机程序。
背景技术
存在多种用于使用射频信号确定装置的位置的已知技术。一些流行的技术涉及全球定位系统(GPS)的使用,其中多个绕地球的卫星发射使得GPS接收器能够确定其位置的射频信号。然而,在确定室内精确位置时,GPS通常不是十分有效。
一些非GPS定位技术使得装置能够确定其室内位置。然而,这些技术中的一些无法得到确定的精确位置,而其他则对便携式装置中简单使用来说太复杂。例如,在可能需要执行并行功能的便携式装置中提供执行所述技术所需的处理功率的量可能不实际。
发明内容
根据本发明的各个实施例,提供一种方法,包括:在装置处检测来自第一位置的一个或多个无线电信号;使用一个或多个检测的无线电信号估算来自所述第一位置的方位;和使用所述方位估算来确定在定位该装置之前是否需要对一个或多个无线电信号的进一步检测;和使用方位和限制信息定位该装置。
根据本发明的各个实施例,提供一种装置,包括:接收器,配置为检测来自第一位置的一个或多个无线电信号;处理电路,配置为使用一个或多个检测的无线电信号估算来自所述第一位置的所述装置的方位;和配置为使用所述方位估算来确定在定位该装置之前是否需要对一个或多个无线电信号的进一步检测;和配置为使用方位和限制信息定位该装置。
根据本发明的各个实施例,提供一种装置,包括:用于在装置处检测来自第一位置的一个或多个无线电信号的部件;用于使用一个或多个检测的无线电信号估算来自所述第一位置的方位的部件;和用于使用所述方位估算来确定在定位该装置之前是否需要对一个或多个无线电信号的进一步检测的部件;和使用方位和限制信息定位该装置的部件。
根据本发明的各个实施例,提供一种模块,包括:处理电路,配置为使用一个或多个检测的无线电信号估算方位;和配置为使用所述方位估算来确定在确定位置之前是否需要对一个或多个无线电信号的进一步检测;和配置为使用方位和限制信息确定装置。
根据本发明的各个实施例,提供一种计算机程序,包括计算机可读指令,当加载至处理器中时能够执行:使用一个或多个检测的无线电信号估算方位;使用所述方位估算来确定在确定位置之前是否需要对一个或多个无线电信号的进一步检测;和使用方位和限制信息确定装置。
本发明的一些实施例自适应地使用不同的定位策略。
一些实施例中,仅在需要时使用例如距离测量的双向通信。这减少了功耗,并且更有效地共享用于通信的无线电频谱,同时仍旧提供精确的定位。
一些实施例中,定位方法是动态地自适应的,并在需要但是仅需要精确定位时获取新限制信息。
一些实施例中,定位方法是动态地自适应的,并仅在可能改善定位的精度时通过测距获取新限制信息。
附图说明
为了更好地理解本发明的各个实施例,现在参照仅作为实例附图,其中:
图1示出从发射器接收无线电信号的装置;
图2A是发射器装置的示意图;
图2B是接收器装置的示意图;
图3是估算装置的位置的方法的流程图;
图4示出使用位移或距离作为限制估算装置的位置的示意图;
图5示出使用来自另一位置的附件方位作为限制估算装置的位置的示意图;和
图6示意性示出用于测距的双向通信;
图7示意性示出估算装置的位置的方法的实例;和
图8示意性示出估算装置的位置的方法的实例。
具体实施方式
附图示出在装置10处检测来自第一位置80的无线电信号50;使用一个或多个检测的无线电信号估算来自第一位置80的方位82;和使用方位估算82来确定在定位该装置10之前是否需要对一个或多个无线电信号的进一步检测;和使用方位和限制信息定位该装置10。
图1示出在建筑物94的地面100上的位置95处的一个人92(携带接收器装置10)。建筑物94可以是例如购物中心或会议中心。
基站发射器30位于建筑物94的位置80处。在所示实例中,位置80在建筑物94的天花板上(即天花板(overhead)内表面),但是在其他方案中,发射器可位于其他位置,例如墙壁上。
位置80在由建筑物的地面100上的标号70所示的点的正上方。发射器30用于使得装置10的用户(例如人92)确定他的位置95,但是这不一定是发射器30提供的唯一功能。例如,发射器30可以是例如经由无线局域网(WLAN)无线电信号向装置10的用户提供无线因特网接入的收发器的一部分。
通过沿着方位82(图4所示)指定位置来定义人92的位置95,所述方位82从发射器30的位置80通过装置10的位置95延续(run)。通过仰角θ和方位角φ来定义方位82。
图2A示意性示出基站发射器30的一个实例。发射器30包括控制器33、发射器电路34和天线阵列36,天线阵列36包括发射各自的无线电信号50A、50B、50C…的多个天线元件32A、32B、32C。
发射器30可周期性地发射单向无线电信号50作为信标。同时向多个装置广播信标。
在所示实例中,以时分多路复用的方式经由天线元件32的阵列36发射分离的(separate)信号50。使用交换机38,以预定顺序逐个地将天线元件32中的每一个连接至发射器电路34。因此,以不同的帧隙按序发送来自不同天线元件32A、32B、32C的无线电信号50A、50B、50C。
在图中,仅示出3个不同位移的(displaced)天线元件32,但是,在实际应用中可使用更多天线元件32。例如,可在半球的表面上分布16个贴片天线元件。3是在接收器装置10处能够确定方位82所需的无线电信号的最小数目。
其他实施例中,可存在与每个天线元件32相关的独立的发射器电路34。这个实施例中,可并行发射信号50的一个或多个。
每个信号50具有使其能够被接收器装置10区分的特性。该特性可以是信号自身的特征,例如,已经被调制到载波上的代码序列,或者可以是该信号相对于其他信号的位置的特征(例如,在帧中其“隙”的数目)。后者的情况下,帧隙中的所有信号可具有相同或不同的代码序列。
接收器装置10需要从接收的信号50A、50B、50C获得“位移信息”,这特别地(interalia)依赖于各个天线元件32A、32B、32C的相对位移。在以下详细描述的实例中,位移信息包括相位信息。
一个实施例中,可如码分多址中使用卷积码调制载波。然后,通过将期望的代码与接收的信号50关联,可在接收器装置10处确定明确的位移信息。
这个方法的一个优点是在接收器处不需要天线元件32的阵列36如何发射的知识,因为位移信息是从编码到载波上的数据而不是从载波本身的属性确定的。
另一更简单实施例使用I-Q调制(也已知为正交相移调制)来调制载波。这个调制技术中,两个正交载波(正弦和余弦)被独立地调幅以定义符号。在接收器装置10处,检测两个正交载波的振幅作为确定的复合采样和最接近的匹配符号。应理解,因为在不同方向发射时天线元件32的固有相位特征,还因为与其另一信号50相比信号50从一个天线元件到达接收器装置10的附加飞行时间,将以不同的相位接收从不同的天线元件发射的相同信号。如以下详细所述,在接收的信号50的相位中的该“飞行时间”信息的固有存在使得接收的信号50能被处理以确定根据发射器30的接收器装置10的方位82。
这个方法的一个优点是位移信息能够解决几厘米的天线元件32之间的相对空间间隔所需的方案将需要10GHz量级的载波频率,但是可使用低得多的调制速率,因此,可使用相对小的带宽和更慢的时钟。
这个方法的一个缺点是在接收器装置10处需要天线阵列36如何发射的信息,因为固有位移信息是从载波自身的属性(相位)确定的,并且天线元件32典型地在不同的角度用不同的相位偏移来发射。这个信息可采取阵列传输功能的形式。
图2B示出接收器装置10的示意图。例如,装置10可以是诸如移动无线电电话的手持便携式电子设备。装置10包括处理电路12、存储设备14、接收器16、用户输入设备18和用户输出设备20。
处理电路12使用一个或多个检测的无线电信号50估算来自第一位置80的方位82;使用方位估算82来确定在定位该装置10之前是否需要对一个或多个无线电信号的进一步检测;并使用方位和限制信息定位该装置10。
便携式装置本身不需要发射以确定其位置。此外,其可单独地执行确定方位82以及使用方位和限制信息沿着方位82估算装置10的位置所必须的处理。
处理电路12可以是任意类型的处理电路。例如,处理电路12可以是解释计算机程序指令13和处理数据的可编程处理器。或者,处理电路12可以是例如具有嵌入固件的可编程硬件。处理电路12可以是单个集成电路或集成电路的集合(即芯片集)。处理电路12也可以是硬布线的、专用集成电路(ASIC)。
本领域技术人员可理解,为了清楚,将处理电路描述为关于接收器的单独实体。然而,可理解,术语“处理电路”不仅可涉及装置的主处理器,还可涉及专用接收器芯片集中包括的处理电路,甚至涉及在主处理器和专用接收器芯片集中包括的处理电路的组合。
用于执行本发明的实施例的芯片集可并入模块中。这样的模块可集成在装置10中,和/或可与装置10分离。
连接处理电路12,以从接收器16接收输入。接收器16被配置为接收射频信号。无线电信号例如可具有100米或更少的传输距离。
例如,射频信号可以是802.11无线局域网(WLAN)信号、蓝牙信号、超宽带(UWB)信号或Zigbee信号。
连接处理电路12,以向存储设备14写入和从其读取。存储设备14可以是单个存储器单元或多个存储器单元。
存储设备14可存储计算机程序指令13,其在加载至处理电路12时控制装置10的操作。计算机程序指令13可提供使得装置执行图3所示的方法的逻辑和例程。
计算机程序指令13可经由电磁载波信号到达装置10或从物理实体21(例如计算机程序产品、存储器设备或记录介质(例如CD-ROM或DVD))复制。
计算机程序指令13提供:用于区分(210)由接收器16从第一位置80接收的无线电信号50,以估算(220)来自第一位置80的方位82的指令;以及用于使用方位82和独立于无线电信号50的限制信息估算(230)接收器16的位置的指令。
连接处理电路12,以从用户输入设备18接收输入。还连接处理电路12,以向用户输出设备20提供输出。用户输出设备20用于向用户传递信息,并且例如可以是显示器设备。用户输入设备18和用户输出设备20一起形成用户接口22。用户接口22可作为单个单元(例如触摸屏显示器设备)提供。
图3示出估算装置10的位置的方法。以下将描述图3的方法的各个实施例。尽管在多样化传输环境下描述该方法,但是应理解,其也可适用于多样化的接收。在多样化传输中,从空间上不同的天线发送多个无线电信号,如图1所示。在多样化接收中,在空间上不同的天线处接收无线电信号。
以下,假设在TDMA帧的不同时隙中发送图1和2所示的各个空间上不同发射的无线电信号50A、50B、50C,并且使用IQ调制(这个情况下使用二进制相移键控(BPSK)调制,因为其最健壮)将相同代码调制到信号中。可理解,在其他实施例中,可使用不同类型的信号,并且将需要区分信号的不同方法。
在图3的方法的框200处,装置10的接收器16检测包括第一、第二和第三无线电信号50A、50B、50C的无线电信号50。
在框210处,装置10的处理电路12使用检测的无线电信号50来估算来自第一位置80的装置10的方位82。
处理电路12可在各个无线电信号50之间区分。这个实例中,这可通过识别在TDMA的哪个帧隙中接收信号来实现。将需要区分至少3个不同的无线电信号50A、50B和50C。
处理电路12获得对于三个不同的无线电信号50A、50B、50C的可比较的复合采样(即表示相同的时刻的采样)。
一些实施例中,发射器30可在无线电信号50的传输之前,在无线电信号中向装置10传送校准数据15,用于存储在存储器14中,以使得装置10的处理电路12能够在无线电信号50之间区分。校准数据15例如可周期性地由发射器30发射作为信标信号。所述的实例中,校准数据15可包括:识别用于调制信号的代码的区分数据;关于TDMA帧的信息;和识别所使用的IQ调制的可能信息以及包括定义天线阵列36的转换功能的信息的天线阵列校准数据。
校准数据15可被加密。解密校准数据15的密钥可从远程服务器提供。例如,如果发射器30是提供因特网访问的收发器的一部分,则解密密钥可从经由收发器可访问的远程服务器获得。在装置10还用作移动电话的实施例中,解密密钥可从连接至移动电话网的远程服务器获得。或者,校准数据15本身可经由移动电话网从远程服务器,而并非从发射器30提供。
处理电路12随后估算方位82。现在描述确定方位82的一个方法,但是其他方法是可能的。
一旦获得来自每个天线元件32的可比较的复合采样(即表示相同的时刻的采样),则可通过处理电路12形成阵列输出向量y(n)(还称为快照)。
y(n)=[x1,x2,...,xM]T,(1)
其中xi是从第i个TX天线元件32接收的复合信号,n是测量的索引(index),M是阵列36中TX元件32的数目。
如果根据校准数据15,TX阵列36的复合阵列转移函数已知,则可从测量的快照估算离开方向(DoD)。
估算推定的DoD的最简单方法是使用波束成形,即,计算与所有可能的DoD相关的接收功率。对于传统的波束成形器的已知公式为:
其中,是所接收的信号的协方差矩阵的样本估计,是与相关的阵列转移函数,是方位角,θ是仰角。
一旦在所有可能的DoD中计算出波束成形器的输出功率,则选择具有最高输出功率的方位角和仰角的组合作为方位82。
系统的性能取决于TX阵列36的属性。例如,与不同的DoD相关的阵列转移函数应具有获得明确结果的尽可能低的相关性。
相关性取决于天线元件32的各自的(individual)辐射模式、元件间距离和阵列几何。同样,阵列元件32的数目对性能有影响。阵列36具有的元件32越多,方位估算变得越精确。最少地,在平面阵列配置中应该有至少3个天线元件32,但是在实践中,10个或更多个元件将提供良好的性能。
接着,在框220,处理电路12使用确定的方位估算82来确定在定位该装置之前是否需要对一个或多个无线电信号的进一步检测。
接着,在框230,处理电路12使用方位和限制信息估算该装置10的位置。
在本发明的一些实施例中,限制信息的使用使得处理电路12能够沿着估算的方位82确定装置10的位置。
图4也示出从发射器30的位置80到装置10的位置95的方位82,其已由处理电路12在接收无线电信号50之后估算。通过仰角θ和方位角φ来定义方位82。
处理电路12可使用方位(仰角θ,方位角φ)和限制信息(例如垂直位移h(图4)或附加方位(图5)或距离r(图4,图6)估算在坐标中装置10相对于发射器30的位置80的位置。处理电路12可通过使用三角法函数转换坐标来估算在Cartesian坐标中装置10的位置。
图5示出在这个实例中具有两个位于建筑物94的天花板上的发射器30、130的建筑物94。两个发射器30、130与关于图1所述的发射器具有相同形式。第一发射器30位于天花板上的位置80处,位于建筑物94的地面100上用标号70指示的点的正上方。第二发射器130位于天花板上的位置180处,位于地面100上用标号170指示的点的正上方。发射器30、130的间隔相比于具有其各自的阵列的天线元件32或132的间隔较大。
这个实施例中,装置10从第一发射器30接收无线电信号50,并根据关于图3所述的方法确定装置10的方位182。
装置10还从第二发射器130接收无线电信号150,并使用如关于图3所述的方法从第一发射器30确定装置10的方位182,作为限制信息。在框210处无线电信号150A、150B、150C的区分和方位182的估算将需要第二校准数据,包括例如由第二发射器130使用的天线阵列的转移函数。
装置10可从第二发射器130接收第二校准数据。
一旦估算了方位82和182,处理电路12可估算装置10位于沿着方位82的由限制方位182定义的位置。可以是,如果方位82、182的精确度为使得处理电路12无法高度精确地确定装置10的位置,则处理电路12估算装置10可能要被定位所在的区域。一旦估算了装置10的位置,处理电路12可控制用户输出设备20向用户传达估算的位置。
图6示意性示出包括装置10和在位置80处的基站30的系统。装置10和基站30配置为使用双向通信64协作以确定基站30和装置10之间的距离r。
在时间t0,装置10通过发送测距请求消息60来发起双向通信64。基站30接收测距请求消息60,并立即在应答中发送测距应答消息62。基站30接收测距请求消息60和发送测距应答消息62之间的时间为ts。在时间t2,在装置10处接收测距应答消息62。从装置10到基站30和返回至装置10的飞行时间Tf因此是t2-t1-ts。该距离r为tf/2c,其中c为光速。
图7示意性示出一种方法,其中示出了图3的框220的实例。
参照图3描述了框200、210、230。然而,一些方案中,可存在多于一个基站发射器30,并且可针对每个基站发射器30确定方位。
在框210估算方位之后,在框72,该方法确定方位估算的质量,并确定哪个方位估算具有足够的质量。
当在装置10和基站发射器30之间存在视线时,方位估算可具有足够的质量。当在装置10和基站发射器30之间存在多个路径时,方位估算可能具有不足的质量。可通过源自框210的用于单个基站发射器30的两个或更多个不一致的方位估算来显示多个路径。
在框73,如果没有方位估算具有足够的质量,则该方法移动至框76,其中定位处理230的限制被设置,并且不包括距离。
在框73,如果一个或多个方位估算具有足够质量,则该方法移动至框74,其中执行与足够的方位相关的基站发射器30的测距。如果存在与足够的方位相关的多于一个适当的基站发射器30,则可执行选择处理,以选择用于测距的一个或多个基站发射器。先前已经关于图6描述了测距方法的实例。
接着,在框75,设置定位处理230的限制,并且包括在框74确定的一个或多个距离。
图8示意性示出一种方法,其中示出了图3的框220的实例。
参照图3描述了框200、210、230。然而,一些方案中,可存在多于一个基站发射器30,并且可针对每个基站发射器30确定方位。
在框210估算方位之后,在框72,该方法尝试仅使用方位来定位装置。即,将方位(如果可用)用作限制信息。
在框84,确定在框83中是否确定了可靠的位置估算。
如果答案为是,则该方法经由框89,通过重复框200、210继续确定附加方位,并随后通过使用多个方位作为限制重复框83,改善位置的精度。当超过时间阈值时,方法在框89中断。然后,该方法移动至框85。
如果答案为否,则该方法移动至框85。
在框85,确定方位估算的质量,并确定哪个方位估算具有足够的质量。
当在装置和基站发射器之间存在视线时,方位估算可具有足够的质量。当在装置和基站发射器之间存在多个路径时,方位估算可能具有不足的质量。可通过源自框210的用于单个基站发射器30的两个或更多个不一致的方位估算来显示多个路径。
接着,在框86,如果没有方位估算具有足够的质量,则该方法返回至框200,搜索新基站发射器候选。
在框86,如果一个或多个方位估算具有足够的质量,则该方法移动至框87,其中执行与足够的方位相关的基站发射器30的测距。先前已经关于图6描述了测距方法的实例。
接着,在框230,使用在框87处确定的一个或多个距离作为定位处理中的附加限制信息。
然后,该方法返回至框200,搜索基站发射器的新候选。
在所示方法中,当超过时间阈值时,框89到达框85。在其他方案中,当超过时间阈值时该方法可终止。在这个方案中,如果在框84可在没有测距的情况下获得可靠的位置估算,则可能不需要测距。
图3、7和8所示的框可代表计算机程序13中的方法步骤和/或代码的段。对于框的特别顺序的图示不必暗示对于框存在所需或优选的顺序,框的顺序和排列可改变。
尽管在以前的段落参照各个实例描述了本发明的实施例,但是应理解,在不脱离本发明的范围的情况下,可做出对于给出的实例的修改。例如,装置10可以不用作移动电话。例如,其可以是具有接收无线电信号的接收器的便携式音乐播放器。
在以上段落中给出了限制信息的各个实例,但是术语“限制信息”不旨在限制为这些实例。
先前说明书中描述的特征可用于除了明确公开的组合之外的组合中。
在以上说明书中试图关注被认为是特别重要的本发明的那些特征,但是应理解,申请人主张保护在上文中提及和/或附图中示出的任何可专利性的特征或特征组合,无论是否有特别强调。

Claims (17)

1.一种方法,包括:
在装置处检测来自第一位置的一个或多个无线电信号;
使用一个或多个检测的无线电信号估算来自所述第一位置的方位;
使用所述方位估算来确定在定位所述装置之前是否需要对一个或多个无线电信号的进一步检测;和
使用方位和限制信息定位所述装置,所述限制信息包括定义所述第一位置的天线阵列的转移函数的信息,其中在所述装置的定位中的限制信息使用是基于所述方位估算的质量。
2.如权利要求1所述的方法,还包括:通过接收进一步的无线电信号来获得所述限制信息。
3.如权利要求1所述的方法,其中所述限制信息包括方位和距离中的至少一个。
4.如权利要求1所述的方法,其中使用所述方位估算来确定在定位所述装置之前是否需要通过对一个或多个无线电信号的进一步检测来对第一位置进行测距,其中所述距离是限制信息的至少一部分。
5.如权利要求4所述的方法,其中对第一位置进行测距包括由所述装置发起并由一个或多个无线电信号的进一步检测终止的双向无线电通信。
6.如权利要求4所述的方法,还包括:确定方位估算是否具有足够的质量,并且当方位估算具有足够的质量时对第一位置进行测距。
7.如权利要求4所述的方法,其中使用方位估算来确定在定位所述装置之前是否需要通过对一个或多个无线电信号的进一步检测来估算到第二位置的第二方位。
8.如权利要求4所述的方法,确定方位估算是否具有足够的质量,并且当方位估算不具有足够的质量时估算到第二位置的第二方位。
9.如权利要求4所述的方法,包括:
在所述装置处检测来自第二位置的一个或多个无线电信号;
使用一个或多个检测的无线电信号来估算来自所述第二位置的第二方位;
使用所述方位估算和所述第二方位估算来确定在定位所述装置之前是否需要通过对一个或多个无线电信号的进一步检测对第一位置和/或第二位置进行测距。
10.如权利要求1所述的方法,其中所述天线阵列的转移函数由通过单向广播通信发送给多个装置的信息定义。
11.如权利要求1所述的方法,使用方位估算确定在定位所述装置之前是否需要双向无线电信令的发起。
12.如权利要求1所述的方法,在所述装置处检测来自空间上不同的天线处的第一位置的一个或多个无线电信号。
13.一种方法,包括:
在装置处检测来自第一位置的一个或多个无线电信号;
使用一个或多个检测的无线电信号估算来自所述第一位置的方位;
使用所述方位估算来确定在定位所述装置之前是否需要对一个或多个无线电信号的进一步检测;和
使用方位和限制信息定位所述装置,所述限制信息包括定义所述第一位置的天线阵列的转移函数的信息,
其中在手持便携式装置处单独地执行前述步骤中的每一个。
14.一种装置,包括:
接收器,其配置为检测来自第一位置的一个或多个无线电信号;
处理电路,其配置为使用一个或多个检测的无线电信号估算来自所述第一位置的所述装置的方位;和配置为使用所述方位估算来确定在定位所述装置之前是否需要对一个或多个无线电信号的进一步检测;和配置为使用方位和限制信息定位所述装置,所述限制信息包括定义所述第一位置的天线阵列的转移函数的信息,其中在所述装置的定位中的限制信息使用是基于所述方位估算的质量。
15.如权利要求14所述的装置,其中所述接收器配置为通过接收进一步的无线电信号来获得所述限制信息。
16.如权利要求14所述的装置,其中所述限制信息包括方位和距离中的至少一个。
17.一种装置,包括:
用于在装置处检测来自第一位置的一个或多个无线电信号的部件;
用于使用一个或多个检测的无线电信号估算来自所述第一位置的方位的部件;
用于使用所述方位估算来确定在定位所述装置之前是否需要对一个或多个无线电信号的进一步检测的部件;和
用于使用方位和限制信息定位所述装置的部件,所述限制信息包括定义所述第一位置的天线阵列的转移函数的信息,其中在所述装置的定位中的限制信息使用是基于所述方位估算的质量。
CN201610029122.2A 2010-03-01 2010-03-01 使用无线电信号确定位置的方法和装置 Pending CN105657826A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610029122.2A CN105657826A (zh) 2010-03-01 2010-03-01 使用无线电信号确定位置的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610029122.2A CN105657826A (zh) 2010-03-01 2010-03-01 使用无线电信号确定位置的方法和装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2010800665471A Division CN102870003A (zh) 2010-03-01 2010-03-01 使用无线电信号确定位置的方法和装置

Publications (1)

Publication Number Publication Date
CN105657826A true CN105657826A (zh) 2016-06-08

Family

ID=56487457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610029122.2A Pending CN105657826A (zh) 2010-03-01 2010-03-01 使用无线电信号确定位置的方法和装置

Country Status (1)

Country Link
CN (1) CN105657826A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1488076A (zh) * 2001-01-05 2004-04-07 Ħ��������˾ 用于位置估计的方法和装置
US20080232281A1 (en) * 2007-01-22 2008-09-25 Worcester Polytechnic Institute Precise node localization in sensor ad-hoc networks
WO2009056150A1 (en) * 2007-10-29 2009-05-07 Nokia Corporation Indoor positioning system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1488076A (zh) * 2001-01-05 2004-04-07 Ħ��������˾ 用于位置估计的方法和装置
US20080232281A1 (en) * 2007-01-22 2008-09-25 Worcester Polytechnic Institute Precise node localization in sensor ad-hoc networks
WO2009056150A1 (en) * 2007-10-29 2009-05-07 Nokia Corporation Indoor positioning system and method

Similar Documents

Publication Publication Date Title
EP2217942B1 (en) Indoor positioning system and method
US10687303B2 (en) User equipment localization in a mobile communication network based on delays and path strengths
Sayed et al. Network-based wireless location: challenges faced in developing techniques for accurate wireless location information
US9814051B1 (en) Identifying angle of departure of multi-antenna transmitters
US20150309155A1 (en) Method and Apparatus for Determining the Position Using Radio Signals and Atmospheric Pressure
CN204166130U (zh) 射频定位装置和系统
US11550024B2 (en) Interferometric location sensing
US9258794B2 (en) Method, and apparatus for determining the position using radio signals
US20180084386A1 (en) Identifying angle of departure of multi-antenna transmitters
US20140355503A1 (en) Transmitting service advertisements
US20130335272A1 (en) Calculating a location
KR20220130693A (ko) 간섭 측정 위치 감지
US9244175B2 (en) Method and apparatus for testing received signals in a radio signal positioning system
US11215688B2 (en) Identifying angle of departure of multi-antenna transmitters
Krishnamurthy Technologies for positioning in indoor Areas
Kawauchi et al. Directional beaconing: A robust wifi positioning method using angle-of-emission information
CN105657826A (zh) 使用无线电信号确定位置的方法和装置
Raja et al. We know where you are [cellular location tracking]
KR20150101377A (ko) 태그를 이용한 측위 장치 및 방법
US20240272264A1 (en) Tracking a Moving Radio Beacon
Lee et al. Bilatangulation: A Novel Measurement Error Compensation Method for Wi-Fi Indoor Positioning with Two Anchors
Wong Investigation of wireless local area network facilitated angle of arrival indoor location
TWI502905B (zh) 以地面基地台提供定位之方法
Gonzalez-Hernandez et al. Robust Ultrasonic Spread Spectrum Positioning System Using a AoA/ToA Method
US20120262341A1 (en) Method for identifying transmitters by a terminal in a single-frequency network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160608