CN105652791B - The Discrete Manufacturing Process energy consumption optimization method of order-driven market - Google Patents

The Discrete Manufacturing Process energy consumption optimization method of order-driven market Download PDF

Info

Publication number
CN105652791B
CN105652791B CN201510882936.6A CN201510882936A CN105652791B CN 105652791 B CN105652791 B CN 105652791B CN 201510882936 A CN201510882936 A CN 201510882936A CN 105652791 B CN105652791 B CN 105652791B
Authority
CN
China
Prior art keywords
mrow
energy consumption
time
processing
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510882936.6A
Other languages
Chinese (zh)
Other versions
CN105652791A (en
Inventor
周光辉
杨翔
鲁麒
朱家凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Guangdong University of Technology
Original Assignee
Xian Jiaotong University
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, Guangdong University of Technology filed Critical Xian Jiaotong University
Priority to CN201510882936.6A priority Critical patent/CN105652791B/en
Publication of CN105652791A publication Critical patent/CN105652791A/en
Application granted granted Critical
Publication of CN105652791B publication Critical patent/CN105652791B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种订单驱动的离散制造过程能耗优化方法,以实现离散制造过程的能耗优化的前提是进行获取加工过程的工序能耗信息。因此,本发明首先根据机床性能、加工材料、加工工艺参数、NC代码实现工序能耗的预测,为系统层低能耗生产进行资源的配置提供了数据支撑。然后,本发明设计采用改进的多目标优化智能算法进行离散制造过程的生产资源优化配置,保证完工时间、加工成本、加工能耗等优化目标协调优化。本发明为订单驱动的离散制造过程的能耗优化提供了新的思路,为实现低能耗生产、绿色制造提供了借鉴。

The invention discloses an order-driven discrete manufacturing process energy consumption optimization method. The premise of realizing the energy consumption optimization of the discrete manufacturing process is to acquire process energy consumption information of the processing process. Therefore, the present invention first realizes the prediction of process energy consumption based on machine tool performance, processing materials, processing parameters, and NC codes, and provides data support for resource allocation for low-energy production at the system level. Then, the design of the present invention adopts the improved multi-objective optimization intelligent algorithm to optimize the allocation of production resources in the discrete manufacturing process, so as to ensure the coordinated optimization of optimization objectives such as completion time, processing cost, and processing energy consumption. The invention provides a new idea for the energy consumption optimization of the order-driven discrete manufacturing process, and provides a reference for realizing low energy consumption production and green manufacturing.

Description

订单驱动的离散制造过程能耗优化方法Energy consumption optimization method for order-driven discrete manufacturing process

技术领域:Technical field:

本发明属于先进制造与自动化技术领域,尤其涉及一种面向订单驱动的离散制造过程能耗优化方法。The invention belongs to the technical field of advanced manufacturing and automation, and in particular relates to an order-driven discrete manufacturing process energy consumption optimization method.

背景技术:Background technique:

随着制造业的发展,订单驱动的定制生产成为主流。单一制造企业往往面临来自不同客户的多个订单需求,因此,生产方式为面向多品种小批量的离散制造模式,其加工过程是不同零部件加工子过程或并联或串联组成的复杂过程。而另一方面,我国现在已经是世界是第一制造大国,制造业产出约占世界总产出的20%。但是,我国制造业的发展是以高能耗为代价的,制造业能耗约占我国工业总能耗的80%,单位工业增加值能耗水平是世界平均水平的2.5倍,美国的3.3倍,日本的7倍,也高于巴西、墨西哥等发展中国家。我国现在已是二氧化碳排放量第一大国,增量也占全球的70%以上,在国际上面临的节能减排的压力越来越大。因此有必要探究一种考虑能耗的离散制造过程资源分配优化方法,对生产进行合理的安排,保证生产的低成本、低能耗和及时性。With the development of the manufacturing industry, order-driven customized production has become the mainstream. A single manufacturing enterprise often faces multiple order requirements from different customers. Therefore, the production method is a discrete manufacturing mode for multiple varieties and small batches, and its processing process is a complex process composed of different component processing sub-processes or parallel or series. On the other hand, my country is now the world's largest manufacturing country, and its manufacturing output accounts for about 20% of the world's total output. However, the development of my country's manufacturing industry is at the cost of high energy consumption. The energy consumption of manufacturing industry accounts for about 80% of my country's total industrial energy consumption. Japan's 7 times, also higher than Brazil, Mexico and other developing countries. my country is now the largest country in terms of carbon dioxide emissions, accounting for more than 70% of the global increase. The international pressure on energy conservation and emission reduction is increasing. Therefore, it is necessary to explore a resource allocation optimization method for discrete manufacturing processes that considers energy consumption, arrange production reasonably, and ensure low cost, low energy consumption, and timeliness of production.

为保证制造过程的低能耗,国内外专家学者进行了广泛的研究,取得了一定的成果,但是存在着一定的局限性,主要有:In order to ensure low energy consumption in the manufacturing process, experts and scholars at home and abroad have conducted extensive research and achieved certain results, but there are certain limitations, mainly including:

1)目前的研究主要将焦点聚集在设备层面上,进行机床关键零部件的优化控制、改进和更换,或是进行加工过程的工艺参数优化,以实现低能耗生产的目标,无法从制造系统层的高度保证低能耗生产。1) The current research mainly focuses on the equipment level to optimize the control, improvement and replacement of key parts of the machine tool, or to optimize the process parameters of the machining process to achieve the goal of low energy consumption production, which cannot be achieved from the manufacturing system level The height guarantees low energy consumption production.

2)在制造系统层面进行低能耗生产的研究主要聚集在钢铁、轮胎等流水生产车间,离散制造过程的研究比较少。另一方面,保证系统层低能耗生产需要获取某道工序在某台机床上加工能耗的先验知识,不少研究缺乏该方面的研究,因而进行的低能耗生产规划缺乏实用性。2) Research on low-energy production at the manufacturing system level is mainly concentrated in steel, tire and other flow production workshops, and research on discrete manufacturing processes is relatively small. On the other hand, ensuring low-energy production at the system level requires prior knowledge of the energy consumption of a certain process on a certain machine tool. Many studies lack research in this area, so low-energy production planning is not practical.

3)在进行制造过程优化时,优化目标包括完工时间、加工成本、机床负载率、加工能耗等多个目标,不少研究采用的智能优化算法无法保证多个目标的协调最优。3) When optimizing the manufacturing process, the optimization objectives include multiple objectives such as completion time, processing cost, machine tool load rate, and processing energy consumption. The intelligent optimization algorithms used in many studies cannot guarantee the optimal coordination of multiple objectives.

基于以上问题可知,目前的研究存在着一定的局限性和漏洞,因而研究订单驱动的离散制造过程能耗优化方法,对制造企业的节能减排有重大意义。首先实现离散制造过程的能耗优化的前提是进行加工过程的工序能耗预测。根据机床性能、加工材料、加工工艺参数实现能耗的预测,为系统层优化低能耗生产提供数据支撑。其次,该方法采用多目标优化智能算法,保证完工时间、加工成本、加工能耗等优化目标协调优化。因而,该方法大大弥补了传统方法的不足。Based on the above problems, it can be seen that the current research has certain limitations and loopholes. Therefore, it is of great significance to study the energy consumption optimization method of the order-driven discrete manufacturing process for the energy saving and emission reduction of manufacturing enterprises. First of all, the premise of realizing the energy consumption optimization of the discrete manufacturing process is to carry out the process energy consumption prediction of the processing process. According to machine tool performance, processing materials, and processing technology parameters, energy consumption prediction is realized, and data support is provided for optimizing low-energy production at the system level. Secondly, the method uses a multi-objective optimization intelligent algorithm to ensure the coordinated optimization of optimization objectives such as completion time, processing cost, and processing energy consumption. Therefore, this method greatly compensates for the shortcomings of traditional methods.

发明内容:Invention content:

本发明的目的在于提供一种订单驱动的离散制造过程能耗优化方法,可实现加工过程工序能耗预测,并实现离散加工过程能耗优化。The purpose of the present invention is to provide an order-driven discrete manufacturing process energy consumption optimization method, which can realize the energy consumption prediction of the processing procedure and realize the energy consumption optimization of the discrete manufacturing process.

为了达到上述目的,本发明采取如下的技术方案来实现的:In order to achieve the above object, the present invention takes the following technical solutions to achieve:

订单驱动的离散制造过程能耗优化方法,包括以下步骤:An order-driven discrete manufacturing process energy optimization method, including the following steps:

1)根据待加工零件的某道工序的NC代码获取加工该工序的负载时间、空载时间、换刀次数、待机总时间、启动总时间、负载时的进给量、主轴转速和刀具型号;1) According to the NC code of a certain process of the part to be processed, the load time, no-load time, tool change times, total standby time, total start-up time, feed rate under load, spindle speed and tool model of the process are obtained;

2)根据步骤1)中获得的负载时的进给量、主轴转速、刀具型号,代入负载功率和空载功率计算模型,获得负载功率和空载功率;2) Substituting the load power and no-load power calculation model into the load power and no-load power calculation model according to the feed, spindle speed and tool model obtained in step 1), to obtain the load power and no-load power;

3)根据步骤1)获得的负载时间、空载时间、换刀次数、待机总时间、启动总时间,步骤2)获得的负载功率和空载功率,以及该道工序选定的机床固有的启动功率、待机功率和换刀能耗,代入总工序能耗计算模型,计算得到该工序能耗值;3) According to the load time, no-load time, tool change times, total standby time, and total start-up time obtained in step 1), the load power and no-load power obtained in step 2), and the inherent start-up of the machine tool selected in this process Power, standby power and tool change energy consumption are substituted into the calculation model of total process energy consumption to calculate the energy consumption value of this process;

4)根据步骤1)、步骤2)和步骤3)的工序能耗预测方法,获取一个生产批次内多个不同零件的同一工序在不同机床上加工的能耗值,构建能耗信息库;4) According to the process energy consumption prediction method of step 1), step 2) and step 3), the energy consumption values of the same process of multiple different parts in a production batch processed on different machine tools are obtained, and the energy consumption information database is constructed;

5)根据步骤4)获得的能耗信息库,设计改进的NSGA-II算法,进行每道工序加工机床的确定和每台机床上加工任务顺序的确定,用于保证在完工时间、加工成本的约束下,使得加工能耗低。5) According to the energy consumption information database obtained in step 4), an improved NSGA-II algorithm is designed to determine the processing machine tools for each process and the order of processing tasks on each machine tool, so as to ensure the completion time and processing cost. Under the constraints, the processing energy consumption is low.

本发明进一步的改进在于,步骤1)的具体实现步骤如下:A further improvement of the present invention is that the specific implementation steps of step 1) are as follows:

1-1)采用C语言编程构建NC代码解析器,其中,通过T指令获取换刀次数Nc,同时获取此时使用的刀具的型号以获取铣削宽度B;通过M指令获取机床的启动时间和关闭时间,从而获取计算运行总时间T;通过S指令获取机床的主轴转速n;通过F指令获取进给量f;通过G指令获取坐标位置点,通过结合进给量计算铣削时间Tl和空铣削时间Tis,结合运行总时间计算得到待机时间;1-1) Construct an NC code parser by programming in C language, wherein, the number of tool changes N c is obtained through the T command, and the model of the tool used at this time is obtained to obtain the milling width B; the start-up time and Turn off the time, so as to obtain the total running time T; obtain the spindle speed n of the machine tool through the S command; obtain the feed rate f through the F command; obtain the coordinate position point through the G command, and calculate the milling time T l by combining the feed rate and the empty space Milling time T is , combined with the total running time to calculate the standby time;

1-2)将待加工零件的NC代码输入NC代码解析器,以自动获取加工某道工序的负载时间、空载时间、换刀次数、待机总时间、启动总时间、负载时的进给量、主轴转速和刀具型号。1-2) Input the NC code of the part to be processed into the NC code parser to automatically obtain the load time, no-load time, tool change times, total standby time, total start-up time, and feed during a certain process of processing , spindle speed and tool model.

本发明进一步的改进在于,步骤2)中的负载功率Pl计算模型如下:A further improvement of the present invention is that the load power P1 calculation model in step 2) is as follows:

式中,Kl为负载功率系数,与工件材料、刀具、机床性能相关;f为负载时的进给量,单位为mm/min;ap为铣削深度,单位mm;λ1、λ2、λ3、λ4均为幂指数;In the formula, K l is the load power coefficient, which is related to the workpiece material, cutting tool and machine tool performance; f is the feed rate under load, the unit is mm/min; a p is the milling depth, the unit is mm; λ 1 , λ 2 , Both λ 3 and λ 4 are power exponents;

空载功率Pis计算模型如下:The calculation model of no-load power P is is as follows:

式中,Kis为空载功率系数,与工件材料、刀具、机床性能相关;α1、α2均为幂指数。In the formula, K is the no-load power coefficient, which is related to the workpiece material, cutting tool and machine tool performance; α 1 and α 2 are power exponents.

本发明进一步的改进在于,步骤3)中的总工序能耗E计算模型如下:A further improvement of the present invention is that the calculation model of the total process energy consumption E in step 3) is as follows:

E=PsTs+PiTi+PisTis+PlTl+NcEc (5)E=P s T s +P i T i +P is T is +P l T l +N c E c (5)

式中,Ps:设备启动功率,Pi:设备待机功率,Pis:空铣削功率,Pl:设备铣削功率,Ec:换刀能耗,Ts:启动总时间,Ti:待机总时间,Tis:空铣削总时间,Tl:铣削时间,Nc:换刀次数。In the formula, P s : equipment startup power, P i : equipment standby power, P is : idle milling power, P l : equipment milling power, E c : energy consumption of tool change, T s : total startup time, T i : standby Total time, T is : total time of idle milling, T l : milling time, N c : number of tool changes.

本发明进一步的改进在于,步骤5)的具体实现步骤如下:A further improvement of the present invention is that the specific implementation steps of step 5) are as follows:

5-1)加工信息输入:加工信息包括加工任务工序信息、进行零件的某道工序加工可供选择的加工机床、每道工序在不同机床上加工的加工时间、加工能耗、机床的待机功率、机床之间的运输能耗信息;5-1) Processing information input: processing information includes processing task process information, processing machine tools that can be selected for processing a certain process of a part, processing time of each process on different machine tools, processing energy consumption, and standby power of the machine tool , Transportation energy consumption information between machine tools;

构建机床的开关机决策模型,如下:Construct the switch decision model of the machine tool, as follows:

if TSP+TPS>Tin if T SP +T PS > T in

then:保持机床空载;then: keep the machine unloaded;

else if ESP+EPS>CITin else if E SP +E PS >C I T in

then保持机床空载then keep the machine unloaded

else关闭机床else shut down the machine

模型中:TSP为设备从关闭到正常运行的转化时间;TPS为设备从正常运行到关闭的转化时间;Tin为设备的加工间隙等待时间;ESP为设备从关闭到正常运行的转化能耗;EPS为设备从正常运行到关闭的转化能耗;CI为设备的空载功率;In the model: T SP is the conversion time from shutdown to normal operation of the equipment; T PS is the conversion time from normal operation to shutdown of the equipment; T in is the waiting time of the processing gap of the equipment; E SP is the conversion of the equipment from shutdown to normal operation Energy consumption; E PS is the converted energy consumption from normal operation to shutdown of the equipment; C I is the no-load power of the equipment;

5-2)构建规划问题的数学模型,其中,优化目标为加工能耗、生产成本和完工时间,计算公式分别如式(6)、(7)、(8)所示,约束条件如式(9)~(13)所示:5-2) Construct a mathematical model of the planning problem, in which the optimization targets are processing energy consumption, production cost and completion time, the calculation formulas are shown in formulas (6), (7), and (8) respectively, and the constraints are shown in formula ( 9)~(13):

加工能耗,包括生产能耗、加工间隙能耗和运输能耗:Processing energy consumption, including production energy consumption, processing interval energy consumption and transportation energy consumption:

生产成本:Cost of production:

完工时间:Completion Time:

T=max(C1,C2...Cm) (8)T=max(C 1 ,C 2 ...C m ) (8)

约束条件:Restrictions:

Ck=max(cijk)i=1,2,...,n;j=1,2,...,pi;k∈Mij (9)C k =max(c ijk )i=1,2,...,n; j=1,2,...,p i ; k∈M ij (9)

cijk=sijk+tijk i=1,2,...,n;j=1,2,...,pi;k=1,2,...,m (10)c ijk =s ijk +t ijk i=1,2,...,n; j=1,2,...,p i ;k=1,2,...,m (10)

sijk-ci(j-1)l≥0 (11)s ijk -c i(j-1)l ≥0 (11)

其中,Dijk表示工件i的第j道工序选择机器k的决策变量,表示工件i的第j道工序在机器k上的加工的能耗,表示工件i的第j道工序到下一道工序的运输能耗,ek表示机器k非加工时间的能耗量,表示工件i的第j道工序在机器k上的加工成本,ck表示机床k的完工时间,cijk表示任务i的第j道工序在机器k上的完工时间,pi表示工件i的工序总数,Mij表示工件i的工序j可选机床集,sijk表示任务i的第j道工序在机器k上的开始时间,tijk表示任务i的第j道工序在机器k上的加工时间,Gijk表示任务i的第j道工序选择机器k的选择变量;Among them, D ijk represents the decision variable of selecting machine k for the jth process of workpiece i, Indicates the energy consumption of the jth process of the workpiece i on the machine k, Indicates the transportation energy consumption from the jth process of workpiece i to the next process, e k represents the energy consumption of machine k in non-processing time, Indicates the processing cost of the jth process of the job i on the machine k, c k represents the completion time of the machine k, c ijk represents the completion time of the jth process of the task i on the machine k, p i represents the process of the workpiece i The total number, M ij represents the set of optional machine tools for the process j of the workpiece i, s ijk represents the start time of the jth process of the task i on the machine k, and t ijk represents the processing time of the jth process of the task i on the machine k , G ijk represents the selection variable of the jth process selection machine k of the task i;

式(6)、(7)、(8)、分别为能耗目标函数、生产成本函数和完工时间函数;Equations (6), (7), and (8) are energy consumption target function, production cost function and completion time function respectively;

约束条件(9):保证机床k的完工时间为机床i上最后一个完工工序的时间;Constraint (9): Ensure that the completion time of machine k is the time of the last completion process on machine i;

约束条件(10):任务i的第j道工序在机床k上的完工时间为其开始时间与工序时间之和;Constraint (10): The completion time of the jth process of task i on machine k is the sum of the start time and process time;

约束条件(11):任务i的加工顺序约束,保证工序的开始时间在上一道工序结束时间之后;Constraint condition (11): The processing sequence constraint of task i ensures that the start time of the process is after the end time of the previous process;

约束条件(12):保证任务i的第j道工序有多个可选机床;Constraint (12): Ensure that the jth process of task i has multiple optional machine tools;

约束条件(13):保证任务i的第j道工序仅选择一台可选机床进行加工;Constraint condition (13): ensure that only one optional machine tool is selected for the jth process of task i;

5-3)NSGA-II算法的设计:5-3) Design of NSGA-II algorithm:

(1)采用改进的多目标优化算法ED-NSGA-II求解:(1) Using the improved multi-objective optimization algorithm ED-NSGA-II to solve:

1)编码解码设计:设计基于工序和机床的二维编码方式;1) Coding and decoding design: design a two-dimensional coding method based on process and machine tool;

2)个体优劣评价:采用基于非支配排序值和拥挤度值进行个体优劣排序;2) Evaluation of individual pros and cons: use non-dominated sorting value and congestion value to sort individual pros and cons;

3)选择方式:锦标赛选择方法;3) Selection method: Championship selection method;

4)交叉方式:二元POX交叉;4) Crossover method: Binary POX crossover;

5)变异操作:随机变异;5) Mutation operation: random mutation;

6)种群保留机制:基于精英策略的种群保留机制;6) Population retention mechanism: population retention mechanism based on elite strategy;

(2)算法的计算过程为:(2) The calculation process of the algorithm is:

1)设定算法的基本参数:最大迭代次数为150次,种群大小为500,交叉概率为0.8;变异概率为0.1;1) Set the basic parameters of the algorithm: the maximum number of iterations is 150, the population size is 500, the crossover probability is 0.8; the mutation probability is 0.1;

2)初始化种群,进行个体的非支配排序和拥挤度值计算;2) Initialize the population, perform non-dominated sorting of individuals and calculation of crowding degree;

3)选择交叉操作:变异总个体为种群大小与交叉概率之积:400;选用二元锦标赛方法选出两个个体,其中非支配排序Rank值最低和拥挤度最高的个体优先选中,根据交叉概率进行二元POX交叉;3) Select the crossover operation: the total number of mutation individuals is the product of the population size and the crossover probability: 400; two individuals are selected using the binary tournament method, and the individual with the lowest Rank value and the highest degree of crowding in non-dominated sorting is selected first, according to the crossover probability Perform binary POX crossover;

4)选择变异操作:变异总个体为种群大小与变异概率之积:50;同样采用二元锦标赛方法选出某个体,个体基因链基因根据变异概率随机变异;4) Selection of mutation operation: the total number of mutation individuals is the product of population size and mutation probability: 50; an individual is also selected using the binary tournament method, and the individual gene chain genes are randomly mutated according to the mutation probability;

5)精英策略种群保留:将交叉、变异产生的新种群和初始产生的种群合并,进行所有个体的非支配排序和拥挤度计算,保留前500个优秀个体;5) Elite strategy population retention: merge the new population generated by crossover and mutation with the initially generated population, perform non-dominated sorting and crowding calculation of all individuals, and retain the top 500 outstanding individuals;

6)终止条件检测:若当前所有个体的Rank值均为1的前19次迭代均是所有个体的Rank值为1,则终止迭代;若不满足,则查看是否达到迭代次数150:未达到,则转入步骤3),进入下一次迭代;达到则终止迭代;6) Termination condition detection: If the rank values of all individuals are 1 in the first 19 iterations, the iteration is terminated; if not satisfied, check whether the number of iterations is 150: not reached, Then turn to step 3) and enter the next iteration; when it reaches, the iteration is terminated;

7)输出迭代结果;7) output the iteration result;

5-5)最优解确定:5-5) Optimal solution determination:

由于ED-NSGA-II求解得到结果为最优解集,需要进行最优解的确定,因此采用基于DEMATEL+ANP方法进行多个目标的权重确定,进行最优解确定;Since the result of ED-NSGA-II solution is the optimal solution set, it is necessary to determine the optimal solution, so the weight determination of multiple objectives based on the DEMATEL+ANP method is used to determine the optimal solution;

5-6)生产规划的生成:5-6) Generation of production planning:

通过确定的最优解,得到相应的加工能耗,同时解码确定每道工序的加工机床和各台机床上任务的加工顺序,并生成相应生产优化配置的结果。Through the determined optimal solution, the corresponding processing energy consumption is obtained, and at the same time, the processing sequence of the processing machine tools of each process and the tasks on each machine tool is decoded, and the corresponding production optimization configuration results are generated.

相对于现有技术,本发明具有的有益效果是:Compared with prior art, the beneficial effect that the present invention has is:

本发明提供的订单驱动的离散制造过程能耗优化方法,依据待加工零件的不同工序的NC代码,获取计算加工该工序所需要的变量,代入能耗计算模型得到该工序在某台机床上加工的能耗值,从而建立多个零件在不同机床上加工的能耗信息库,然后设计多目标优化算法进行离散加工的生产规划,实现加工过程的能耗优化。该选配方法的步骤条理清晰、层次明确,为订单驱动的离散制造过程进行系统层的能耗优化提供了借鉴。一方面,本发明提出的基于加工过程参数、NC代码、机床特性和加工材料的能耗预测方法,与传统的多次测量获得某道工序的能耗的经验知识的方法相比,能够有效地降低冗余度,从而简化了零件加工工序能耗信息库的构建。另一方面,本发明提出了系统层面上的离散制造过程的能耗优化方法,考虑了加工能耗、运输能耗、加工间隙能耗多个能耗指标,并构建了机床在加工间隙的开关机决策模型以进一步降低能耗;改进了多目标优化算法NSGA-II进行生产资源分配,保证了完工时间,降低了加工成本和加工能耗。The energy consumption optimization method of the order-driven discrete manufacturing process provided by the present invention obtains and calculates the variables required for processing the process according to the NC codes of the different processes of the parts to be processed, and substitutes them into the energy consumption calculation model to obtain that the process is processed on a certain machine tool In order to establish the energy consumption information database of multiple parts processed on different machine tools, and then design a multi-objective optimization algorithm for the production planning of discrete processing, and realize the energy consumption optimization of the processing process. The steps of this matching method are clear and clear, which provides a reference for the energy consumption optimization at the system level of the order-driven discrete manufacturing process. On the one hand, the energy consumption prediction method based on processing parameters, NC codes, machine tool characteristics and processing materials proposed by the present invention can effectively Redundancy is reduced, thereby simplifying the construction of the energy consumption information database of parts processing procedures. On the other hand, the present invention proposes an energy consumption optimization method for the discrete manufacturing process at the system level, considers multiple energy consumption indicators of processing energy consumption, transportation energy consumption, and processing gap energy consumption, and constructs the switch of the machine tool during the processing gap Machine decision-making model to further reduce energy consumption; improved multi-objective optimization algorithm NSGA-II to allocate production resources, ensure completion time, and reduce processing costs and energy consumption.

附图说明:Description of drawings:

图1是NC代码解析器内部工作流程图;Fig. 1 is the internal working flow chart of NC code parser;

图2是某铣削加工过程功率曲线;Fig. 2 is a milling process power curve;

图3是机床状态转化关系图;Fig. 3 is a relation diagram of machine tool state transformation;

图4是本发明设计的算法流程图;Fig. 4 is the algorithm flowchart that the present invention designs;

图5是案例基因链解码甘特图;Figure 5 is the case gene chain decoding Gantt chart;

图6是目标值分布图;Fig. 6 is a target value distribution diagram;

图7是二元POX交叉示意图;Figure 7 is a schematic diagram of binary POX crossover;

图8是NSGA-II算法流程图;Figure 8 is a flowchart of the NSGA-II algorithm;

图9是本发明设计的改进的NSGA-II算法流程图;Fig. 9 is the improved NSGA-II algorithm flowchart of the present invention design;

图10是加工实例零件信息图;其中,图10(a)是喷口座的零件图和工艺过程卡,图10(b)是导体1的零件图和工艺过程卡,图10(c)是导体2的零件图和工艺过程卡,图10(d)是FES壳体的零件图和工艺过程卡;Fig. 10 is the part information map of the processing example; wherein, Fig. 10 (a) is the parts diagram and the process card of the spout seat, Fig. 10 (b) is the parts diagram and the process card of the conductor 1, and Fig. 10 (c) is the conductor 2, and Figure 10(d) is the part diagram and process card of the FES shell;

图11是加工实例算法优化结果;其中,图11(a)是最优曲面个体数的收敛曲线图,图11(b)是最优曲面图;Fig. 11 is the optimization result of the processing example algorithm; wherein, Fig. 11(a) is the convergence curve diagram of the optimal surface individual number, and Fig. 11(b) is the optimal surface diagram;

图12是优化实例的甘特图。Figure 12 is a Gantt chart of an optimization example.

具体实施方式:Detailed ways:

下面结合附图及具体实例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific examples.

本发明提供的订单驱动的离散制造过程能耗优化方法,包括以下步骤:The order-driven discrete manufacturing process energy consumption optimization method provided by the present invention includes the following steps:

1)根据待加工零件的某道工序的NC代码获取加工该工序的负载时间、空载时间、换刀次数、待机总时间、启动总时间、负载时的进给量、主轴转速、刀具型号等;1) According to the NC code of a certain process of the part to be processed, the load time, no-load time, tool change times, total standby time, total start-up time, feed rate under load, spindle speed, tool model, etc. ;

2)根据步骤1)中获得的负载时的进给量、主轴转速、刀具型号等,代入负载功率和空载功率计算模型,获得负载功率和空载功率;2) Substituting the load power and no-load power calculation model into the load power and no-load power calculation model to obtain the load power and no-load power according to the feed rate, spindle speed, tool model, etc. obtained in step 1);

3)根据步骤1)和步骤2)获得的变量和该道工序选定的机床固有的启动功率、待机功率和换刀能耗,代入总工序能耗计算模型,计算得到该工序能耗值。3) According to the variables obtained in step 1) and step 2) and the inherent start-up power, standby power and tool change energy consumption of the selected machine tool for this process, they are substituted into the calculation model of total process energy consumption to calculate the energy consumption value of this process.

4)根据步骤1)、步骤2)和步骤3)的工序能耗预测方法,获取一个生产批次内多个不同零件的某道工序在不同机床上加工的能耗值,构建能耗信息库。4) According to the process energy consumption prediction method of step 1), step 2) and step 3), obtain the energy consumption value of a certain process of multiple different parts in a production batch processed on different machine tools, and build an energy consumption information database .

5)根据步骤4)获得的能耗信息库,进行每道工序加工机床的确定和每台机床上加工任务的确定,设计改进的NSGA-II算法,保证在完工时间、加工成本的约束下,使得加工能耗低。5) According to the energy consumption information database obtained in step 4), determine the processing machine tool for each process and the processing task on each machine tool, and design an improved NSGA-II algorithm to ensure that under the constraints of completion time and processing cost, Make the processing energy consumption low.

所述的步骤1)的具体操作为:The concrete operation of described step 1) is:

以铣削加工为例,构建NC代码解析器,通过C语言编程实现,内部工作流程如图1所示:Taking milling as an example, build an NC code parser, which is realized by programming in C language. The internal workflow is shown in Figure 1:

通过T指令获取换刀次数Nc,同时获取此时使用的刀具的型号以获取铣削宽度B;通过M指令获取机床的启动时间和关闭时间,从而获取计算运行总时间T;通过S指令获取机床的主轴转速n;通过F指令获取进给量f;通过G指令获取坐标位置点,通过结合进给量计算铣削时间Tl和空铣削时间Tis,结合运行总时间计算得到待机时间。Obtain the number of tool changes N c through the T command, and at the same time obtain the model of the tool used at this time to obtain the milling width B; obtain the startup time and shutdown time of the machine tool through the M command, so as to obtain the total calculation running time T; obtain the machine tool through the S command The spindle speed n; the feed f is obtained by the F command; the coordinate position point is obtained by the G command, the milling time T l and the empty milling time T is are calculated by combining the feed, and the standby time is calculated by combining the total running time.

所述的步骤2)的具体操作为:The concrete operation of described step 2) is:

首先是获取铣削功率公式:参考机械加工工艺手册,机床、刀具和材料一定的情况下,铣削功率与铣削参数之间存在复杂的幂函数关系:The first is to obtain the milling power formula: refer to the machining process manual, under the condition of certain machine tools, tools and materials, there is a complex power function relationship between milling power and milling parameters:

式子中,Kl:与工件材料、刀具、机床性能相关的系数;n:主轴转速,单位为r/min;f:进给量,单位mm/min;Pl设备铣削功率,ap:铣削深度,单位mm;B:铣削宽度,单位mm;λ1、λ2、λ3、λ4为幂指数。In the formula, K l : the coefficient related to the workpiece material, tool and machine tool performance; n: the spindle speed, the unit is r/min; f: the feed rate, the unit is mm/min; P l equipment milling power, a p : Milling depth, unit mm; B: milling width, unit mm; λ 1 , λ 2 , λ 3 , λ 4 are power exponents.

设计正交试验,采用杰尼查UMG-604配置能耗采集系统,利用软件GridVis进行加工能耗信息的统计,通过利用多元线性回归方法(SPSS)处理可得到铣削功率公式:Design an orthogonal test, use Jenica UMG-604 to configure the energy consumption acquisition system, use the software GridVis to perform statistics on processing energy consumption information, and use the multiple linear regression method (SPSS) to obtain the milling power formula:

机床、刀具和材料一定的情况下,空铣削功率仅与进给量和转速相关,铣削空载功率公式如式(3)所示:When the machine tool, tool and material are fixed, the idle milling power is only related to the feed rate and speed, and the milling idle power formula is shown in formula (3):

式中,Kis为空载功率系数,与工件材料、刀具、机床性能相关;α1、α2为幂指数。In the formula, K is the no-load power coefficient, which is related to the workpiece material, cutting tool and machine tool performance; α 1 and α 2 are power exponents.

利用多元线性回归方法(SPSS)处理可得到幂指数和空载功率系数,如式(4)所示。The power exponent and the no-load power coefficient can be obtained by using the multiple linear regression method (SPSS), as shown in formula (4).

Pis=6.143×10-16n0.982f0.124 (4)P is =6.143×10 -16 n 0.982 f 0.124 (4)

将步骤1)得到的主轴转速、进给量、铣削深度、铣削宽度代入式(2)得到铣削功率。将主轴转速、进给量代入式(4)得到空铣削功率。Substitute the spindle speed, feed rate, milling depth, and milling width obtained in step 1) into formula (2) to obtain the milling power. Substitute the spindle speed and feed into formula (4) to get the idle milling power.

所述的步骤3)的具体操作为:The concrete operation of described step 3) is:

一次实际加工过程的铣床功率曲线如图2所示,可分为启动阶段、待机阶段、主轴启动阶段、空载阶段和负载阶段。在各个阶段机床的功率不同,总能耗可通过式(5)进行计算:The milling machine power curve of an actual machining process is shown in Figure 2, which can be divided into startup phase, standby phase, spindle startup phase, no-load phase and load phase. The power of the machine tool is different at each stage, and the total energy consumption can be calculated by formula (5):

E=PsTs+PiTi+PisTis+PlTl+NcEc (5)E=P s T s +P i T i +P is T is +P l T l +N c E c (5)

式子中:Ps:设备启动功率,Pi:设备待机功率,Pis:空铣削功率,Pl:设备铣削功率,Ec:换刀能耗,Ts:启动总时间,Ti:待机总时间,Tis:空铣削总时间,Tl:铣削时间,Nc:换刀次数。In the formula: P s : equipment starting power, P i : equipment standby power, P is : idle milling power, P l : equipment milling power, E c : energy consumption of tool change, T s : total startup time, T i : Total standby time, T is : total idle milling time, T l : milling time, N c : number of tool changes.

将仅与设备相关的设备启动功率、设备待机功率、换刀能耗和前两个步骤得到的空铣削功率、铣削功率、换刀次数、启动总时间、待机总时间、总负载时间、空铣削总时间代入式(5)获得该工序在某台机床上加工的能耗。Combine the equipment start-up power, equipment standby power, tool change energy consumption and the idle milling power obtained in the first two steps, milling power, tool change times, total startup time, total standby time, total load time, idle milling The total time is substituted into formula (5) to obtain the energy consumption of this process on a certain machine tool.

所述的步骤4)的具体操作为:The concrete operation of described step 4) is:

获取某个批次内多个零件的加工工艺过程,并根据车间实际情况,确定代加工零件的某道工序的可选机床,根据NC代码、零件材料和机床性能,采用前3个步骤所确定的工序能耗预测方法,计算零件某道工序在不同机床加工的能耗预测值,构建该批次多个零件在其可选机床上加工的能耗信息库。Obtain the processing process of multiple parts in a certain batch, and according to the actual situation of the workshop, determine the optional machine tool for a certain process of processing parts, according to the NC code, part material and machine tool performance, use the first 3 steps to determine The process energy consumption prediction method is used to calculate the energy consumption prediction value of a certain process of a part processed on different machine tools, and build the energy consumption information database of the batch of multiple parts processed on its optional machine tool.

所述的步骤5)的具体操作为:The concrete operation of described step 5) is:

一、规划问题描述:1. Description of planning problem:

1、n个加工任务,Ji,i=1,2,3...n;1. n processing tasks, J i , i=1, 2, 3...n;

2、m台加工机床,第k台机床为Mk,k=1,2,3...m;2. m processing machine tools, the kth machine tool is M k , k=1,2,3...m;

3、每个加工任务有多道工序,Oij表示第i个任务的第j道工序。3. Each processing task has multiple processes, and O ij represents the jth process of the i-th task.

4、某道工序可在多台的机床上加工,在不同机床上加工的时间、成本不同、能耗量不同。4. A process can be processed on multiple machine tools, and the time, cost and energy consumption of different machine tools are different.

包括两个子问题:Contains two sub-questions:

每道工序选择合适的机床,即机器分配问题;Select the appropriate machine tool for each process, that is, the problem of machine allocation;

每台机床上多个任务的加工工序进行合理的排序。The processing procedures of multiple tasks on each machine tool are reasonably sequenced.

假设:Assumptions:

1、t=0时刻,所有机器均可用,所有工件均可被加工;1. At time t=0, all machines are available and all workpieces can be processed;

2、所有工序在可用机器上的加工的时间、成本不同、能耗值已知,且忽略运输时间;2. The processing time and cost of all processes on the available machines are different, the energy consumption value is known, and the transportation time is ignored;

3、同一工件的工序间具有先后工艺约束,其加工顺序已预先确定;3. There are successive process constraints between the processes of the same workpiece, and the processing sequence has been predetermined;

约束条件:Restrictions:

同一时刻同一台机器只能加工一个零件;The same machine can only process one part at the same time;

每个工件在某一时刻只能在一台机器上加工,不能中途中断每一个操作;Each workpiece can only be processed on one machine at a certain time, and each operation cannot be interrupted midway;

同一工件的工序之间有先后约束,不同工件的工序之间没有先后约束There are sequence constraints between the processes of the same workpiece, but there is no sequence constraint between the processes of different workpieces

不同工件具有相同的优先级Different artifacts have the same priority

目标:完工时间最短,加工能耗最低,成本最低Goal: shortest completion time, lowest processing energy consumption, lowest cost

二、开关机决策模型构建:2. Construction of switch machine decision model:

在加工过程中,机床在等待下一道加工工序时,往往采取空载等待的方式,这会造成大量的电能消耗。为减少加工过程的能耗,有必要构建机床在加工间隙的开关机决策模型。During the processing, when the machine tool is waiting for the next processing procedure, it often adopts the mode of no-load waiting, which will cause a large amount of power consumption. In order to reduce the energy consumption of the machining process, it is necessary to build a decision-making model for turning on and off the machine tool during the machining interval.

机床存在正常运行(P)、空载(I)、关闭(S)三个状态,状态之间转化需要一定的时间和消耗一定的能源,转化关系如图3所示:The machine tool has three states of normal operation (P), no-load (I), and shutdown (S). The conversion between the states takes a certain amount of time and consumes a certain amount of energy. The conversion relationship is shown in Figure 3:

图3中参数说明:CI、CP分别为机床在空转和正常运行状态下的功率,Exy代表状态之间转化的能耗,例EIP为空转到正常运行间转化的能耗,Txy代表状态之间转化的时间,例TIP为空转到正常运行转化的消耗的时间。Parameter description in Fig. 3: C I , C P are the power of the machine tool in idling and normal operation states respectively, Ex xy represents the energy consumption in transition between states, for example E IP is the energy consumption in transition from idling to normal operation, T xy represents the transition time between states, for example, T IP is the time consumed for transition from idle to normal operation.

决策模型为:The decision model is:

if TSP+TPS>Tin if T SP +T PS > T in

then:保持机床空载;then: keep the machine unloaded;

else if ESP+EPS>CITin else if E SP +E PS >C I T in

then保持机床空载then keep the machine unloaded

else关闭机床else shut down the machine

1、如果关闭到运行的转化时间和运行到关闭的时间之和大于机床等待的间隙时间,则保持机床空载,保证机床开关机不影响完工时间。1. If the sum of the transition time from shutdown to operation and the time from operation to shutdown is greater than the waiting gap time of the machine tool, keep the machine tool unloaded to ensure that the machine switch does not affect the completion time.

2、在关闭到运行的转化时间和运行到关闭的时间之和不大于机床等待的间隙时间的前提下,如果关闭到运行的转化能耗和运行到关闭的能耗之和大于机床空载能耗,则则保持机床空载,保证能耗最低。2. On the premise that the sum of the conversion time from shutdown to operation and the time from operation to shutdown is not greater than the waiting interval time of the machine tool, if the sum of the energy consumption from shutdown to operation and the energy consumption from operation to shutdown is greater than the no-load energy of the machine tool If the energy consumption is low, keep the machine tool unloaded to ensure the lowest energy consumption.

3、其它情况则关闭机床。(说明:该模型主要考虑能耗因素,其它因素不予考虑。例如频繁开关机对机床的损耗成本)。3. In other cases, turn off the machine tool. (Note: This model mainly considers the energy consumption factor, and other factors are not considered. For example, the loss cost of the machine tool caused by frequent switching on and off).

三、数学模型模型构建:3. Mathematical Model Model Construction:

选取的优化目标有加工能耗、生产成本和完工时间:The selected optimization objectives are processing energy consumption, production cost and completion time:

(1)加工能耗:(1) Processing energy consumption:

(2)生产成本:(2) Production cost:

(3)完工时间:(3) Completion time:

T=max(C1,C2...Cm) (8)T=max(C 1 ,C 2 ...C m ) (8)

约束条件:Restrictions:

Ck=max(cijk)i=1,2,...,n;j=1,2,...,pi;k∈Mij (9)C k =max(c ijk )i=1,2,...,n; j=1,2,...,p i ; k∈M ij (9)

cijk=sijk+tijk i=1,2,...,n;j=1,2,...,pi;k=1,2,...,m (10)c ijk =s ijk +t ijk i=1,2,...,n; j=1,2,...,p i ;k=1,2,...,m (10)

sijk-ci(j-1)l≥0 (11)s ijk -c i(j-1)l ≥0 (11)

其中,Dijk表示任务i的第j道工序选择机器k的决策变量,表示工件i的第j道工序在机器k上的加工的能耗,表示工件i的第j道工序到下一道工序的运输能耗,ek表示机器k非加工时间的能耗量,表示工件i的第j道工序在机器k上的加工成本,ck表示机床k的完工时间,cijk表示任务i的第j道工序在机器k上的完工时间,pi表示工件i的工序总数,Mij表示工件i的工序j可选机床集,sijk表示任务i的第j道工序在机器k上的开始时间,tijk表示任务i的第j道工序在机器k上的加工时间,Gijk表示任务i的第j道工序选择机器k的选择变量。Among them, D ijk represents the decision variable of selecting machine k for the jth process of task i, Indicates the energy consumption of the jth process of the workpiece i on the machine k, Indicates the transportation energy consumption from the jth process of workpiece i to the next process, e k represents the energy consumption of machine k in non-processing time, Indicates the processing cost of the jth process of the job i on the machine k, c k represents the completion time of the machine k, c ijk represents the completion time of the jth process of the task i on the machine k, p i represents the process of the workpiece i The total number, M ij represents the set of optional machine tools for the process j of the workpiece i, s ijk represents the start time of the jth process of the task i on the machine k, and t ijk represents the processing time of the jth process of the task i on the machine k , G ijk represents the selection variable of the jth process selection machine k of the task i.

式(6)、(7)、(8)、分别为能耗目标函数、生产成本函数和完工时间函数。Equations (6), (7), and (8) are energy consumption target function, production cost function and completion time function respectively.

约束(9):保证机床k的完工时间为机床i上最后一个完工工序的时间;Constraint (9): Ensure that the completion time of machine k is the time of the last completion process on machine i;

约束(10):任务i的第j道工序在机床k上的完工时间为其开始时间与工序时间之和;Constraint (10): The completion time of the jth process of task i on machine k is the sum of the start time and process time;

约束(11):任务i的加工顺序约束,保证工序的开始时间在上一道工序结束时间之后;Constraint (11): the processing order constraint of task i, to ensure that the start time of the process is after the end time of the previous process;

约束(12):保证任务i的第j道工序有多个可选机床;Constraint (12): Ensure that the jth process of task i has multiple optional machine tools;

约束(13):保证任务i的第j道工序仅选择一台可选机床进行加工;Constraint (13): Ensure that the jth process of task i only selects one optional machine tool for processing;

三、算法设计:3. Algorithm design:

采用改进的多目标优化算法NSGA-II进行问题的求解,算法流程如图4所示,算法设计如下:The improved multi-objective optimization algorithm NSGA-II is used to solve the problem. The algorithm flow is shown in Figure 4. The algorithm design is as follows:

1、编码解码:、1. Encoding and decoding:,

考虑柔性调度的特点,设计了基于工序和机床的二维编码方式。编码方案如:Considering the characteristics of flexible scheduling, a two-dimensional coding method based on process and machine tool is designed. Encoding schemes such as:

其中第一行为工序顺序列:第一个2代表工件2的第一道工序,第一个3代表工件3的第一道工序,第一个1代表工件1的第一道工序,第二个1代表工件1的第二道工序,以此类推,得到加工的工序顺序为[O21 O31 O11 O12 O22 O32 O33 O23 O13]。第二行为机床分配序列:第一个1代表对应的工件2的第一道工序选择机床1进行加工,第一个2代表对应的工件3的第一道工序选择机床2进行加工,以此类推。该段基因链对应的调度甘特图如图5所示。Among them, the first line is the process order column: the first 2 represents the first process of workpiece 2, the first 3 represents the first process of workpiece 3, the first 1 represents the first process of workpiece 1, and the second 1 represents the second process of workpiece 1, and so on, the processing sequence is [O 21 O 31 O 11 O 12 O 22 O 32 O 33 O 23 O 13 ]. The second line is the machine tool allocation sequence: the first 1 represents the first process of the corresponding workpiece 2 and selects machine tool 1 for processing, the first 2 represents the first process of the corresponding workpiece 3 and selects machine tool 2 for processing, and so on . The scheduling Gantt chart corresponding to this segment of the gene chain is shown in Figure 5.

2、非支配集构建:2. Non-dominated set construction:

定义1(解空间中的支配关系):Definition 1 (domination relation in the solution space):

设pi和pj为任意两个不同个体,如果:Let p i and p j be any two different individuals, if:

(1)对所有子目标,pi不比pj差,即fk(pi)≤fk(pj),k=(1,2,...,n);(1) For all sub-objectives, p i is not worse than p j , that is, f k (p i )≤f k (p j ), k=(1,2,...,n);

(2)至少存在一个子目标,使得pi比pj好,,使得即fq(pi)<fq(pj);(2) At least one sub-goal exists such that p i is better than p j , , so that f q (p i )<f q (p j );

那么则称pi支配pj的,可表示为pi>pjThen it is said that p i dominates p j , which can be expressed as p i > p j .

定义2(Pareto最优):在所有的个体{p1,p2,...pm}中,如果对于个体pi,不存在个体pi使得:pj>pi,那么称pi为Pareto最优个体。Definition 2 (Pareto optimal): Among all individuals {p 1 ,p 2 ,...p m }, if for individual p i , there is no individual p i such that: p j >p i , then p i is called is the Pareto optimal individual.

定义3(Pareto最优前端或Pareto最优边界):即所有的Pareto最优个体对应的目标值所形成的区域(二维空间则为曲线,三维空间为曲面):Definition 3 (Pareto optimal front end or Pareto optimal boundary): that is, the area formed by the target values corresponding to all Pareto optimal individuals (the two-dimensional space is a curve, and the three-dimensional space is a surface):

Fr={f1(pi),f2(pi),...fn(pi)};i=(1,2,...,m)F r ={f 1 (p i ),f 2 (p i ),...f n (p i )}; i=(1,2,...,m)

非支配集构建过程为对所有解进行优化层次划分的过程。假设种群中有m个个体,若:集合中所有个体都不受其它个体支配,即为Pareto最优个体,那么该集合对应的Rank=1,定义该集合为:The non-dominated set construction process is the process of optimizing all solutions. Suppose there are m individuals in the population, if: set All individuals in are not dominated by other individuals, that is, they are Pareto optimal individuals, then the corresponding Rank of the set=1, and the set is defined as:

那么剩余个体中仅受F1中个体支配的个体对应的个体的Rank=2,组成的集合为:Then the Rank= 2 of the individuals corresponding to the individuals only dominated by the individuals in F1 among the remaining individuals, the composed set is:

剩余个体中那么仅受F2中个体支配的个体对应的个体的Rank=3,组成的集合为:Among the remaining individuals, the individuals corresponding to the individuals only dominated by the individuals in F2 have Rank= 3 , and the set formed is:

以此类推,构建各层次集合。最终得到所有个体的Rank值,定义pi的Rank值为Vi。NSGA-II算法每代均会进行非支配排序过程,Rank值为算法选择操作和个体是否保留的依据,算法迭代过程通过选择、交叉、变异逐步会使所有个体的Rank值为1,即所有个体均为帕累托优化解,从而形成最优前端。By analogy, build the collection of each level. Finally, the Rank value of all individuals is obtained, and the Rank value of p i is defined as V i . Each generation of the NSGA-II algorithm will perform a non-dominated sorting process. The Rank value is the basis for the algorithm selection operation and whether the individual is retained. The algorithm iteration process will gradually make the Rank value of all individuals 1 through selection, crossover, and mutation, that is, all individuals Both are Pareto optimal solutions, thus forming the optimal front end.

3、拥挤度计算3. Calculation of congestion degree

聚集度用来描述个体的目标值密度。拥挤度主要用于每个层次内部的个体的优劣排序。以两个优化目标为例,参照图6;Agglomeration is used to describe the target value density of an individual. The crowding degree is mainly used for the ranking of individuals in each level. Take two optimization objectives as an example, refer to Figure 6;

设个体pi的在第k个子目标上的值为pi.fk,则个体i的拥挤度为:Suppose the value of individual p i on the kth sub-goal is p i .f k , then the crowding degree of individual i is:

pi.dist=(pi+1.f1-pi-1.f1)+(pi+1.f2-pi-1.f2) (14)p i .dist=(p i+1 .f 1 -p i-1 .f 1 )+(p i+1 .f 2 -p i-1 .f 2 ) (14)

若果有m个目标值,那么个体i的拥挤度为:If there are m target values, then the crowding degree of individual i is:

为了方便,对数据进行标准化:For convenience, normalize the data:

说明:分别为所有个体在第k个目标上的最大值和最小指。illustrate: and are the maximum and minimum indices of all individuals on the kth target, respectively.

拥挤度为选择操作的依据,拥挤度越大的个体,视为更优。The degree of congestion is the basis for selecting an operation, and the individual with a greater degree of congestion is considered to be better.

4、选择操作4. Select operation

本文设计的选择方式为锦标赛方法,随机产生两个个体i和j,通过比较它们的Rank值和拥挤度进行选择。选择过程如下:The selection method designed in this paper is a tournament method, which randomly generates two individuals i and j, and selects by comparing their Rank value and crowding degree. The selection process is as follows:

If:Vi<Vj If: V i < V j

Then:Choose Vi Then: Choose V i

Else if:Vi=Vj&&pi.dist>pj.distElse if:V i =V j &&p i .dist>p j .dist

Then:Choose Vi Then: Choose V i

Else:Else:

Then:Choose Vj Then: Choose V j

5、交叉方式5. Cross way

交叉方式为二元POX交叉方式,如图7所示,通过选择操作选择出两个父代个体,任意产生交换列的位置进行该列的基因互换,产生新的个体。The crossover method is a binary POX crossover method. As shown in Figure 7, two parent individuals are selected through the selection operation, and the position of the exchange column is arbitrarily generated to carry out the gene exchange of the column to generate a new individual.

6、变异操作6. Mutation operation

变异操作的目的是为了保证解的多样性,一般设定的变异概率值比较小,变异概率值如果设置过大,则算法成为随机算法,降低了算法的收敛性和寻优速度。本算法设计的变异操作为随机变异,对于某个体某位置的基因,随机产生0-1之间的值,若该值小于设定的变异概率值,则该位置随机产生新的基因。The purpose of the mutation operation is to ensure the diversity of solutions. Generally, the value of the mutation probability is relatively small. If the value of the mutation probability is set too high, the algorithm will become a random algorithm, which reduces the convergence and optimization speed of the algorithm. The mutation operation designed by this algorithm is random mutation. For a gene at a certain position in an individual, a value between 0 and 1 is randomly generated. If the value is less than the set mutation probability value, a new gene is randomly generated at this position.

7、种群保留机制及其改进7. Population retention mechanism and its improvement

传统的NSGA-II的精英保留策略如图8所示,Pi为第i次进化后精英策略保留下的个体,个数为N,Ri为第i次进化后交叉变异产生的新个体,个数设定为M,将两者合并,产生新种群。然后对新种群进行非支配的构建和每个层次内部个体的拥挤度的计算,然后选择前N个精英个体组成下一代精英个体集Pi+1。如图所示,可以F1、F2中的个体完全保留,Pi中的部分拥挤度较高的个体得以保留。为保持算法解的多样性和提高算法的寻优能力,对算法进行了相应地改进,如图9所示:The traditional NSGA-II elite retention strategy is shown in Figure 8, P i is the individual retained by the elite strategy after the i-th evolution, the number is N, and R i is the new individual generated by the cross-mutation after the i-th evolution, The number is set as M, and the two are combined to generate a new population. Then construct the new population without domination and calculate the crowding degree of individuals in each level, and then select the top N elite individuals to form the next generation elite individual set P i+1 . As shown in the figure, individuals in F 1 and F 2 can be completely retained, and some individuals with higher crowding degree in P i can be retained. In order to maintain the diversity of algorithm solutions and improve the optimization ability of the algorithm, the algorithm has been improved accordingly, as shown in Figure 9:

Pi为第i次进化后精英策略保留下的个体,个数为N。P i is the individual retained by the elite strategy after the ith evolution, and the number is N.

Step1:对新种群进行非支配的构建和每个层次内部个体的拥挤度的计算,主要目的是为交叉变异提供个体的Rank值和聚集度值。Step1: The non-dominated construction of the new population and the calculation of the crowding degree of individuals within each level are mainly aimed at providing individual Rank values and aggregation values for cross-variation.

Step2:Pi中所有个体进行复制,与交叉变异的个体产生新个体(数量为M)组成的新种群。Step2: All individuals in P i are copied, and a new population consisting of new individuals (number M) is generated with cross-mutated individuals.

Step3:新种群进行非支配的构建和每个层次内部个体的拥挤度的计算,选择前N个精英个体组成下一代精英个体集Pi+1Step3: The non-dominated construction of the new population and the calculation of the crowding degree of individuals within each level are performed, and the top N elite individuals are selected to form the next generation elite individual set P i+1 .

四、DEMATEL+ANP指标权重的确定4. Determination of the weight of the DEMATEL+ANP index

ED-NSGA-II算法求得的Pareto优化解为优化解集,需要进行最终解的确定,因此提出了基于DEMATEL+ANP方法进行指标权重的确定,进行多指标指标归一化。The Pareto optimization solution obtained by the ED-NSGA-II algorithm is an optimal solution set, and the final solution needs to be determined. Therefore, the DEMATEL+ANP method is proposed to determine the index weight and normalize multiple indicators.

DEMATEL(Decision Making Trial and Evaluation Laboratory)称为“决策实验和评价实验法”,该方法通过分析系统中各要素之间逻辑关系和直接影响关系,计算各个因素和其它因素的影响程度以及被影响度。步骤如下:DEMATEL (Decision Making Trial and Evaluation Laboratory) is called "decision-making experiment and evaluation experiment method". This method calculates the degree of influence and the degree of influence of each factor and other factors by analyzing the logical relationship and direct influence relationship between various elements in the system. . Proceed as follows:

Step1:指标间相互影响关系的确定,可参照表1进行量化。Step1: The determination of the mutual influence relationship between indicators can be quantified by referring to Table 1.

表1相互影响关系量化评分表Table 1 Quantitative scoring table for mutual influence relationship

Step2:初始矩阵A标准化得到标准化矩阵D:Step2: Normalize the initial matrix A to get the normalized matrix D:

Step3:整体影响计算:Step3: Overall impact calculation:

T=D(I-D)-1 (17)T=D(ID) -1 (17)

Step4:基于最大均值熵算法(the maximum mean de-entropy(MMDE)algorithm(Li&Tzeng,2009))的阀值计算。Step4: Threshold calculation based on the maximum mean de-entropy (MMDE) algorithm (Li&Tzeng, 2009).

ANP方法用于确定指标间的重要度关系wf,指标间重要度评分可参照表2;表2重要度关系量化评分表The ANP method is used to determine the importance relationship w f between indicators, and the importance scores between indicators can refer to Table 2; Table 2 Importance relationship quantification score table

整体影响矩阵为:The overall impact matrix is:

w=T×wf (18)w=T×w f (18)

最终权重确定如下:The final weights are determined as follows:

五、案例分析5. Case Analysis

某高压开关设备重点开发研制和生产企业,对于制造过程中的节能减排有着较高的要求。以该公司某机加车间为例,该车间有6台机床,某生产批次内有4个零件生产任务,零件信息如图10所示。A key R&D and production enterprise of high-voltage switchgear has high requirements for energy saving and emission reduction in the manufacturing process. Take a machining workshop of the company as an example. The workshop has 6 machine tools, and there are 4 parts production tasks in a production batch. The parts information is shown in Figure 10.

第一步:采用能耗预测模型构建加工能耗信息表,同时获取加工时间、加工成本信息,得到的加工信息表如表3所示:Step 1: Use the energy consumption prediction model to construct the processing energy consumption information table, and obtain the processing time and processing cost information at the same time. The obtained processing information table is shown in Table 3:

表3加工信息表Table 3 Processing information table

零件生产完某道工序后需要在下一台机床上进行下一道工序的生产,忽略零件重量对能耗的影响,仅考虑机床之间的距离,获得机床之间运输能耗信息表如表4所示:After a part is produced in a certain process, the next process needs to be produced on the next machine tool, ignoring the influence of the weight of the part on energy consumption, and only considering the distance between machine tools, the transportation energy consumption information table between machine tools is obtained as shown in Table 4 Show:

表4机床之间运输能耗信息表Table 4 Transportation energy consumption information table between machine tools

机床待机有一定的能耗,待机功率信息表如表5所示:There is a certain amount of energy consumption in machine tool standby, and the standby power information table is shown in Table 5:

表5机床待机功率信息表Table 5 Machine tool standby power information table

第二步:采用改进的NSGA-II算法进行生产资源规划配置。由信息表知,零件的某道的工序在不同机床上加工能耗值、加工成本、加工时间不同,采用多目标优化算法,保证能耗、完工时间、加工成本协同最优。算法的参数设定为如表6所示:The second step: use the improved NSGA-II algorithm to plan and configure production resources. It is known from the information table that the processing energy consumption, processing cost, and processing time of a certain process of a part are different on different machine tools. A multi-objective optimization algorithm is used to ensure the synergistic optimization of energy consumption, completion time, and processing cost. The parameters of the algorithm are set as shown in Table 6:

表6算法参数信息表Table 6 Algorithm parameter information table

算法收敛图和最优曲面如图11所示,通过DEMATEL+ANP确定指标权重,确定最优个体生成的相应地获取调度甘特图12所示,生产优化配置的结果为:The algorithm convergence graph and optimal surface are shown in Figure 11. The weight of the index is determined by DEMATEL+ANP, and the optimal individual is determined to obtain the scheduling Gantt graph correspondingly as shown in Figure 12. The result of the production optimization configuration is:

机床1的加工序列为:O11→O42→O34→O35The processing sequence of machine tool 1 is: O 11 → O 42 → O 34 → O 35 ;

机床2的加工序列为:O31→O43→O22→O23→O24The processing sequence of machine tool 2 is: O 31 → O 43 → O 22 → O 23 → O 24 ;

机床3的加工序列为:O32→O33→O14→O25The processing sequence of machine tool 3 is: O 32 → O 33 → O 14 → O 25 ;

机床4的加工序列为:O41→O12→O44 The processing sequence of machine tool 4 is: O 41 →O 12 →O 44

机床5的加工序列为:O21→O13→O45→O15 The processing sequence of machine tool 5 is: O 21 →O 13 →O 45 →O 15

其中Oij表示第i个工件的第j道工序。Among them, O ij represents the j-th process of the i-th workpiece.

相应地目标值为:完工时间为24min,能耗值为54.3kw.h,加工成本为105元。The corresponding target value is: the completion time is 24min, the energy consumption value is 54.3kw.h, and the processing cost is 105 yuan.

以上内容是结合具体的生产案例对本发明所作的进一步详细说明,主要为证明本方法在实际应用中的正确性,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。The above content is a further detailed description of the present invention in conjunction with specific production cases. It is mainly to prove the correctness of the method in practical applications. It cannot be determined that the specific implementation of the present invention is limited to this. For personnel, without departing from the concept of the present invention, some simple deduction or replacement can also be made, which should be regarded as belonging to the scope of patent protection of the present invention determined by the submitted claims.

Claims (5)

1.订单驱动的离散制造过程能耗优化方法,其特征在于,包括以下步骤:1. An order-driven discrete manufacturing process energy optimization method, characterized in that, comprising the following steps: 1)根据待加工零件的某道工序的NC代码获取加工该工序的负载时间、空载时间、换刀次数、待机总时间、启动总时间、负载时的进给量、主轴转速和刀具型号;1) According to the NC code of a certain process of the part to be processed, the load time, no-load time, tool change times, total standby time, total start-up time, feed rate under load, spindle speed and tool model of the process are obtained; 2)根据步骤1)中获得的负载时的进给量、主轴转速、刀具型号,代入负载功率和空载功率计算模型,获得负载功率和空载功率;2) Substituting the load power and no-load power calculation model into the load power and no-load power calculation model according to the feed, spindle speed and tool model obtained in step 1), to obtain the load power and no-load power; 3)根据步骤1)获得的负载时间、空载时间、换刀次数、待机总时间、启动总时间,步骤2)获得的负载功率和空载功率,以及该道工序选定的机床固有的启动功率、待机功率和换刀能耗,代入总工序能耗计算模型,计算得到该工序能耗值;3) According to the load time, no-load time, tool change times, total standby time, and total start-up time obtained in step 1), the load power and no-load power obtained in step 2), and the inherent start-up of the machine tool selected in this process Power, standby power and tool change energy consumption are substituted into the calculation model of total process energy consumption to calculate the energy consumption value of this process; 4)根据步骤1)、步骤2)和步骤3)的工序能耗预测方法,获取一个生产批次内多个不同零件的同一工序在不同机床上加工的能耗值,构建能耗信息库;4) According to the process energy consumption prediction method of step 1), step 2) and step 3), the energy consumption values of the same process of multiple different parts in a production batch processed on different machine tools are obtained, and the energy consumption information database is constructed; 5)根据步骤4)获得的能耗信息库,设计改进的NSGA-II算法,进行每道工序加工机床的确定和每台机床上加工任务顺序的确定,用于保证在完工时间、加工成本的约束下,使得加工能耗低。5) According to the energy consumption information database obtained in step 4), an improved NSGA-II algorithm is designed to determine the processing machine tools for each process and the order of processing tasks on each machine tool, so as to ensure the completion time and processing cost. Under the constraints, the processing energy consumption is low. 2.根据权利要求1所述的订单驱动的离散制造过程能耗优化方法,其特征在于,步骤1)的具体实现步骤如下:2. The order-driven discrete manufacturing process energy consumption optimization method according to claim 1, characterized in that the specific implementation steps of step 1) are as follows: 1-1)采用C语言编程构建NC代码解析器,其中,通过T指令获取换刀次数Nc,同时获取此时使用的刀具的型号以获取铣削宽度B;通过M指令获取机床的启动时间和关闭时间,从而获取计算运行总时间T;通过S指令获取机床的主轴转速n;通过F指令获取进给量f;通过G指令获取坐标位置点,通过结合进给量计算铣削时间Tl和空铣削时间Tis,结合运行总时间计算得到待机时间;1-1) Construct an NC code parser by programming in C language, wherein, the number of tool changes N c is obtained through the T command, and the model of the tool used at this time is obtained to obtain the milling width B; the start-up time and Turn off the time, so as to obtain the total running time T; obtain the spindle speed n of the machine tool through the S command; obtain the feed rate f through the F command; obtain the coordinate position point through the G command, and calculate the milling time T l by combining the feed rate and the empty space Milling time T is , combined with the total running time to calculate the standby time; 1-2)将待加工零件的NC代码输入NC代码解析器,以自动获取加工某道工序的负载时间、空载时间、换刀次数、待机总时间、启动总时间、负载时的进给量、主轴转速和刀具型号。1-2) Input the NC code of the part to be processed into the NC code parser to automatically obtain the load time, no-load time, tool change times, total standby time, total start-up time, and feed during a certain process of processing , spindle speed and tool model. 3.根据权利要求2所述的订单驱动的离散制造过程能耗优化方法,其特征在于,步骤2)中的负载功率Pl计算模型如下:3. the discrete manufacturing process energy consumption optimization method of order-driven according to claim 2, is characterized in that, the load power P1 calculation model in step 2) is as follows: <mrow> <msub> <mi>P</mi> <mi>l</mi> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>l</mi> </msub> <msup> <mi>n</mi> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> </msup> <msup> <mi>f</mi> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </msup> <msup> <msub> <mi>a</mi> <mi>p</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> </msup> <msup> <mi>B</mi> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>P</mi><mi>l</mi></msub><mo>=</mo><msub><mi>K</mi><mi>l</mi></msub><msup><mi>n</mi><msub><mi>&amp;lambda;</mi><mn>1</mn></msub></msup><msup><mi>f</mi><msub><mi>&amp;lambda;</mi><mn>2</mn></msub></msup><msup><msub><mi>a</mi><mi>p</mi></msub><msub><mi>&amp;lambda;</mi><mn>3</mn></msub></msup><msup><mi>B</mi><msub><mi>&amp;lambda;</mi><mn>4</mn></msub></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 式中,Kl为负载功率系数,与工件材料、刀具、机床性能相关;f为负载时的进给量,单位为mm/min;ap为铣削深度,单位mm;λ1、λ2、λ3、λ4均为幂指数;In the formula, K l is the load power coefficient, which is related to the workpiece material, cutting tool and machine tool performance; f is the feed rate under load, the unit is mm/min; a p is the milling depth, the unit is mm; λ 1 , λ 2 , Both λ 3 and λ 4 are power exponents; 空载功率Pis计算模型如下:The calculation model of no-load power P is is as follows: <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>s</mi> </mrow> </msub> <msup> <mi>n</mi> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> </msup> <msup> <mi>f</mi> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>P</mi><mrow><mi>i</mi><mi>s</mi></mrow></msub><mo>=</mo><msub><mi>K</mi><mrow><mi>i</mi><mi>s</mi></mrow></msub><msup><mi>n</mi><msub><mi>&amp;alpha;</mi><mn>1</mn></msub></msup><msup><mi>f</mi><msub><mi>&amp;alpha;</mi><mn>2</mn></msub></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 式中,Kis为空载功率系数,与工件材料、刀具、机床性能相关;α1、α2均为幂指数。In the formula, K is the no-load power coefficient, which is related to the workpiece material, cutting tool and machine tool performance; α 1 and α 2 are power exponents. 4.根据权利要求2所述的订单驱动的离散制造过程能耗优化方法,其特征在于,步骤3)中的总工序能耗E计算模型如下:4. the order-driven discrete manufacturing process energy consumption optimization method according to claim 2, is characterized in that, the calculation model of total process energy consumption E in step 3) is as follows: E=PsTs+PiTi+PisTis+PlTl+NcEc (5)E=P s T s +P i T i +P is T is +P l T l +N c E c (5) 式中,Ps:设备启动功率,Pi:设备待机功率,Pis:空铣削功率,Pl:设备铣削功率,Ec:换刀能耗,Ts:启动总时间,Ti:待机总时间,Tis:空铣削总时间,Tl:铣削时间,Nc:换刀次数。In the formula, P s : equipment startup power, P i : equipment standby power, P is : idle milling power, P l : equipment milling power, E c : energy consumption of tool change, T s : total startup time, T i : standby Total time, T is : total time of idle milling, T l : milling time, N c : number of tool changes. 5.根据权利要求3所述的订单驱动的离散制造过程能耗优化方法,其特征在于,步骤5)的具体实现步骤如下:5. The order-driven discrete manufacturing process energy consumption optimization method according to claim 3, characterized in that the specific implementation steps of step 5) are as follows: 5-1)加工信息输入:加工信息包括加工任务工序信息、进行零件的某道工序加工可供选择的加工机床、每道工序在不同机床上加工的加工时间、加工能耗、机床的待机功率、机床之间的运输能耗信息;5-1) Processing information input: processing information includes processing task process information, processing machine tools that can be selected for processing a certain process of a part, processing time of each process on different machine tools, processing energy consumption, and standby power of the machine tool , Transportation energy consumption information between machine tools; 构建机床的开关机决策模型,如下:Construct the switch decision model of the machine tool, as follows: if TSP+TPS>Tin if T SP +T PS > T in then:保持机床空载;then: keep the machine unloaded; else if ESP+EPS>CITin else if E SP +E PS >C I T in then保持机床空载then keep the machine unloaded else关闭机床else shut down the machine 模型中:TSP为设备从关闭到正常运行的转化时间;TPS为设备从正常运行到关闭的转化时间;Tin为设备的加工间隙等待时间;ESP为设备从关闭到正常运行的转化能耗;EPS为设备从正常运行到关闭的转化能耗;CI为设备的空载功率;In the model: T SP is the conversion time from shutdown to normal operation of the equipment; T PS is the conversion time from normal operation to shutdown of the equipment; T in is the waiting time of the processing gap of the equipment; E SP is the conversion of the equipment from shutdown to normal operation Energy consumption; E PS is the converted energy consumption from normal operation to shutdown of the equipment; C I is the no-load power of the equipment; 5-2)构建规划问题的数学模型,其中,优化目标为加工能耗、生产成本和完工时间,计算公式分别如式(6)、(7)、(8)所示,约束条件如式(9)~(13)所示:5-2) Construct a mathematical model of the planning problem, in which the optimization targets are processing energy consumption, production cost and completion time, the calculation formulas are shown in formulas (6), (7), and (8) respectively, and the constraints are shown in formula ( 9)~(13): 加工能耗,包括生产能耗、加工间隙能耗和运输能耗:Processing energy consumption, including production energy consumption, processing interval energy consumption and transportation energy consumption: <mrow> <mi>C</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msubsup> <mi>C</mi> <mrow> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>d</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>z</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>s</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>e</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>C</mi><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>P</mi><mi>i</mi></msub></munderover><munderover><mo>&amp;Sigma;</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mrow><mo>(</mo><msub><mi>D</mi><mrow><mi>i</mi><mi>j</mi><mi>k</mi></mrow></msub><msubsup><mi>C</mi><mrow><mi>i</mi><mi>j</mi><mi>k</mi></mrow><mrow><mi>p</mi><mi>r</mi><mi>o</mi><mi>d</mi></mrow></msubsup><mo>)</mo></mrow><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>z</mi><mo>-</mo><mn>1</mn></mrow></munderover><mrow><mo>(</mo><msubsup><mi>C</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>t</mi><mi>r</mi><mi>a</mi><mi>n</mi><mi>s</mi></mrow></msubsup><mo>)</mo></mrow><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><msub><mi>e</mi><mi>k</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 生产成本:Cost of production: <mrow> <mi>P</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>z</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mi>k</mi> <mi>m</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>d</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>P</mi><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>z</mi></munderover><munderover><mo>&amp;Sigma;</mo><mi>k</mi><mi>m</mi></munderover><mrow><mo>(</mo><msub><mi>D</mi><mrow><mi>i</mi><mi>j</mi><mi>k</mi></mrow></msub><msubsup><mi>P</mi><mrow><mi>i</mi><mi>j</mi><mi>k</mi></mrow><mrow><mi>p</mi><mi>r</mi><mi>o</mi><mi>d</mi></mrow></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow> 完工时间:Completion Time: T=max(C1,C2...Cm) (8)T=max(C 1 ,C 2 ...C m ) (8) 约束条件:Restrictions: Ck=max(cijk)i=1,2,...,n;j=1,2,...,pi;k∈Mij (9)C k =max(c ijk )i=1,2,...,n; j=1,2,...,p i ; k∈M ij (9) cijk=sijk+tijki=1,2,...,n;j=1,2,...,pi;k=1,2,...,m (10)c ijk =s ijk +t ijk i=1,2,...,n; j=1,2,...,p i ;k=1,2,...,m (10) sijk-ci(j-1)l≥0 (11)s ijk -c i(j-1)l ≥0 (11) 其中,Dijk表示工件i的第j道工序选择机器k的决策变量,表示工件i的第j道工序在机器k上的加工的能耗,表示工件i的第j道工序到下一道工序的运输能耗,ek表示机器k非加工时间的能耗量,表示工件i的第j道工序在机器k上的加工成本,ck表示机床k的完工时间,cijk表示任务i的第j道工序在机器k上的完工时间,pi表示工件i的工序总数,Mij表示工件i的工序j可选机床集,sijk表示任务i的第j道工序在机器k上的开始时间,tijk表示任务i的第j道工序在机器k上的加工时间,Gijk表示任务i的第j道工序选择机器k的选择变量;Among them, D ijk represents the decision variable of selecting machine k for the jth process of workpiece i, Indicates the energy consumption of the jth process of the workpiece i on the machine k, Indicates the transportation energy consumption from the jth process of workpiece i to the next process, e k represents the energy consumption of machine k in non-processing time, Indicates the processing cost of the jth process of the job i on the machine k, c k represents the completion time of the machine k, c ijk represents the completion time of the jth process of the task i on the machine k, p i represents the process of the workpiece i The total number, M ij represents the set of optional machine tools for the process j of the workpiece i, s ijk represents the start time of the jth process of the task i on the machine k, and t ijk represents the processing time of the jth process of the task i on the machine k , G ijk represents the selection variable of the jth process selection machine k of the task i; 式(6)、(7)、(8)、分别为能耗目标函数、生产成本函数和完工时间函数;Equations (6), (7), and (8) are energy consumption target function, production cost function and completion time function respectively; 约束条件(9):保证机床k的完工时间为机床i上最后一个完工工序的时间;Constraint (9): Ensure that the completion time of machine k is the time of the last completion process on machine i; 约束条件(10):任务i的第j道工序在机床k上的完工时间为其开始时间与工序时间之和;Constraint (10): The completion time of the jth process of task i on machine k is the sum of the start time and process time; 约束条件(11):任务i的加工顺序约束,保证工序的开始时间在上一道工序结束时间之后;Constraint condition (11): The processing sequence constraint of task i ensures that the start time of the process is after the end time of the previous process; 约束条件(12):保证任务i的第j道工序有多个可选机床;Constraint (12): Ensure that the jth process of task i has multiple optional machine tools; 约束条件(13):保证任务i的第j道工序仅选择一台可选机床进行加工;Constraint condition (13): ensure that only one optional machine tool is selected for the jth process of task i; 5-3)NSGA-II算法的设计:5-3) Design of NSGA-II algorithm: (1)采用改进的多目标优化算法ED-NSGA-II求解:(1) Using the improved multi-objective optimization algorithm ED-NSGA-II to solve: 1)编码解码设计:设计基于工序和机床的二维编码方式;1) Coding and decoding design: design a two-dimensional coding method based on process and machine tool; 2)个体优劣评价:采用基于非支配排序值和拥挤度值进行个体优劣排序;2) Evaluation of individual pros and cons: use non-dominated sorting value and congestion value to sort individual pros and cons; 3)选择方式:锦标赛选择方法;3) Selection method: Championship selection method; 4)交叉方式:二元POX交叉;4) Crossover method: Binary POX crossover; 5)变异操作:随机变异;5) Mutation operation: random mutation; 6)种群保留机制:基于精英策略的种群保留机制;6) Population retention mechanism: population retention mechanism based on elite strategy; (2)算法的计算过程为:(2) The calculation process of the algorithm is: 1)设定算法的基本参数:最大迭代次数为150次,种群大小为500,交叉概率为0.8;变异概率为0.1;1) Set the basic parameters of the algorithm: the maximum number of iterations is 150, the population size is 500, the crossover probability is 0.8; the mutation probability is 0.1; 2)初始化种群,进行个体的非支配排序和拥挤度值计算;2) Initialize the population, perform non-dominated sorting of individuals and calculation of crowding degree; 3)选择交叉操作:变异总个体为种群大小与交叉概率之积:400;选用二元锦标赛方法选出两个个体,其中非支配排序Rank值最低和拥挤度最高的个体优先选中,根据交叉概率进行二元POX交叉;3) Select the crossover operation: the total number of mutation individuals is the product of the population size and the crossover probability: 400; two individuals are selected using the binary tournament method, and the individual with the lowest Rank value and the highest degree of crowding in non-dominated sorting is selected first, according to the crossover probability Perform binary POX crossover; 4)选择变异操作:变异总个体为种群大小与变异概率之积:50;同样采用二元锦标赛方法选出某个体,个体基因链基因根据变异概率随机变异;4) Selection of mutation operation: the total number of mutation individuals is the product of population size and mutation probability: 50; an individual is also selected using the binary tournament method, and the individual gene chain genes are randomly mutated according to the mutation probability; 5)精英策略种群保留:将交叉、变异产生的新种群和初始产生的种群合并,进行所有个体的非支配排序和拥挤度计算,保留前500个优秀个体;5) Elite strategy population retention: merge the new population generated by crossover and mutation with the initially generated population, perform non-dominated sorting and crowding calculation of all individuals, and retain the top 500 outstanding individuals; 6)终止条件检测:若当前所有个体的Rank值均为1的前19次迭代均是所有个体的Rank值为1,则终止迭代;若不满足,则查看是否达到迭代次数150:未达到,则转入步骤3),进入下一次迭代;达到则终止迭代;6) Termination condition detection: If the rank values of all individuals are 1 in the first 19 iterations, the iteration is terminated; if not satisfied, check whether the number of iterations is 150: not reached, Then turn to step 3) and enter the next iteration; when it reaches, the iteration is terminated; 7)输出迭代结果;7) output the iteration result; 5-5)最优解确定:5-5) Optimal solution determination: 由于ED-NSGA-II求解得到结果为最优解集,需要进行最优解的确定,因此采用基于DEMATEL+ANP方法进行多个目标的权重确定,进行最优解确定;Since the result of ED-NSGA-II solution is the optimal solution set, it is necessary to determine the optimal solution, so the weight determination of multiple objectives based on the DEMATEL+ANP method is used to determine the optimal solution; 5-6)生产规划的生成:5-6) Generation of production planning: 通过确定的最优解,得到相应的加工能耗,同时解码确定每道工序的加工机床和各台机床上任务的加工顺序,并生成相应生产优化配置的结果。Through the determined optimal solution, the corresponding processing energy consumption is obtained, and at the same time, the processing sequence of the processing machine tools of each process and the tasks on each machine tool is decoded, and the corresponding production optimization configuration results are generated.
CN201510882936.6A 2015-12-04 2015-12-04 The Discrete Manufacturing Process energy consumption optimization method of order-driven market Expired - Fee Related CN105652791B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510882936.6A CN105652791B (en) 2015-12-04 2015-12-04 The Discrete Manufacturing Process energy consumption optimization method of order-driven market

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510882936.6A CN105652791B (en) 2015-12-04 2015-12-04 The Discrete Manufacturing Process energy consumption optimization method of order-driven market

Publications (2)

Publication Number Publication Date
CN105652791A CN105652791A (en) 2016-06-08
CN105652791B true CN105652791B (en) 2018-04-17

Family

ID=56481923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510882936.6A Expired - Fee Related CN105652791B (en) 2015-12-04 2015-12-04 The Discrete Manufacturing Process energy consumption optimization method of order-driven market

Country Status (1)

Country Link
CN (1) CN105652791B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475908A (en) * 2016-11-08 2017-03-08 上海大学 Follow grinding process lathe operation energy consumption Forecasting Methodology based on standard G code
CN106959675B (en) * 2017-03-21 2020-06-02 山东大学 Multi-objective scheduling optimization method for flow shop
CN108320049B (en) * 2018-01-11 2019-06-11 山东科技大学 Accurate prediction method of energy consumption for automatic tool change of multi-station rotary tool post of CNC lathe
CN109426920A (en) * 2018-01-19 2019-03-05 武汉十傅科技有限公司 A kind of enterprise's production planning optimization method considering prediction order and practical order
CN108876654B (en) * 2018-05-29 2022-02-08 昆明理工大学 Optimized scheduling method for processing of multiple cables
CN108803495A (en) * 2018-07-30 2018-11-13 山东理工大学 Numerically controlled lathe energy consumption prediction technique when a kind of execution turnery processing program
CN109492878A (en) * 2018-10-17 2019-03-19 天津大学 A kind of evaluation method of super low energy consumption public building energy technical solution
CN109333155A (en) * 2018-10-25 2019-02-15 山东理工大学 On-line detection method of energy efficiency in CNC turning of water ring vacuum pump rotor shaft
CN109918771B (en) * 2019-03-05 2023-11-28 北京工业大学 Energy-saving scheduling model of mixed flow forging workshop under multiple time factors
CN110286588B (en) * 2019-05-24 2021-11-09 同济大学 Assembly line rebalance optimization method considering energy consumption
CN110514335B (en) * 2019-09-30 2021-04-23 武汉科技大学 A method for determining the energy efficiency ratio of CNC machine tools
CN112925278B (en) * 2021-01-29 2023-09-15 重庆大学 Multi-target gear hobbing process parameter optimization and decision method
CN113341889B (en) * 2021-04-19 2022-07-22 山东师范大学 Distributed blocking flow shop scheduling method and system with assembly stages and energy consumption
CN115755821A (en) * 2022-12-30 2023-03-07 中建科技集团有限公司 Prefabricated part production control method and system and related equipment
CN116165968A (en) * 2023-04-24 2023-05-26 成都航利航空科技有限责任公司 Numerical control procedure processing parameter recording method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615077A (en) * 2015-01-07 2015-05-13 重庆大学 Efficient energy-saving optimizing method for numerical control milling processing process parameters based on Taguchi method
CN104751275A (en) * 2015-03-11 2015-07-01 江南大学 Dynamic configuration method for energy-consumption-oriented discrete manufacturing system resources
CN104880991A (en) * 2015-03-18 2015-09-02 重庆大学 Energy-efficiency-oriented multi-step numerical control milling process parameter multi-objective optimization method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8554343B2 (en) * 2010-12-08 2013-10-08 Mitsubishi Electric Research Laboratories, Inc. Method for solving control problems
US9343903B2 (en) * 2013-03-14 2016-05-17 Mark Hauenstein Methods and systems architecture to virtualize energy functions and processes into a cloud based model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615077A (en) * 2015-01-07 2015-05-13 重庆大学 Efficient energy-saving optimizing method for numerical control milling processing process parameters based on Taguchi method
CN104751275A (en) * 2015-03-11 2015-07-01 江南大学 Dynamic configuration method for energy-consumption-oriented discrete manufacturing system resources
CN104880991A (en) * 2015-03-18 2015-09-02 重庆大学 Energy-efficiency-oriented multi-step numerical control milling process parameter multi-objective optimization method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SPEA2算法的加工精度与能耗多工序车削优化;陈青艳 等;《机械设计与研究》;20131031;第29卷(第5期);67-70 *
面向高效低碳的机械加工工艺路线多目标优化模型;李聪波 等;《机械工程学报》;20140915;第50卷(第17期);133-141 *

Also Published As

Publication number Publication date
CN105652791A (en) 2016-06-08

Similar Documents

Publication Publication Date Title
CN105652791B (en) The Discrete Manufacturing Process energy consumption optimization method of order-driven market
Zhu et al. The impact of cross-region industrial structure optimization on economy, carbon emissions and energy consumption: A case of the Yangtze River Delta
Sang et al. Intelligent factory many-objective distributed flexible job shop collaborative scheduling method
CN109240202B (en) A low-carbon milling tool path optimization method
Salido et al. Rescheduling in job-shop problems for sustainable manufacturing systems
CN105929689B (en) Machine Manufacture system processing energy conservation optimizing method based on particle cluster algorithm
CN106959675A (en) A kind of multi-objective scheduling optimization method towards Flow Shop
He et al. Optimization of energy-efficient open shop scheduling with an adaptive multi-objective differential evolution algorithm
CN110598941A (en) Bionic strategy-based dual-target scheduling method for particle swarm optimization manufacturing system
CN111242503A (en) Multi-target flexible job shop scheduling method based on two-layer genetic algorithm
CN102929263A (en) A Hybrid Flow Shop Scheduling Method
CN110579971A (en) A multi-objective cutting parameter optimization method for green manufacturing
CN111738499A (en) A Job Shop Batch Scheduling Method Based on Novel Neighborhood Structure
CN104463414B (en) A kind of hot rolling production economy load scheduling method under tou power price
CN111966049A (en) Scheduling control method for production equipment of mixed flow shop
CN113450013A (en) Method for solving workshop energy-saving scheduling problem based on improved NSGA-III algorithm
CN115169798A (en) A distributed flexible job shop scheduling method and system with preparation time
CN106971243A (en) It is a kind of to reduce the hot rolling Optimization Scheduling of productive power cost
CN115310832A (en) Multi-population optimization algorithm double-resource constraint flexible job shop scheduling method and device
CN115099612A (en) Flexible job shop batch scheduling method considering carbon emission
CN112861433B (en) A method for product low-carbon design based on multi-level integration framework
CN108983719A (en) The Optimization Scheduling of panel beating process in a kind of manufacture of computer cabinet
CN112418478A (en) Low-carbon scheduling model and energy-saving optimization method under flexible flow shop
CN104200336A (en) Enterprise materials balancing method based on comprehensive energy consumption judgment
CN118377272A (en) Flow shop batch scheduling method based on improved hybrid genetic algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180417

Termination date: 20211204