CN105634596A - Underwater visible light communication system and method - Google Patents

Underwater visible light communication system and method Download PDF

Info

Publication number
CN105634596A
CN105634596A CN201610049324.3A CN201610049324A CN105634596A CN 105634596 A CN105634596 A CN 105634596A CN 201610049324 A CN201610049324 A CN 201610049324A CN 105634596 A CN105634596 A CN 105634596A
Authority
CN
China
Prior art keywords
underwater
network node
backbone network
visible light
node device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610049324.3A
Other languages
Chinese (zh)
Other versions
CN105634596B (en
Inventor
仵国锋
胡锋
朱义君
于宏毅
邬江兴
张剑
汪涛
田忠骏
王超
刘洛琨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA Information Engineering University
Original Assignee
PLA Information Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA Information Engineering University filed Critical PLA Information Engineering University
Priority to CN201610049324.3A priority Critical patent/CN105634596B/en
Publication of CN105634596A publication Critical patent/CN105634596A/en
Application granted granted Critical
Publication of CN105634596B publication Critical patent/CN105634596B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/06Non-electrical signal transmission systems, e.g. optical systems through light guides, e.g. optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种水下可见光通信系统及方法,水下可见光通信系统包括:水下无人机器人、水下骨干网络节点设备和多个不同的水下传感器;水下骨干网络节点设备分别与各个水下传感器通过光纤通信进行通信连接;水下无人机器人与水下骨干网络节点设备通过可见光无线通信进行通信连接。在本申请中,由于可见光无线通信受水下环境的影响小,可见光无线通信在水下的传输速率相对较高,因此提高了水下无人机器人的信息获取效率,从而提高了水下无人机器人将水下信息反馈给岸边基站的及时性。

The present application provides an underwater visible light communication system and method. The underwater visible light communication system includes: an underwater unmanned robot, an underwater backbone network node device, and a plurality of different underwater sensors; the underwater backbone network node device is connected with Each underwater sensor is connected through optical fiber communication; the underwater unmanned robot and the underwater backbone network node equipment are connected through visible light wireless communication. In this application, since the visible light wireless communication is less affected by the underwater environment, the transmission rate of the visible light wireless communication is relatively high underwater, so the information acquisition efficiency of the underwater unmanned robot is improved, thereby improving the underwater unmanned The timeliness of the robot feeding back underwater information to the shore base station.

Description

一种水下可见光通信系统及方法A system and method for underwater visible light communication

技术领域technical field

本申请涉及通信领域,特别涉及一种水下可见光通信系统及方法。The present application relates to the communication field, and in particular to an underwater visible light communication system and method.

背景技术Background technique

水下传感器网络系统主要应用在海洋科学数据收集、污染监测、海上勘探、灾害预防、辅助导航、水下监视等方面。目前,水下传感器网络系统由水下无人机器人和水下无线传感器组成,水下无人机器人与水下无线传感器之间通过无线通信连接,水下无人机器人将从水下无线传感器获取到的水下信息转发至岸边基站,实现对水下信息的监测。The underwater sensor network system is mainly used in marine scientific data collection, pollution monitoring, marine exploration, disaster prevention, auxiliary navigation, underwater monitoring, etc. At present, the underwater sensor network system is composed of underwater unmanned robots and underwater wireless sensors. The underwater unmanned robots and underwater wireless sensors are connected by wireless communication. The underwater information is forwarded to the shore base station to realize the monitoring of underwater information.

其中,水下无人机器人与水下无线传感器之间具体通过声波无线通信连接,但是由于水下环境的特殊性,声波无线通信在水下传输速度低,导致水下无人机器人的信息获取效率低。Among them, the underwater unmanned robot and the underwater wireless sensor are connected through acoustic wireless communication, but due to the particularity of the underwater environment, the transmission speed of acoustic wireless communication is low underwater, resulting in the information acquisition efficiency of the underwater unmanned robot. Low.

发明内容Contents of the invention

为解决上述技术问题,本申请实施例提供一种水下可见光通信系统及方法,以达到提高水下无人机器人的信息获取效率,从而提高水下无人机器人将水下信息反馈给岸边基站的及时性的目的,技术方案如下:In order to solve the above technical problems, the embodiment of the present application provides an underwater visible light communication system and method, so as to improve the information acquisition efficiency of the underwater unmanned robot, thereby improving the underwater information feedback of the underwater unmanned robot to the shore base station. For the purpose of timeliness, technical solutions are as follows:

一种水下可见光通信系统,包括:水下无人机器人、水下骨干网络节点设备和多个不同的水下传感器;An underwater visible light communication system, including: an underwater unmanned robot, an underwater backbone network node device, and a plurality of different underwater sensors;

所述水下骨干网络节点设备分别与各个所述水下传感器通过光纤通信进行通信连接;The underwater backbone network node equipment is respectively connected to each of the underwater sensors through optical fiber communication;

所述水下无人机器人与所述水下骨干网络节点设备通过可见光无线通信进行通信连接;The underwater unmanned robot communicates with the underwater backbone network node device through visible light wireless communication;

所述水下无人机器人,用于发送任务分配指令至所述水下骨干网络节点设备,以及发送信息采集指令至所述水下骨干网络节点设备,并接收所述水下骨干网络节点设备针对所述信息采集指令发送的各个所述水下传感器采集的信息;The underwater unmanned robot is used to send task allocation instructions to the underwater backbone network node equipment, and send information collection instructions to the underwater backbone network node equipment, and receive the underwater backbone network node equipment for The information collected by each of the underwater sensors sent by the information collection command;

所述水下骨干网络节点设备,用于将所述任务分配指令转发至相应的水下传感器,以及获取各个所述水下传感器采集的信息,并在接收到所述信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人;The underwater backbone network node device is configured to forward the task allocation instruction to the corresponding underwater sensor, and obtain information collected by each of the underwater sensors, and when receiving the information collection instruction, send each The information collected by the underwater sensor is sent to the underwater unmanned robot;

所述水下传感器,用于采集水下信息。The underwater sensor is used for collecting underwater information.

优选的,所述水下骨干网络节点设备具体用于定时获取各个所述水下传感器采集的信息。Preferably, the underwater backbone network node device is specifically configured to regularly acquire information collected by each of the underwater sensors.

优选的,所述水下无人机器人包括:第一可见光发射装置、第一可见光接收装置、第一驱动电路和第一接收电路;Preferably, the underwater unmanned robot includes: a first visible light emitting device, a first visible light receiving device, a first driving circuit and a first receiving circuit;

所述第一驱动电路,用于将表征所述任务分配指令的电信号转换为第一光信号,以及将表征所述信息采集指令的电信号转换为第二光信号;The first drive circuit is configured to convert the electrical signal representing the task allocation instruction into a first optical signal, and convert the electrical signal representing the information collection instruction into a second optical signal;

所述第一可见光发射装置,用于将所述第一光信号和所述第二光信号发射至所述水下骨干网络节点设备;The first visible light emitting device is configured to transmit the first optical signal and the second optical signal to the underwater backbone network node device;

所述第一可见光接收装置,用于接收表征各个所述水下传感器采集的信息的第三光信号;The first visible light receiving device is configured to receive a third light signal representing information collected by each of the underwater sensors;

所述第一接收电路,用于将所述第三光信号转换为电信号;The first receiving circuit is configured to convert the third optical signal into an electrical signal;

所述水下骨干网络节点设备包括:第二可见光发射装置、第二可见光接收装置、第二驱动电路和第二接收电路;The underwater backbone network node equipment includes: a second visible light emitting device, a second visible light receiving device, a second driving circuit and a second receiving circuit;

所述第二驱动电路,用于将表征各个所述水下传感器采集的信息的电信号转换为所述第三光信号;The second driving circuit is used to convert the electrical signal representing the information collected by each of the underwater sensors into the third optical signal;

所述第二可见光发射装置,用于将所述第三光信号发射至所述水下无人机器人;The second visible light emitting device is used to emit the third optical signal to the underwater unmanned robot;

所述第二可见光接收装置,用于接收所述第一光信号和所述第二光信号;The second visible light receiving device is configured to receive the first light signal and the second light signal;

所述第二接收电路,用于将所述第一光信号转换和所述第二光信号分别转换为电信号。The second receiving circuit is configured to convert the first optical signal and the second optical signal into electrical signals respectively.

优选的,所述第一可见光发射装置和所述第二可见光发射装置均为发光二极管LED灯;Preferably, both the first visible light emitting device and the second visible light emitting device are LED lamps;

所述第一可见光接收装置和所述第二可见光接收装置均为光电探测器。Both the first visible light receiving device and the second visible light receiving device are photodetectors.

一种水下可见光通信方法,基于水下可见光通信系统,所述水下可见光通信系统包括:水下无人机器人、水下骨干网络节点设备和多个不同的水下传感器,所述水下骨干网络节点设备分别与各个所述水下传感器通过光纤通信进行通信连接,所述水下无人机器人与所述水下骨干网络节点设备通过可见光无线通信进行通信连接,所述方法包括:An underwater visible light communication method, based on an underwater visible light communication system, the underwater visible light communication system includes: an underwater unmanned robot, an underwater backbone network node device, and a plurality of different underwater sensors, the underwater backbone The network node device communicates with each of the underwater sensors through optical fiber communication, and the underwater unmanned robot communicates with the underwater backbone network node device through visible light wireless communication. The method includes:

所述水下骨干网络节点设备接收所述水下无人机器人发送的任务分配指令,并将所述任务分配指令转发至相应的水下传感器;The underwater backbone network node device receives the task allocation instruction sent by the underwater unmanned robot, and forwards the task allocation instruction to the corresponding underwater sensor;

所述水下骨干网络节点设备获取各个所述水下传感器采集的信息;The underwater backbone network node device acquires information collected by each of the underwater sensors;

所述水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人。When the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, it sends the information collected by each of the underwater sensors to the underwater unmanned robot.

优选的,所述水下骨干网络节点设备获取各个所述水下传感器采集的信息包括:Preferably, the underwater backbone network node device acquiring information collected by each of the underwater sensors includes:

所述水下骨干网络节点设备定时获取各个所述水下传感器采集的信息。The underwater backbone network node device regularly acquires information collected by each of the underwater sensors.

优选的,所述水下骨干网络节点设备接收所述水下无人机器人发送的任务分配指令的过程,包括:Preferably, the process of the underwater backbone network node device receiving the task assignment instruction sent by the underwater unmanned robot includes:

所述水下骨干网络节点设备接收表征所述任务分配指令的第一光信号;The underwater backbone network node device receives a first optical signal representing the task allocation instruction;

所述水下骨干网络节点设备将所述第一光信号转换为表征所述任务分配指令的电信号。The underwater backbone network node device converts the first optical signal into an electrical signal representing the task allocation instruction.

优选的,所述水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人的过程,包括:Preferably, when the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, the process of sending the information collected by each of the underwater sensors to the underwater unmanned robot, include:

所述水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将表征各个所述水下传感器采集的信息的电信号转换为所述第三光信号;When the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, it converts the electrical signal representing the information collected by each of the underwater sensors into the third optical signal;

所述水下骨干网络节点设备将所述第三光信号发送至所述水下无人机器人。The underwater backbone network node device sends the third optical signal to the underwater unmanned robot.

与现有技术相比,本申请的有益效果为:Compared with the prior art, the beneficial effects of the present application are:

在本申请中,水下骨干网络节点设备通过光纤通信获取各个水下传感器采集的信息,水下骨干网络节点设备在获取到各个水下传感器采集的信号后,水下无人机器人可以通过可见光无线通信接收水下骨干网络节点设备发送的各个水下传感器采集的信息。In this application, the underwater backbone network node device obtains the information collected by each underwater sensor through optical fiber communication. After the underwater backbone network node device obtains the signals collected by each underwater sensor, the underwater unmanned robot can wirelessly The communication receives the information collected by each underwater sensor sent by the underwater backbone network node equipment.

由于可见光无线通信受水下环境的影响小,可见光无线通信在水下的传输速率相对较高,因此提高了水下无人机器人的信息获取效率,从而提高了水下无人机器人将水下信息反馈给岸边基站的及时性。Since the visible light wireless communication is less affected by the underwater environment, the transmission rate of the visible light wireless communication is relatively high underwater, thus improving the information acquisition efficiency of the underwater unmanned robot, thereby improving the underwater information acquisition efficiency of the underwater unmanned robot. The timeliness of feedback to shore base stations.

附图说明Description of drawings

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained based on these drawings without any creative effort.

图1是本申请提供的水下可见光通信系统的一种逻辑结构示意图;Fig. 1 is a schematic diagram of a logical structure of the underwater visible light communication system provided by the present application;

图2是本申请提供的水下无人机器人的一种逻辑结构示意图;Fig. 2 is a schematic diagram of a logic structure of the underwater unmanned robot provided by the present application;

图3是本申请提供的水下骨干网络节点设备的一种逻辑结构示意图;Fig. 3 is a schematic diagram of a logic structure of the underwater backbone network node equipment provided by the present application;

图4是本申请提供的水下可见光通信系统的一种工作示意图;Fig. 4 is a working schematic diagram of the underwater visible light communication system provided by the present application;

图5是本申请提供的水下可见光通信方法的一种流程图;Fig. 5 is a flow chart of the underwater visible light communication method provided by the present application;

图6是本申请提供的水下可见光通信方法的一种子流程图;Fig. 6 is a sub-flow chart of the underwater visible light communication method provided by the present application;

图7是本申请提供的水下可见光通信方法的另一种子流程图。Fig. 7 is another sub-flow chart of the underwater visible light communication method provided by the present application.

具体实施方式detailed description

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the application with reference to the drawings in the embodiments of the application. Apparently, the described embodiments are only some of the embodiments of the application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.

实施例一Embodiment one

请参见图1,其示出了本申请提供的水下可见光通信系统的一种逻辑结构示意图,水下可见光通信系统包括:水下无人机器人11、水下骨干网络节点设备12和多个不同的水下传感器。Please refer to Fig. 1, which shows a schematic diagram of the logical structure of the underwater visible light communication system provided by the present application. The underwater visible light communication system includes: an underwater unmanned robot 11, an underwater backbone network node device 12 and a plurality of different underwater sensors.

所述水下骨干网络节点设备12分别与各个所述水下传感器通过光纤通信进行通信连接。The underwater backbone network node device 12 communicates with each of the underwater sensors through optical fiber communication.

在本实施例中,由于布设在水下的传感器不需要自主移动即可采集周围信息,因此使用光纤将水下传感器连接至水下骨干网络节点设备12,实现水下骨干网络节点设备12分别与各个所述水下传感器通过光纤通信进行通信连接。光纤传输受水下环境影响小,水下传感器与水下骨干网络节点设备12之间的信息传输速率高,干扰小,并且水下传感器不再需要进行无线通信,降低了水下传感器的复杂度。In this embodiment, since the sensors deployed underwater can collect surrounding information without autonomous movement, optical fibers are used to connect the underwater sensors to the underwater backbone network node device 12, so that the underwater backbone network node device 12 is connected to the Each of the underwater sensors is communicatively connected through optical fiber communication. Optical fiber transmission is less affected by the underwater environment, the information transmission rate between the underwater sensor and the underwater backbone network node device 12 is high, and the interference is small, and the underwater sensor no longer needs to perform wireless communication, which reduces the complexity of the underwater sensor .

所述水下无人机器人11与所述水下骨干网络节点设备12通过可见光无线通信进行通信连接。The underwater unmanned robot 11 communicates with the underwater backbone network node device 12 through visible light wireless communication.

所述水下无人机器人11,用于发送任务分配指令至所述水下骨干网络节点设备12,以及发送信息采集指令至所述水下骨干网络节点设备12,并接收所述水下骨干网络节点设备12针对所述信息采集指令发送的各个所述水下传感器采集的信息。The underwater unmanned robot 11 is used to send task assignment instructions to the underwater backbone network node device 12, and send information collection instructions to the underwater backbone network node device 12, and receive the underwater backbone network node device 12. The information collected by each of the underwater sensors sent by the node device 12 in response to the information collection command.

在本实施例中,当工作人员需要采集水底各个水下传感器的信息时,可派送水下无人机器人11潜入水底,水下无人机器人11与水下骨干网络节点设备12建立可见光无线通信,并由水下无人机器人11发送任务分配指令,对相应的水下传感器进行任务分配。In this embodiment, when the staff needs to collect the information of each underwater sensor at the bottom, the underwater unmanned robot 11 can be sent to dive into the bottom of the water, and the underwater unmanned robot 11 establishes visible light wireless communication with the underwater backbone network node device 12, And the underwater unmanned robot 11 sends a task allocation command to perform task allocation to the corresponding underwater sensors.

所述水下骨干网络节点设备12,用于将所述任务分配指令转发至相应的水下传感器,以及获取各个所述水下传感器采集的信息,并在接收到所述信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人11;The underwater backbone network node device 12 is configured to forward the task allocation instruction to corresponding underwater sensors, and obtain information collected by each of the underwater sensors, and when receiving the information collection instruction, send The information collected by each of the underwater sensors is sent to the underwater unmanned robot 11;

所述水下传感器,用于采集水下信息。The underwater sensor is used for collecting underwater information.

在本实施例中,收到任务分配指令的水下传感器则按照任务分配指令进行相应任务的执行。In this embodiment, the underwater sensor that receives the task assignment instruction executes the corresponding task according to the task assignment instruction.

在本申请中,水下骨干网络节点设备12通过光纤通信获取各个水下传感器采集的信息,水下骨干网络节点设备12在获取到各个水下传感器采集的信号后,水下无人机器人11可以通过可见光无线通信接收水下骨干网络节点设备12发送的各个水下传感器采集的信息。In this application, the underwater backbone network node device 12 obtains the information collected by each underwater sensor through optical fiber communication. After the underwater backbone network node device 12 obtains the signals collected by each underwater sensor, the underwater unmanned robot 11 can The information collected by each underwater sensor sent by the underwater backbone network node device 12 is received through visible light wireless communication.

由于可见光无线通信受水下环境的影响小,可见光无线通信在水下的传输速率相对较高,因此提高了水下无人机器人11的信息获取效率,从而提高了水下无人机器人11将水下信息反馈给岸边基站的及时性。Since the visible light wireless communication is less affected by the underwater environment, the transmission rate of the visible light wireless communication is relatively high underwater, so the information acquisition efficiency of the underwater unmanned robot 11 is improved, thereby improving the ability of the underwater unmanned robot 11 to control the underwater environment. The timeliness of information feedback to shore base stations.

进一步的,在本实施例中,水下骨干网络节点设备12具体可以用于定时获取各个所述水下传感器采集的信息,在水下骨干网络节点设备12获取各个水下传感器采集的信息后,水下无人机器人11只需要直接与水下骨干网络节点设备12进行可见光无线通信,接收水下骨干网络节点设备12发送的各个水下传感器采集的信息,不再需要分别与各个水下传感器建立无线连接,缩短了信息获取的总时间,进一步提高了信息获取的效率,提高了水下无人机器人11将水下信息反馈给岸边基站的及时性。Further, in this embodiment, the underwater backbone network node device 12 may specifically be used to regularly acquire the information collected by each of the underwater sensors, after the underwater backbone network node device 12 obtains the information collected by each underwater sensor, The underwater unmanned robot 11 only needs to directly perform visible light wireless communication with the underwater backbone network node device 12, and receives the information collected by each underwater sensor sent by the underwater backbone network node device 12. The wireless connection shortens the total time of information acquisition, further improves the efficiency of information acquisition, and improves the timeliness of the underwater unmanned robot 11 feeding underwater information to the shore base station.

在本实施例中,水下骨干网络节点设备12具体可以用于定时获取各个所述水下传感器采集的信息。In this embodiment, the underwater backbone network node device 12 may specifically be used to regularly acquire information collected by each of the underwater sensors.

在上述水下可见光通信系统中,水下无人机器人11具体包括:第一可见光发射装置111、第一可见光接收装置112、第一驱动电路113和第一接收电路114,如图2所示。In the above-mentioned underwater visible light communication system, the underwater unmanned robot 11 specifically includes: a first visible light emitting device 111 , a first visible light receiving device 112 , a first driving circuit 113 and a first receiving circuit 114 , as shown in FIG. 2 .

所述第一驱动电路113,用于将表征所述任务分配指令的电信号转换为第一光信号,以及将表征所述信息采集指令的电信号转换为第二光信号。The first driving circuit 113 is configured to convert the electrical signal representing the task allocation instruction into a first optical signal, and convert the electrical signal representing the information collection instruction into a second optical signal.

所述第一可见光发射装置111,用于将所述第一光信号和所述第二光信号发射至所述水下骨干网络节点设备12。The first visible light transmitting device 111 is configured to transmit the first optical signal and the second optical signal to the underwater backbone network node device 12 .

在本实施例中,第一可见光发射装置111具体可以为LED(发光二极管,Light-EmittingDiode)灯。In this embodiment, the first visible light emitting device 111 may specifically be an LED (Light-Emitting Diode, Light-Emitting Diode) lamp.

所述第一可见光接收装置112,用于接收表征各个所述水下传感器采集的信息的第三光信号。The first visible light receiving device 112 is configured to receive a third light signal representing information collected by each of the underwater sensors.

在本实施例中,第一可见光接收装置112具体可以为光电探测器。In this embodiment, the first visible light receiving device 112 may specifically be a photodetector.

所述第一接收电路114,用于将所述第三光信号转换为电信号。The first receiving circuit 114 is configured to convert the third optical signal into an electrical signal.

在上述水下可见光通信系统中,水下骨干网络节点设备12包括:第二可见光发射装置121、第二可见光接收装置122、第二驱动电路123和第二接收电路124,如图3所示。In the above underwater visible light communication system, the underwater backbone network node device 12 includes: a second visible light emitting device 121 , a second visible light receiving device 122 , a second driving circuit 123 and a second receiving circuit 124 , as shown in FIG. 3 .

所述第二驱动电路123,用于将表征各个所述水下传感器采集的信息的电信号转换为所述第三光信号。The second driving circuit 123 is configured to convert electrical signals representing information collected by each of the underwater sensors into the third optical signal.

所述第二可见光发射装置121,用于将所述第三光信号发射至所述水下无人机器人11。The second visible light emitting device 121 is configured to emit the third light signal to the underwater unmanned robot 11 .

其中,第二可见光发射装置121具体可以为LED灯。Wherein, the second visible light emitting device 121 may specifically be an LED lamp.

所述第二可见光接收装置122,用于接收所述第一光信号和所述第二光信号。The second visible light receiving device 122 is configured to receive the first light signal and the second light signal.

其中,第二可见光接收装置122具体可以为光电探测器。Wherein, the second visible light receiving device 122 may specifically be a photodetector.

所述第二接收电路124,用于将所述第一光信号转换和所述第二光信号分别转换为电信号。The second receiving circuit 124 is configured to convert the first optical signal and the second optical signal into electrical signals respectively.

请参见图4,其示出了水下可见光通信系统的一种工作示意图。如图4所示,水下无人机器人11与水下骨干网络节点设备12之间通过可见光无线通信进行通信连接,水下骨干网络节点设备12与各个水下传感器通过光纤通信进行通信连接,水下无人机器人11的LED灯负责发送光信号,水下无人机器人11的光电探测器负责接收水下骨干网络节点设备12发送的光信号,水下骨干网络节点设备12的LED灯负责发送光信号,水下骨干网络节点设备12的光电探测器负责接收水下无人机器人11发送的光信号。Please refer to FIG. 4 , which shows a working diagram of an underwater visible light communication system. As shown in Figure 4, the underwater unmanned robot 11 communicates with the underwater backbone network node device 12 through visible light wireless communication, and the underwater backbone network node device 12 communicates with each underwater sensor through optical fiber communication. The LED lights of the underwater unmanned robot 11 are responsible for sending light signals, the photodetectors of the underwater unmanned robot 11 are responsible for receiving the light signals sent by the underwater backbone network node equipment 12, and the LED lights of the underwater backbone network node equipment 12 are responsible for sending light signals. The photodetector of the underwater backbone network node device 12 is responsible for receiving the optical signal sent by the underwater unmanned robot 11 .

实施例二Embodiment two

本实施例提供了一种水下可见光通信方法,基于实施例一示出的水下可见光通信系统,请参见图5,其示出了本申请提供的水下可见光通信方法的一种流程图,可以包括以下步骤:This embodiment provides an underwater visible light communication method, based on the underwater visible light communication system shown in Embodiment 1, please refer to FIG. 5 , which shows a flow chart of the underwater visible light communication method provided by this application. Can include the following steps:

步骤S51:水下骨干网络节点设备接收所述水下无人机器人发送的任务分配指令,并将所述任务分配指令转发至相应的水下传感器。Step S51: The underwater backbone network node device receives the task allocation instruction sent by the underwater unmanned robot, and forwards the task allocation instruction to the corresponding underwater sensor.

步骤S52:水下骨干网络节点设备获取各个所述水下传感器采集的信息。Step S52: The underwater backbone network node device obtains the information collected by each of the underwater sensors.

在本实施例中,水下骨干网络节点设备获取各个所述水下传感器采集的信息具体可以为水下骨干网络节点设备定时获取各个所述水下传感器采集的信息。In this embodiment, the underwater backbone network node device acquiring the information collected by each of the underwater sensors may specifically be that the underwater backbone network node device regularly acquires the information collected by each of the underwater sensors.

步骤S53:水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人。Step S53: when the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, it sends the information collected by each of the underwater sensors to the underwater unmanned robot.

在本实施例中,水下骨干网络节点设备接收所述水下无人机器人发送的任务分配指令的过程具体可以参见图6,可以包括以下步骤:In this embodiment, the process of the underwater backbone network node device receiving the task assignment instruction sent by the underwater unmanned robot can refer to FIG. 6 for details, and may include the following steps:

步骤S61:水下骨干网络节点设备接收表征所述任务分配指令的第一光信号。Step S61: The underwater backbone network node device receives the first optical signal representing the task allocation instruction.

步骤S62:水下骨干网络节点设备将所述第一光信号转换为表征所述任务分配指令的电信号。Step S62: The underwater backbone network node device converts the first optical signal into an electrical signal representing the task allocation instruction.

在本实施例中,水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人的过程具体可以参见图7,可以包括以下步骤:In this embodiment, when the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, the process of sending the information collected by each of the underwater sensors to the underwater unmanned robot Refer to Figure 7 for details, which may include the following steps:

步骤S71:水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将表征各个所述水下传感器采集的信息的电信号转换为第三光信号。Step S71: when the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, it converts the electrical signal representing the information collected by each of the underwater sensors into a third optical signal.

步骤S72:水下骨干网络节点设备将所述第三光信号发送至所述水下无人机器人。Step S72: The underwater backbone network node device sends the third optical signal to the underwater unmanned robot.

需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。It should be noted that each embodiment in this specification is described in a progressive manner, and each embodiment focuses on the differences from other embodiments. For the same and similar parts in each embodiment, refer to each other, that is, Can. As for the device-type embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and for related parts, please refer to part of the description of the method embodiments.

最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this text, relational terms such as first and second etc. are only used to distinguish one entity or operation from another, and do not necessarily require or imply that these entities or operations, any such actual relationship or order exists. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.

以上对本申请所提供的一种水下可见光通信系统及方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The underwater visible light communication system and method provided by this application have been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of this application. The description of the above embodiments is only used to help understand this application. method and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of this application, there will be changes in the specific implementation and scope of application. In summary, the content of this specification should not be understood as Limitations on this Application.

Claims (8)

1.一种水下可见光通信系统,其特征在于,包括:水下无人机器人、水下骨干网络节点设备和多个不同的水下传感器;1. An underwater visible light communication system, comprising: an underwater unmanned robot, an underwater backbone network node device, and a plurality of different underwater sensors; 所述水下骨干网络节点设备分别与各个所述水下传感器通过光纤通信进行通信连接;The underwater backbone network node equipment is respectively connected to each of the underwater sensors through optical fiber communication; 所述水下无人机器人与所述水下骨干网络节点设备通过可见光无线通信进行通信连接;The underwater unmanned robot communicates with the underwater backbone network node device through visible light wireless communication; 所述水下无人机器人,用于发送任务分配指令至所述水下骨干网络节点设备,以及发送信息采集指令至所述水下骨干网络节点设备,并接收所述水下骨干网络节点设备针对所述信息采集指令发送的各个所述水下传感器采集的信息;The underwater unmanned robot is used to send task allocation instructions to the underwater backbone network node equipment, and send information collection instructions to the underwater backbone network node equipment, and receive the underwater backbone network node equipment for The information collected by each of the underwater sensors sent by the information collection command; 所述水下骨干网络节点设备,用于将所述任务分配指令转发至相应的水下传感器,以及获取各个所述水下传感器采集的信息,并在接收到所述信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人;The underwater backbone network node device is configured to forward the task allocation instruction to the corresponding underwater sensor, and obtain information collected by each of the underwater sensors, and when receiving the information collection instruction, send each The information collected by the underwater sensor is sent to the underwater unmanned robot; 所述水下传感器,用于采集水下信息。The underwater sensor is used for collecting underwater information. 2.根据权利要求1所述的系统,其特征在于,所述水下骨干网络节点设备具体用于定时获取各个所述水下传感器采集的信息。2 . The system according to claim 1 , wherein the underwater backbone network node device is specifically configured to regularly acquire information collected by each of the underwater sensors. 3 . 3.根据权利要求1所述的系统,其特征在于,所述水下无人机器人包括:第一可见光发射装置、第一可见光接收装置、第一驱动电路和第一接收电路;3. The system according to claim 1, wherein the underwater unmanned robot comprises: a first visible light emitting device, a first visible light receiving device, a first driving circuit and a first receiving circuit; 所述第一驱动电路,用于将表征所述任务分配指令的电信号转换为第一光信号,以及将表征所述信息采集指令的电信号转换为第二光信号;The first drive circuit is configured to convert the electrical signal representing the task allocation instruction into a first optical signal, and convert the electrical signal representing the information collection instruction into a second optical signal; 所述第一可见光发射装置,用于将所述第一光信号和所述第二光信号发射至所述水下骨干网络节点设备;The first visible light emitting device is configured to transmit the first optical signal and the second optical signal to the underwater backbone network node device; 所述第一可见光接收装置,用于接收表征各个所述水下传感器采集的信息的第三光信号;The first visible light receiving device is configured to receive a third light signal representing information collected by each of the underwater sensors; 所述第一接收电路,用于将所述第三光信号转换为电信号;The first receiving circuit is configured to convert the third optical signal into an electrical signal; 所述水下骨干网络节点设备包括:第二可见光发射装置、第二可见光接收装置、第二驱动电路和第二接收电路;The underwater backbone network node equipment includes: a second visible light emitting device, a second visible light receiving device, a second driving circuit and a second receiving circuit; 所述第二驱动电路,用于将表征各个所述水下传感器采集的信息的电信号转换为所述第三光信号;The second driving circuit is used to convert the electrical signal representing the information collected by each of the underwater sensors into the third optical signal; 所述第二可见光发射装置,用于将所述第三光信号发射至所述水下无人机器人;The second visible light emitting device is used to emit the third optical signal to the underwater unmanned robot; 所述第二可见光接收装置,用于接收所述第一光信号和所述第二光信号;The second visible light receiving device is configured to receive the first light signal and the second light signal; 所述第二接收电路,用于将所述第一光信号转换和所述第二光信号分别转换为电信号。The second receiving circuit is configured to convert the first optical signal and the second optical signal into electrical signals respectively. 4.根据权利要求3所述的系统,其特征在于,所述第一可见光发射装置和所述第二可见光发射装置均为发光二极管LED灯;4. The system according to claim 3, wherein the first visible light emitting device and the second visible light emitting device are light-emitting diode (LED) lamps; 所述第一可见光接收装置和所述第二可见光接收装置均为光电探测器。Both the first visible light receiving device and the second visible light receiving device are photodetectors. 5.一种水下可见光通信方法,其特征在于,基于水下可见光通信系统,所述水下可见光通信系统包括:水下无人机器人、水下骨干网络节点设备和多个不同的水下传感器,所述水下骨干网络节点设备分别与各个所述水下传感器通过光纤通信进行通信连接,所述水下无人机器人与所述水下骨干网络节点设备通过可见光无线通信进行通信连接,所述方法包括:5. An underwater visible light communication method, characterized in that, based on an underwater visible light communication system, the underwater visible light communication system includes: an underwater unmanned robot, an underwater backbone network node device, and a plurality of different underwater sensors The underwater backbone network node device communicates with each of the underwater sensors through optical fiber communication, and the underwater unmanned robot communicates with the underwater backbone network node device through visible light wireless communication. Methods include: 所述水下骨干网络节点设备接收所述水下无人机器人发送的任务分配指令,并将所述任务分配指令转发至相应的水下传感器;The underwater backbone network node device receives the task allocation instruction sent by the underwater unmanned robot, and forwards the task allocation instruction to the corresponding underwater sensor; 所述水下骨干网络节点设备获取各个所述水下传感器采集的信息;The underwater backbone network node device acquires information collected by each of the underwater sensors; 所述水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人。When the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, it sends the information collected by each of the underwater sensors to the underwater unmanned robot. 6.根据权利要求5所述的方法,其特征在于,所述水下骨干网络节点设备获取各个所述水下传感器采集的信息包括:6. The method according to claim 5, wherein the acquisition of the underwater backbone network node equipment by the information collected by each of the underwater sensors comprises: 所述水下骨干网络节点设备定时获取各个所述水下传感器采集的信息。The underwater backbone network node device regularly acquires information collected by each of the underwater sensors. 7.根据权利要求5所述的方法,其特征在于,所述水下骨干网络节点设备接收所述水下无人机器人发送的任务分配指令的过程,包括:7. The method according to claim 5, wherein the process of receiving the task assignment instruction sent by the underwater unmanned robot by the underwater backbone network node device includes: 所述水下骨干网络节点设备接收表征所述任务分配指令的第一光信号;The underwater backbone network node device receives a first optical signal representing the task allocation instruction; 所述水下骨干网络节点设备将所述第一光信号转换为表征所述任务分配指令的电信号。The underwater backbone network node device converts the first optical signal into an electrical signal representing the task allocation instruction. 8.根据权利要求5所述的方法,其特征在于,所述水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将各个所述水下传感器采集的信息发送至所述水下无人机器人的过程,包括:8. The method according to claim 5, characterized in that, when the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, the information collected by each of the underwater sensors The process sent to the underwater unmanned robot includes: 所述水下骨干网络节点设备在接收到所述水下无人机器人发送的信息采集指令时,将表征各个所述水下传感器采集的信息的电信号转换为所述第三光信号;When the underwater backbone network node device receives the information collection instruction sent by the underwater unmanned robot, it converts the electrical signal representing the information collected by each of the underwater sensors into the third optical signal; 所述水下骨干网络节点设备将所述第三光信号发送至所述水下无人机器人。The underwater backbone network node device sends the third optical signal to the underwater unmanned robot.
CN201610049324.3A 2016-01-25 2016-01-25 A kind of underwater visible light communication system and method Active CN105634596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610049324.3A CN105634596B (en) 2016-01-25 2016-01-25 A kind of underwater visible light communication system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610049324.3A CN105634596B (en) 2016-01-25 2016-01-25 A kind of underwater visible light communication system and method

Publications (2)

Publication Number Publication Date
CN105634596A true CN105634596A (en) 2016-06-01
CN105634596B CN105634596B (en) 2018-05-18

Family

ID=56049189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610049324.3A Active CN105634596B (en) 2016-01-25 2016-01-25 A kind of underwater visible light communication system and method

Country Status (1)

Country Link
CN (1) CN105634596B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240244A (en) * 2017-07-11 2017-10-10 北京智芯微电子科技有限公司 A kind of passive data acquisition terminal, optical controller and system
CN107453811A (en) * 2017-08-23 2017-12-08 佛山市南海区广工大数控装备协同创新研究院 A kind of method of the unmanned plane collaboration SLAM based on photopic vision communication
CN107528634A (en) * 2017-09-06 2017-12-29 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Underwater blue light communicator and system, underwater moving target tracking
CN108196451A (en) * 2017-12-29 2018-06-22 中国电子科技集团公司信息科学研究院 A kind of bionical shoal of fish avoid-obstacle behavior control method
CN109100989A (en) * 2018-08-31 2018-12-28 深圳前海达闼云端智能科技有限公司 Robot control method, device, medium and electronic equipment
CN109471452A (en) * 2018-10-09 2019-03-15 国电南瑞科技股份有限公司 Remote engineering and geological disaster safety monitoring system and method based on UAV
CN109617606A (en) * 2018-12-18 2019-04-12 林育东 A kind of optical fiber bidirectional Transmission system adapting to marine environment
CN110113110A (en) * 2019-04-02 2019-08-09 南京邮电大学 Underwater visible light communication device
CN110127009A (en) * 2019-05-08 2019-08-16 北京航天控制仪器研究所 A kind of untetheredization communication submariner device
CN110510085A (en) * 2019-08-01 2019-11-29 华南理工大学 An underwater robot based on visible light communication
CN110581736A (en) * 2019-09-25 2019-12-17 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) Lightweight and long-distance underwater LED wireless optical communication transmission system
CN113285765A (en) * 2021-07-20 2021-08-20 深之蓝海洋科技股份有限公司 Underwater robot communication method, electronic equipment and underwater robot
CN114024602A (en) * 2021-11-18 2022-02-08 华中科技大学鄂州工业技术研究院 Underwater wireless optical communication system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773565A (en) * 2005-11-14 2006-05-17 浙江大学 Deep sea non-contact signal transmission device based on LED optical communication
EP2081053A2 (en) * 2008-01-18 2009-07-22 PGS Geophysical AS Sensor Cable and Multiplexed Telemetry System For Seismic Cables Having Redundant/Reversible Optical Connections
CN201994972U (en) * 2011-04-02 2011-09-28 山东省科学院海洋仪器仪表研究所 Node circuit control system for seafloor observation network
CN102933984A (en) * 2010-03-22 2013-02-13 Tgs地球物理(英国)有限公司 Sensor array
US20140341584A1 (en) * 2013-03-15 2014-11-20 Fairfield Industries Incorporated High-bandwidth underwater data communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773565A (en) * 2005-11-14 2006-05-17 浙江大学 Deep sea non-contact signal transmission device based on LED optical communication
EP2081053A2 (en) * 2008-01-18 2009-07-22 PGS Geophysical AS Sensor Cable and Multiplexed Telemetry System For Seismic Cables Having Redundant/Reversible Optical Connections
CN102933984A (en) * 2010-03-22 2013-02-13 Tgs地球物理(英国)有限公司 Sensor array
CN201994972U (en) * 2011-04-02 2011-09-28 山东省科学院海洋仪器仪表研究所 Node circuit control system for seafloor observation network
US20140341584A1 (en) * 2013-03-15 2014-11-20 Fairfield Industries Incorporated High-bandwidth underwater data communication system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240244A (en) * 2017-07-11 2017-10-10 北京智芯微电子科技有限公司 A kind of passive data acquisition terminal, optical controller and system
CN107453811A (en) * 2017-08-23 2017-12-08 佛山市南海区广工大数控装备协同创新研究院 A kind of method of the unmanned plane collaboration SLAM based on photopic vision communication
CN107528634A (en) * 2017-09-06 2017-12-29 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Underwater blue light communicator and system, underwater moving target tracking
CN108196451B (en) * 2017-12-29 2021-01-22 中国电子科技集团公司信息科学研究院 Bionic fish swarm obstacle avoidance behavior control method
CN108196451A (en) * 2017-12-29 2018-06-22 中国电子科技集团公司信息科学研究院 A kind of bionical shoal of fish avoid-obstacle behavior control method
CN109100989A (en) * 2018-08-31 2018-12-28 深圳前海达闼云端智能科技有限公司 Robot control method, device, medium and electronic equipment
CN109471452A (en) * 2018-10-09 2019-03-15 国电南瑞科技股份有限公司 Remote engineering and geological disaster safety monitoring system and method based on UAV
CN109617606A (en) * 2018-12-18 2019-04-12 林育东 A kind of optical fiber bidirectional Transmission system adapting to marine environment
CN110113110A (en) * 2019-04-02 2019-08-09 南京邮电大学 Underwater visible light communication device
CN110127009A (en) * 2019-05-08 2019-08-16 北京航天控制仪器研究所 A kind of untetheredization communication submariner device
CN110510085A (en) * 2019-08-01 2019-11-29 华南理工大学 An underwater robot based on visible light communication
CN110581736A (en) * 2019-09-25 2019-12-17 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) Lightweight and long-distance underwater LED wireless optical communication transmission system
CN110581736B (en) * 2019-09-25 2025-02-11 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) Lightweight and long-distance underwater LED wireless optical communication transmission system
CN113285765A (en) * 2021-07-20 2021-08-20 深之蓝海洋科技股份有限公司 Underwater robot communication method, electronic equipment and underwater robot
CN114024602A (en) * 2021-11-18 2022-02-08 华中科技大学鄂州工业技术研究院 Underwater wireless optical communication system and method

Also Published As

Publication number Publication date
CN105634596B (en) 2018-05-18

Similar Documents

Publication Publication Date Title
CN105634596B (en) A kind of underwater visible light communication system and method
US10778342B2 (en) High-bandwidth underwater data communication system
US10341032B2 (en) High-bandwidth underwater data communication system
CN105515680B (en) Underwater Internet of things system based on blue-ray LED visible light communication
CN203705864U (en) Photoelectric switch for object detection
CN205693676U (en) An LED-based wireless optical access network device
CN105553570B (en) A kind of Transmission system based on underwater visible light communication
CN208433972U (en) A kind of 25G 40km SFP+ optical module
CN205490560U (en) Underwater IoT system based on blue LED visible light communication
WO2021234576A1 (en) Autonomous mining system based on real-time digital video communication that uses ethernet and optical technologies
CN206733013U (en) A kind of Intelligent Mobile Robot for possessing redundant communication paths
CN104410451A (en) Broadband optical fiber transmission method and device in dual-end high-temperature environment
CN202661648U (en) Meteorological monitoring system based on white LED (Light Emitting Diode) device
CN104320193B (en) A kind of asymmetric wideband optical fiber transmission method and device for single-ended hot environment
CN210225420U (en) Underwater photoelectric communication system based on LED
CN204481815U (en) A kind of novel optical fiber transducer
Spoorthi et al. Aquastream Integrated Communication System
CN113132021A (en) Underwater audio optical communication system and method with direction sensing auxiliary function
CN116436525A (en) Cross-medium optical communication device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant