CN105631440B - 一种易受伤害道路使用者的联合检测方法 - Google Patents
一种易受伤害道路使用者的联合检测方法 Download PDFInfo
- Publication number
- CN105631440B CN105631440B CN201610095187.7A CN201610095187A CN105631440B CN 105631440 B CN105631440 B CN 105631440B CN 201610095187 A CN201610095187 A CN 201610095187A CN 105631440 B CN105631440 B CN 105631440B
- Authority
- CN
- China
- Prior art keywords
- target
- training
- detection
- road user
- vulnerable road
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610095187.7A CN105631440B (zh) | 2016-02-22 | 2016-02-22 | 一种易受伤害道路使用者的联合检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610095187.7A CN105631440B (zh) | 2016-02-22 | 2016-02-22 | 一种易受伤害道路使用者的联合检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105631440A CN105631440A (zh) | 2016-06-01 |
CN105631440B true CN105631440B (zh) | 2019-01-22 |
Family
ID=56046353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610095187.7A Active CN105631440B (zh) | 2016-02-22 | 2016-02-22 | 一种易受伤害道路使用者的联合检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105631440B (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106372571A (zh) * | 2016-08-18 | 2017-02-01 | 宁波傲视智绘光电科技有限公司 | 路面交通标志检测与识别方法 |
CN106446914A (zh) * | 2016-09-28 | 2017-02-22 | 天津工业大学 | 基于超像素和卷积神经网络的道路检测 |
CN106650647A (zh) * | 2016-12-09 | 2017-05-10 | 开易(深圳)科技有限公司 | 基于传统算法和深度学习算法级联的车辆检测方法及系统 |
CN107688819A (zh) * | 2017-02-16 | 2018-02-13 | 平安科技(深圳)有限公司 | 车辆的识别方法及装置 |
CN107170443A (zh) * | 2017-05-12 | 2017-09-15 | 北京理工大学 | 一种模型训练层AdaBoost算法的参数优化方法 |
CN107491762B (zh) * | 2017-08-23 | 2018-05-15 | 珠海安联锐视科技股份有限公司 | 一种行人检测方法 |
CN111527013B (zh) * | 2017-12-27 | 2024-02-23 | 宝马股份公司 | 车辆变道预测 |
CN108875537B (zh) * | 2018-02-28 | 2022-11-08 | 北京旷视科技有限公司 | 对象检测方法、装置和系统及存储介质 |
CN108491889A (zh) * | 2018-04-02 | 2018-09-04 | 深圳市易成自动驾驶技术有限公司 | 图像语义分割方法、装置及计算机可读存储介质 |
CN108664953B (zh) * | 2018-05-23 | 2021-06-08 | 清华大学 | 一种基于卷积自编码器模型的图像特征提取方法 |
CN108710920B (zh) * | 2018-06-05 | 2021-05-14 | 北京中油瑞飞信息技术有限责任公司 | 示功图识别方法及装置 |
CN109086716A (zh) * | 2018-08-01 | 2018-12-25 | 北京嘀嘀无限科技发展有限公司 | 一种安全带佩戴检测的方法及装置 |
CN109447943B (zh) * | 2018-09-21 | 2020-08-14 | 中国科学院深圳先进技术研究院 | 一种目标检测方法、系统及终端设备 |
CN110956069B (zh) * | 2019-05-30 | 2022-06-21 | 魔门塔(苏州)科技有限公司 | 一种行人3d位置的检测方法及装置、车载终端 |
CN110570338A (zh) * | 2019-09-06 | 2019-12-13 | 广州亚鼎信息科技有限公司 | 一种高速公路在线培训考核平台 |
CN111210484B (zh) * | 2019-12-31 | 2024-04-19 | 上海联影智能医疗科技有限公司 | 医学图像生成方法、模型训练方法、装置及介质 |
CN113743488B (zh) * | 2021-08-24 | 2023-09-19 | 江门职业技术学院 | 基于平行车联网的车辆监控方法、装置、设备及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103745196A (zh) * | 2013-12-27 | 2014-04-23 | 东软集团股份有限公司 | 广义行人检测方法和装置 |
CN103886279A (zh) * | 2012-12-21 | 2014-06-25 | 本田技研工业株式会社 | 使用合成训练数据的实时骑车人检测 |
-
2016
- 2016-02-22 CN CN201610095187.7A patent/CN105631440B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103886279A (zh) * | 2012-12-21 | 2014-06-25 | 本田技研工业株式会社 | 使用合成训练数据的实时骑车人检测 |
CN103745196A (zh) * | 2013-12-27 | 2014-04-23 | 东软集团股份有限公司 | 广义行人检测方法和装置 |
Non-Patent Citations (2)
Title |
---|
3D Object Proposals for Accurate Object Class Detection;Xiaozhi Chen et al;《NIPS’15 proceedings of 28th international conference on neural information processing systems》;20151212;第1卷;第424-432页 |
Pedestrian Detection with Deep Convolutional Neural Network;Xiaogang Chen et al;《ACCV 2014 Workshops》;20151231;第354-365页 |
Also Published As
Publication number | Publication date |
---|---|
CN105631440A (zh) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105631440B (zh) | 一种易受伤害道路使用者的联合检测方法 | |
Li et al. | A unified framework for concurrent pedestrian and cyclist detection | |
Jiang et al. | Object detection from UAV thermal infrared images and videos using YOLO models | |
Saleh et al. | Cyclist detection in lidar scans using faster r-cnn and synthetic depth images | |
Leng et al. | Robust obstacle detection and recognition for driver assistance systems | |
Keller et al. | The benefits of dense stereo for pedestrian detection | |
CN110008913A (zh) | 基于姿态估计与视点机制融合的行人再识别方法 | |
CN105404886A (zh) | 特征模型生成方法和特征模型生成装置 | |
CN103886279B (zh) | 使用合成训练数据的实时骑车人检测 | |
Zhang et al. | Weakly aligned feature fusion for multimodal object detection | |
Zhao et al. | Weather recognition via classification labels and weather-cue maps | |
Wang et al. | Multi-sensor fusion technology for 3D object detection in autonomous driving: A review | |
Lu et al. | A cross-scale and illumination invariance-based model for robust object detection in traffic surveillance scenarios | |
CN111476167B (zh) | 一种基于“学生-t”分布辅助的一阶段方向遥感图像目标检测方法 | |
CN118155183A (zh) | 一种深度多模态感知的非结构化场景自动驾驶网络架构方法 | |
Zheng et al. | OERFF: A vehicle re-identification method based on orientation estimation and regional feature fusion | |
Nandhini et al. | Transfer learning based SSD model for helmet and multiple rider detection | |
Manoharan et al. | Image processing-based framework for continuous lane recognition in mountainous roads for driver assistance system | |
He et al. | High accuracy intelligent real-time framework for detecting infant drowning based on deep learning | |
CN117523612A (zh) | 一种基于Yolov5网络的密集行人检测方法 | |
Dai et al. | Deeply supervised Z-style residual network devotes to real-time environment perception for autonomous driving | |
CN115601396A (zh) | 一种基于深度特征和关键点匹配的红外目标跟踪方法 | |
Górska et al. | Pedestrian detection in low-resolution thermal images | |
Yang et al. | Research on Target Detection Algorithm for Complex Scenes | |
Liu | Application development and technical analysis of rider helmet wearing monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Keqiang Inventor after: Li Xiaofei Inventor after: Wang Jianqiang Inventor after: Xu Qing Inventor after: Wang Xiao Inventor after: Xiong Hui Inventor after: Wang Lei Inventor after: Kong Zhouwei Inventor before: Li Keqiang Inventor before: Li Xiaofei Inventor before: Wang Jianqiang Inventor before: Xu Qing Inventor before: Wang Xiao Inventor before: Xiong Hui Inventor before: Kong Zhouwei |
|
COR | Change of bibliographic data | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20170504 Address after: 100084 Beijing City, Haidian District Tsinghua Yuan Applicant after: Tsinghua University Applicant after: Chongqing Changan Automobile Co., Ltd. Address before: 100084 Beijing City, Haidian District Tsinghua Yuan Applicant before: Tsinghua University |
|
GR01 | Patent grant | ||
GR01 | Patent grant |