CN105631234B - A kind of momenttum wheel disturbance response appraisal procedure - Google Patents

A kind of momenttum wheel disturbance response appraisal procedure Download PDF

Info

Publication number
CN105631234B
CN105631234B CN201610121944.3A CN201610121944A CN105631234B CN 105631234 B CN105631234 B CN 105631234B CN 201610121944 A CN201610121944 A CN 201610121944A CN 105631234 B CN105631234 B CN 105631234B
Authority
CN
China
Prior art keywords
mrow
mtd
mtr
msub
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610121944.3A
Other languages
Chinese (zh)
Other versions
CN105631234A (en
Inventor
王泽宇
邹元杰
庞世伟
张志娟
朱卫红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Spacecraft System Engineering
Original Assignee
Beijing Institute of Spacecraft System Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Spacecraft System Engineering filed Critical Beijing Institute of Spacecraft System Engineering
Priority to CN201610121944.3A priority Critical patent/CN105631234B/en
Publication of CN105631234A publication Critical patent/CN105631234A/en
Application granted granted Critical
Publication of CN105631234B publication Critical patent/CN105631234B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Abstract

The invention discloses a kind of momenttum wheel disturbance response appraisal procedure, phase difference between power and torque is considered as stochastic variable, convolution is carried out by constructing the transmission function specified and white noise, and in the force vector time series of acquisition, the phase difference of power and torque contains all situations about being likely to occur.All amplitudes being likely to occur are contained using this force vector as excitation, the response time sequence of acquisition.As soon as by time response analysis, this method can obtain the extreme value of response, this is significantly to the technical risk for reducing the assessment of momenttum wheel disturbance response.

Description

A kind of momenttum wheel disturbance response appraisal procedure
Technical field
The present invention relates to momenttum wheel technical field, more particularly to a kind of momenttum wheel disturbance response appraisal procedure.
Background technology
Static unbalance and unbalance dynamic are the main reason for causing momenttum wheel to disturb.Quiet, unbalance dynamic coefficient only can be true Determine perturbed force, the amplitude of torque, it is impossible to the phase difference between perturbed force, torque is determined, if ignoring this phase difference carries out disturbance point Analysis, the result of calculating must be not conservative.
In order to conservatively analyze the influence that momenttum wheel disturbance produces, the method used at present is repeatedly to be calculated, Different phase differences are set between perturbed force and disturbing moment when calculating every time, by the momenttum wheel the most of the maximum in result of calculation The maximum of disturbing influence.This method is computationally intensive, and is easily subject to the interference of human factor and cannot obtain possible influence As a result maximum, the analysis and evaluation to response bring certain risk.
The content of the invention
In view of this, the present invention provides a kind of momenttum wheel disturbance response appraisal procedure, momenttum wheel disturbance can be reduced and rung The technical risk that should be assessed.
A kind of momenttum wheel disturbance response appraisal procedure, includes the following steps:
Step 1:Random generation white Gaussian noise time series N respectively1(t) and N2(t);
Step 2: impulse response function time series is generated respectively using quiet, the unbalance dynamic parameter of momenttum wheel:
If CstaFor momenttum wheel static unbalance parameter, CdynFor momenttum wheel unbalance dynamic parameter, Ω is momentum wheel speed, pulse The time series of receptance function is fitted using equation below:
Wherein:
Wherein,
Wherein,
Wherein,
Wherein,
ζsd=0.01
Step 3: the white noise that the time series for the impulse response function that step 2 is obtained is obtained with step 1 is rolled up Product, finally obtains the noisy data of momenttum wheel:
Wherein Fsx(t)、Fsy(t) it is the perturbed force of momenttum wheel, Mdx(t)、Mdy(t) it is the disturbing moment of momenttum wheel;τ is product Variation per minute;
Step 4: by force vectorAs the input of time domain disturbance response, it is applied on momenttum wheel, obtains momentum The response of wheel exports, and the maximum exported using response is quiet to momenttum wheel, unbalance dynamic disturbance response is assessed.
Displacement time domain response in wherein described response output is obtained according to duhamel integral formula:
Wherein,For the time domain response sequence of output, For the impulse response function matrix of momenttum wheel, n is the dimension of matrix H (t).
The present invention has the advantages that:
Phase difference between power and torque is considered as stochastic variable by the present invention, by constructing the transmission function specified and white noise Sound carries out convolution, and in the force vector time series of acquisition, the phase difference of power and torque contains all situations about being likely to occur.Will This force vector contains all amplitudes being likely to occur as excitation, the response time sequence of acquisition.By a response analysis, This method can just obtain the extreme value of response, this is significantly to the technical risk for reducing the assessment of momenttum wheel disturbance response.
Brief description of the drawings
Fig. 1 is the momenttum wheel disturbance response appraisal procedure flow chart of the present invention.
Fig. 2 is the momenttum wheel coordinate system schematic diagram of the present invention.
Embodiment
The present invention will now be described in detail with reference to the accompanying drawings and examples.
A kind of momenttum wheel disturbance response appraisal procedure of the present invention, as shown in Figure 1, specifically comprising the following steps:
(1) white Gaussian noise time series is generated;
The generation method of white Gaussian noise has a variety of, does not list specifically here.
(2) impulse response function time series is generated respectively using quiet, the unbalance dynamic parameter of momenttum wheel;
If CstaFor momenttum wheel static unbalance parameter, CdynFor momenttum wheel unbalance dynamic parameter, Ω is momentum wheel speed, pulse The time series of receptance function is fitted using equation below.
Wherein
Wherein,
Wherein,
Wherein,
Wherein,
ζsd=0.01.
(3) time series of impulse response function carries out convolution with white noise, finally obtains the noisy data of momenttum wheel.
Wherein, τ is integration variable;Fsx(t)、Fsy(t) it is the perturbed force of momenttum wheel, the two direction and momenttum wheel coordinate system X, Y-axis is parallel;Mdx(t)、Mdy(t) it is parallel with momenttum wheel coordinate system X, Y-axis for the disturbing moment of momenttum wheel, the two direction;N1 (t)、N2(t) white Gaussian noise independently to produce.
(4) force vectorThe maximum conduct in analysis result can be taken directly as the input of time domain disturbance response Momenttum wheel is quiet, the upper limit of unbalance dynamic disturbance response.Displacement time domain response can be calculated according to duhamel integral formula:
Wherein,For time domain response sequence,For structure Impulse response function matrix, n be matrix H (t) dimension,For vector.The upper limit of disturbance response is time domain Response sequence maximum max (abs (X (t))), for momenttum wheel is quiet, unbalance dynamic disturbance response is assessed.
In conclusion the foregoing is merely a prefered embodiment of the invention, it is not intended to limit the scope of the present invention. Within the spirit and principles of the invention, any modification, equivalent replacement, improvement and so on, should be included in the present invention's Within protection domain.

Claims (2)

1. a kind of momenttum wheel disturbance response appraisal procedure, it is characterised in that include the following steps:
Step 1:Random generation white Gaussian noise time series N respectively1(t) and N2(t);
Step 2: impulse response function time series is generated respectively using quiet, the unbalance dynamic parameter of momenttum wheel:
If CstaFor momenttum wheel static unbalance parameter, CdynFor momenttum wheel unbalance dynamic parameter, Ω is momentum wheel speed, impulse response The time series of function is fitted using equation below:
Wherein:
Wherein,
Wherein,
Wherein,
Wherein,
ζsd=0.01
Step 3: the white noise that the time series for the impulse response function that step 2 is obtained is obtained with step 1 carries out convolution, Finally obtain the noisy data of momenttum wheel:
<mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>s</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>s</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mi>d</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>s</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mi>d</mi> <mi>&amp;tau;</mi> </mrow>
Wherein Fsx(t)、Fsy(t) it is the perturbed force of momenttum wheel, Mdx(t)、Mdy(t) it is the disturbing moment of momenttum wheel;τ becomes for integration Amount;
Step 4: by force vectorAs the input of time domain disturbance response, it is applied on momenttum wheel, obtains momenttum wheel Response exports, and the maximum exported using response is quiet to momenttum wheel, unbalance dynamic disturbance response is assessed.
A kind of 2. momenttum wheel disturbance response appraisal procedure as claimed in claim 1, it is characterised in that wherein described response output In displacement time domain response according to duhamel integral formula obtain:
<mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mrow> <mo>+</mo> <mi>&amp;infin;</mi> </mrow> </msubsup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mn>13</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mn>14</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>4</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> <mtd> <mtable> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mn>4</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>s</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>s</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mi>d</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>d</mi> <mi>&amp;tau;</mi> </mrow>
Wherein,For the time domain response sequence of output, For the impulse response function matrix of momenttum wheel, n is the dimension of matrix H (t).
CN201610121944.3A 2016-03-03 2016-03-03 A kind of momenttum wheel disturbance response appraisal procedure Active CN105631234B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610121944.3A CN105631234B (en) 2016-03-03 2016-03-03 A kind of momenttum wheel disturbance response appraisal procedure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610121944.3A CN105631234B (en) 2016-03-03 2016-03-03 A kind of momenttum wheel disturbance response appraisal procedure

Publications (2)

Publication Number Publication Date
CN105631234A CN105631234A (en) 2016-06-01
CN105631234B true CN105631234B (en) 2018-05-04

Family

ID=56046163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610121944.3A Active CN105631234B (en) 2016-03-03 2016-03-03 A kind of momenttum wheel disturbance response appraisal procedure

Country Status (1)

Country Link
CN (1) CN105631234B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341750B1 (en) * 2000-05-03 2002-01-29 Space Systems/Loral, Inc. Spacecraft motion estimation using a gimballed momentum wheel
CN102540900A (en) * 2012-01-09 2012-07-04 北京航空航天大学 High-precision control method for inertia momentum wheel
CN103235509A (en) * 2013-03-29 2013-08-07 北京控制工程研究所 Rotating member disturbance compensation method based on momentum wheel
CN104732071A (en) * 2015-03-03 2015-06-24 北京空间飞行器总体设计部 Method for obtaining coupling dynamic response of momentum wheel and spacecraft structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341750B1 (en) * 2000-05-03 2002-01-29 Space Systems/Loral, Inc. Spacecraft motion estimation using a gimballed momentum wheel
CN102540900A (en) * 2012-01-09 2012-07-04 北京航空航天大学 High-precision control method for inertia momentum wheel
CN103235509A (en) * 2013-03-29 2013-08-07 北京控制工程研究所 Rotating member disturbance compensation method based on momentum wheel
CN104732071A (en) * 2015-03-03 2015-06-24 北京空间飞行器总体设计部 Method for obtaining coupling dynamic response of momentum wheel and spacecraft structure

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Dynamic interaction of rotating momentum wheels with spacecraft elements;S.Shankar Narayan et al;《Journal of Sound and Vibration》;20080909;第315卷;第970-984页 *
Reaction Wheel Disturbance Reduction Mehtod Using Disturbance Measurement Table;Dong-Ik Cheon et al;《Journal of Astronomy and Space Sciences》;20111215;第28卷(第4期);第311-317页 *
基于干扰观测器的惯性动量轮高精度控制;张聪等;《北京航空航天大学学报》;20130131;第39卷(第1期);第52-56页 *
航天器微振动稳态时域响应分析方法;邹元杰等;《航天器工程》;20121231;第21卷(第6期);第37-42页 *
资源一号卫星CCD相机扰动响应分析;刘天雄等;《航天器工程》;20050331;第14卷(第1期);第33-38页 *

Also Published As

Publication number Publication date
CN105631234A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
CN103246890B (en) Modal Parameters Identification based on multi-input multi-output signal noise reduction
CN104518722B (en) The torque compensation control system and its torque compensation control method of synchronous motor
CN102023010A (en) MEMS (micro-electromechanical system)-based wavelet field multisensor information fusion system and fusion method
CN101154384A (en) Sound signal correcting method, sound signal correcting apparatus and computer program
CN110794170B (en) Method for identifying parameters of two-degree-of-freedom dynamic model of accelerometer
Kojima et al. Critical double impulse input and bound of earthquake input energy to building structure
CN103218482A (en) Estimation method for uncertain parameters in dynamic system
CN109871824A (en) The multi-modal separation method of supersonic guide-wave and its system based on management loading
CN105631234B (en) A kind of momenttum wheel disturbance response appraisal procedure
CN105093280A (en) Method of decomposing low frequency and high frequency components of surface layer model influencing earthquake data
US10387116B2 (en) System identification device
JP2012533470A (en) Method, computer program product, and warning device for providing a pilot warning signal to an aircraft pilot
CN106980722B (en) Method for detecting and removing harmonic component in impulse response
Holland et al. Measurement point selection and modal damping identification for bladed disks
US9102421B2 (en) Attitude control device for space station with system parameter uncertainties and on-orbit dynamic disturbances
CN104765476A (en) Handwriting track generating method and device
CN106679659A (en) Signal denoising method based on parameter-adjustable nonlinear track differentiator
CN110672127A (en) Real-time calibration method for array type MEMS magnetic sensor
CN106597022B (en) A kind of accelerometer dynamic model parameters discrimination method based on all phase Power estimation
CN106768260B (en) It can inhibit the vibration signal maximum power frequency component real time detection algorithm of direct current disturbance
Antunes et al. On using the Hilbert transform for blind identification of complex modes: a practical approach
Stout et al. Nonlinear propagation of shaped supersonic signatures through turbulence
CN112014811B (en) Fine estimation method for radar carrier frequency
Langthjem et al. Numerical study of the hole-tone feedback cycle based on an axisymmetric formulation
Ionescu et al. The transfer function analyzer revisited

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant