CN105629206B - The sane space-time Beamforming Method of airborne radar and system under steering vector mismatch - Google Patents
The sane space-time Beamforming Method of airborne radar and system under steering vector mismatch Download PDFInfo
- Publication number
- CN105629206B CN105629206B CN201610122010.1A CN201610122010A CN105629206B CN 105629206 B CN105629206 B CN 105629206B CN 201610122010 A CN201610122010 A CN 201610122010A CN 105629206 B CN105629206 B CN 105629206B
- Authority
- CN
- China
- Prior art keywords
- mrow
- space
- msub
- steering vector
- echo signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013598 vector Substances 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000011159 matrix material Substances 0.000 claims abstract description 51
- 230000000295 complement effect Effects 0.000 claims description 18
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 230000001629 suppression Effects 0.000 claims description 3
- HOWHQWFXSLOJEF-MGZLOUMQSA-N systemin Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]2N(CCC2)C(=O)[C@H]2N(CCC2)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)C(C)C)CCC1 HOWHQWFXSLOJEF-MGZLOUMQSA-N 0.000 claims 1
- 108010050014 systemin Proteins 0.000 claims 1
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- 230000010354 integration Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/2813—Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明提供了导向矢量失配下的机载雷达稳健空时波束形成方法及系统,方法包括:初始化机载平台的飞行高度、速度及目标回波信号的到达角,并确定雷达回波信号的多普勒频率;建立阵列天线的接收信号模型,并根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵;根据空时积分协方差矩阵,确定杂波加噪声子空间;建立导向矢量估计器的目标函数和约束条件,并根据半定规划松弛法求解得到目标回波信号的实际导向矢量;根据最小方差无失真方法,获取阵列天线的权值系数。本发明能够获得期望目标导向矢量的最优估计值,使波束形成器在成功抑制杂波并只在期望目标方向形成波束,避免对噪声功率放大,从而扩大波束形成器的输出信干噪比。
The present invention provides a method and system for airborne radar robust space-time beamforming under steering vector mismatch. The method includes: initializing the flight altitude and speed of the airborne platform and the angle of arrival of the target echo signal, and determining the multiplicity of the radar echo signal. Puler frequency; establish the receiving signal model of the array antenna, and construct the space-time integral covariance matrix according to the estimated value of the radar echo signal arrival angle and Doppler frequency; according to the space-time integral covariance matrix, determine the clutter plus noise Space; establish the objective function and constraint conditions of the steering vector estimator, and obtain the actual steering vector of the target echo signal by solving it according to the semidefinite programming relaxation method; obtain the weight coefficient of the array antenna according to the minimum variance undistorted method. The invention can obtain the optimal estimated value of the steering vector of the desired target, so that the beamformer successfully suppresses the clutter and only forms the beam in the direction of the desired target, avoiding the amplification of noise power, thereby enlarging the output signal-to-interference-noise ratio of the beamformer.
Description
技术领域technical field
本发明涉及阵列天线和机载雷达技术领域,尤其涉及导向矢量失配下的机载雷达稳健空时波束形成方法及系统。The invention relates to the technical field of array antennas and airborne radars, in particular to a robust space-time beamforming method and system for airborne radars under steering vector mismatch.
背景技术Background technique
机载雷达的主要任务是在复杂的背景环境下识别并跟踪期望目标,因此,需要在地杂波处形成零陷,在目标处形成波束。由于载机平台的运动,机载相控阵雷达的地杂波谱在多普勒频域上表现出主杂波展宽的特点。此外,该地杂波谱在空间域和时间域上存在耦合关系。传统的时域或空域滤波器均不能够形成与地杂波相匹配的凹口。空时自适应处理(Space-Time Adaptive Processing,STAP)技术能够从空域、时域二维联合抑制地杂波,使得其被广泛应用到机载雷达对地面运动目标检测中。STAP同时具有空间和时间自由度,能够在空间谱和多普勒频域谱平面上形成凹口,有效地抑制地杂波,同时增强目标信号方向处的增益。然而,当雷达回波信号的入射角度和多普勒频率估计存在偏差时,STAP的输出信杂噪比(signal-to-clutter-plus-noise ratio,SCNR)性能将严重下降。The main task of airborne radar is to identify and track the desired target in a complex background environment. Therefore, it is necessary to form a null at the ground clutter and form a beam at the target. Due to the movement of the airborne platform, the ground clutter spectrum of the airborne phased array radar shows the characteristics of main clutter broadening in the Doppler frequency domain. In addition, the ground clutter spectrum has a coupling relationship in the space domain and the time domain. Neither conventional time-domain nor space-domain filters are capable of forming a notch that matches ground clutter. Space-Time Adaptive Processing (STAP) technology can jointly suppress ground clutter from two-dimensional airspace and time domain, making it widely used in the detection of ground moving targets by airborne radar. STAP has both space and time degrees of freedom, and can form a notch on the spatial spectrum and Doppler frequency domain spectrum plane to effectively suppress ground clutter while enhancing the gain in the direction of the target signal. However, the output signal-to-clutter-plus-noise ratio (SCNR) performance of STAP will be severely degraded when there is a deviation between the incident angle of the radar echo signal and the Doppler frequency estimate.
针对上述问题,目前常用的稳健自适应波束形成方法有基于不确定集约束和基于幅值响应约束方法。基于不确定集约束的思想是由Vorobyov S A和Gershman A B等学者所提出的。该类算法基于模约束和不确定集约束的思想,并且利用最差性能最优准则实现对波束形成算法性能的最大改善。基于不确定集约束类的稳健波束形成算法需要知道期望导向矢量误差的范数边界或者与该误差相关的对称正定矩阵等参数,这些参数直接影响着波束形成器的性能。而在实际中,这些参数不易准确求得。基于幅值响应约束的思想是由Yu ZL和Er M H等学者提出来的。基于幅值响应约束的稳健波束形成算法由于增加了主波束宽度,约束角度区间的噪声将被大接收,且干扰接近主波束的概率也变大,从而导致输出信干噪比(signal-to-interference-plus-noise ratio,SINR)降低。To solve the above problems, the commonly used robust adaptive beamforming methods are methods based on uncertain set constraints and methods based on amplitude response constraints. The idea based on uncertain set constraints was proposed by scholars such as Vorobyov S A and Gershman A B. This type of algorithm is based on the ideas of modulus constraints and uncertain set constraints, and uses the worst performance optimal criterion to achieve the maximum improvement on the performance of beamforming algorithms. Robust beamforming algorithms based on uncertain set constraints need to know parameters such as the norm boundary of the expected steering vector error or the symmetric positive definite matrix related to the error, and these parameters directly affect the performance of the beamformer. However, in practice, these parameters are not easy to obtain accurately. The idea based on amplitude response constraints was proposed by scholars such as Yu ZL and Er M H. The robust beamforming algorithm based on the amplitude response constraint increases the main beam width, the noise in the constrained angle interval will be greatly received, and the probability of interference close to the main beam will also increase, resulting in an output signal-to-noise ratio (SINR). interference-plus-noise ratio, SINR) decreased.
基于不确定集约束类的稳健波束形成算法需要知道期望导向矢量误差的范数边界或者与该误差相关的对称正定矩阵等参数,这些参数直接影响着波束形成器的性能。而在实际中,这些参数不易准确求得。基于幅值响应约束的稳健波束形成算法由于增加了主波束宽度,约束角度区间的噪声将被大接收,且干扰接近主波束的概率也变大,从而导致输出SINR降低。Robust beamforming algorithms based on uncertain set constraints need to know parameters such as the norm boundary of the expected steering vector error or the symmetric positive definite matrix related to the error, and these parameters directly affect the performance of the beamformer. However, in practice, these parameters are not easy to obtain accurately. The robust beamforming algorithm based on the amplitude response constraint increases the main beam width, the noise in the constrained angle interval will be received greatly, and the probability of interference approaching the main beam will also increase, resulting in a decrease in the output SINR.
因此,现有技术还有待改进和发展。Therefore, the prior art still needs to be improved and developed.
发明内容Contents of the invention
鉴于上述现有技术的不足之处,本发明的目的在于提供导向矢量失配下的机载雷达稳健空时波束形成方法及系统,旨在解决现有技术中当雷达回波信号的入射角度和多普勒频率估计存在偏差时,STAP的输出信杂噪比性能将严重下降的问题。In view of the deficiencies in the prior art above, the purpose of the present invention is to provide a robust space-time beamforming method and system for airborne radar under mismatched steering vectors, aiming at solving the problem of the incident angle and multiplicity of radar echo signals in the prior art. When there is a deviation in the Puler frequency estimation, the output signal-to-noise ratio performance of STAP will be severely degraded.
为了达到上述目的,本发明采取了以下技术方案:In order to achieve the above object, the present invention has taken the following technical solutions:
一种导向矢量失配下的机载雷达稳健空时波束形成方法,其中,所述方法包括以下步骤:A method for airborne radar robust space-time beamforming under steering vector mismatch, wherein the method comprises the following steps:
A、初始化机载平台的飞行高度、速度及目标回波信号的到达角,并确定雷达回波信号的多普勒频率;A. Initialize the flight altitude and speed of the airborne platform and the angle of arrival of the target echo signal, and determine the Doppler frequency of the radar echo signal;
B、建立阵列天线的接收信号模型,并根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵;B. Establish the receiving signal model of the array antenna, and construct the space-time integral covariance matrix according to the estimated value of the radar echo signal arrival angle and Doppler frequency;
C、根据空时积分协方差矩阵,确定杂波加噪声子空间;C. Determine the clutter plus noise subspace according to the space-time integral covariance matrix;
D、建立导向矢量估计器的目标函数和约束条件,并根据半定规划松弛法求解得到目标回波信号的实际导向矢量;D. Establish the objective function and constraint conditions of the steering vector estimator, and obtain the actual steering vector of the target echo signal by solving according to the semi-definite programming relaxation method;
E、根据最小方差无失真方法,获取阵列天线的权值系数。E. Obtain the weight coefficients of the array antenna according to the minimum variance and distortion-free method.
所述导向矢量失配下的机载雷达稳健空时波束形成方法,其中,所述步骤B具体包括:The airborne radar robust space-time beamforming method under the steering vector mismatch, wherein the step B specifically includes:
B1、建立阵列天线接收信号模型x(t)=ast(θ0,fd0)s(t)+ncn(t);其中,s(t)为期望目标的回波信号,ast(θ0,fd0)为空时导向矢量,ncn(t)为地杂波信号加空间白噪声;B1. Establish an array antenna receiving signal model x(t)= ast (θ 0 , f d0 )s(t)+n cn (t); where, s(t) is the echo signal of the desired target, and a st ( θ 0 , f d0 ) is the space-time steering vector, n cn (t) is ground clutter signal plus space white noise;
B2、记回波信号到达角位于的空间角度区间为Θ,多普勒频率区间为F,则根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵为 B2, note that the space angle interval where the echo signal angle of arrival is located is Θ, and the Doppler frequency interval is F, then construct the space-time integral covariance matrix according to the estimated value of the radar echo signal angle of arrival and Doppler frequency as
所述导向矢量失配下的机载雷达稳健空时波束形成方法,其中,所述步骤C具体包括:The airborne radar robust space-time beamforming method under the steering vector mismatch, wherein the step C specifically includes:
C1、对空时积分协方差矩阵为进行特征值分解得到信号子空间E;其中E=[e1 e2 … eP],ei是第i个主特征值所对应的主特征向量,i的取值范围是[1,2,P],且i为整数,P为主特征值的个数;C1. The space-time integral covariance matrix is Perform eigenvalue decomposition to obtain the signal subspace E; where E=[e 1 e 2 ... e P ], e i is the main eigenvector corresponding to the i-th main eigenvalue, and the value range of i is [1, 2, P], and i is an integer, and P is the number of main eigenvalues;
C2、根据信号子空间E,得到其正交补空间且其中,ast0为期望目标回波信号的实际导向矢量,为杂波加噪声子空间。C2. According to the signal subspace E, obtain its orthogonal complement space and Among them, ast0 is the actual steering vector of the expected target echo signal, is the clutter-plus-noise subspace.
所述导向矢量失配下的机载雷达稳健空时波束形成方法,其中,所述步骤D具体包括:The airborne radar robust space-time beamforming method under the steering vector mismatch, wherein, the step D specifically includes:
D1、根据波束形成器抑制杂波和噪声之后的输出功率及最大化期望信号输出功率准则,确定导向矢量估计器的目标函数和约束条件为:D1. Output power after suppressing clutter and noise according to the beamformer And maximize the expected signal output power criterion, determine the objective function and constraints of the steering vector estimator as:
其中为F的补集,为Θ的补集,N为雷达天线阵元数目,M为每个天线阵元发射脉冲数目,K为对回波信号的采样快拍数目;in is the complement of F, is the complement of Θ, N is the number of radar antenna elements, M is the number of pulses transmitted by each antenna element, K is the number of sampling snapshots of the echo signal;
D2、根据半定规划松弛法求解得到目标回波信号的实际导向矢量 D2. According to the semi-definite programming relaxation method, the actual steering vector of the target echo signal is obtained
所述导向矢量失配下的机载雷达稳健空时波束形成方法,其中,所述步骤E中根据得出阵列天线的权值系数 The airborne radar robust space-time beamforming method under the steering vector mismatch, wherein, in the step E according to Get the weight coefficient of the array antenna
一种导向矢量失配下的机载雷达稳健空时波束形成系统,其中,包括:An airborne radar robust space-time beamforming system under steering vector mismatch, including:
初始化模块,用于初始化机载平台的飞行高度、速度及目标回波信号的到达角,并确定雷达回波信号的多普勒频率;The initialization module is used to initialize the flying height and speed of the airborne platform and the angle of arrival of the target echo signal, and determine the Doppler frequency of the radar echo signal;
矩阵构建模块,用于建立阵列天线的接收信号模型,并根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵;The matrix construction module is used to establish the receiving signal model of the array antenna, and constructs the space-time integral covariance matrix according to the estimated value of the arrival angle of the radar echo signal and the Doppler frequency;
子空间获取模块,用于根据空时积分协方差矩阵,确定杂波加噪声子空间;The subspace acquisition module is used to determine the clutter plus noise subspace according to the space-time integral covariance matrix;
导向矢量获取模块,用于建立导向矢量估计器的目标函数和约束条件,并根据半定规划松弛法求解得到目标回波信号的实际导向矢量;The steering vector acquisition module is used to establish the objective function and constraint conditions of the steering vector estimator, and solve the actual steering vector of the target echo signal according to the semi-definite programming relaxation method;
权值系数获取模块,用于根据最小方差无失真方法,获取阵列天线的权值系数。The weight coefficient obtaining module is used to obtain the weight coefficient of the array antenna according to the minimum variance non-distortion method.
所述导向矢量失配下的机载雷达稳健空时波束形成系统,其中,所述矩阵构建模块具体包括:The airborne radar robust space-time beamforming system under the steering vector mismatch, wherein, the matrix construction module specifically includes:
模型建立单元,用于建立阵列天线接收信号模型x(t)=ast(θ0,fd0)s(t)+ncn(t);其中,s(t)为期望目标的回波信号,ast(θ0,fd0)为空时导向矢量,ncn(t)为地杂波信号加空间白噪声;The model building unit is used to establish the array antenna receiving signal model x(t)= ast (θ 0 ,f d0 )s(t)+n cn (t); wherein, s(t) is the echo signal of the desired target , a st (θ 0 ,f d0 ) is the space-time steering vector, n cn (t) is the ground clutter signal plus space white noise;
矩阵获取单元,用于当记回波信号到达角位于的空间角度区间为Θ,多普勒频率区间为F,则根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵为 The matrix acquisition unit is used to construct the space-time integration agreement according to the estimated value of the radar echo signal angle of arrival and the Doppler frequency when the space angle interval where the echo signal angle of arrival is located is Θ and the Doppler frequency interval is F. The variance matrix is
所述导向矢量失配下的机载雷达稳健空时波束形成系统,其中,所述子空间获取模块具体包括:The airborne radar robust space-time beamforming system under the steering vector mismatch, wherein the subspace acquisition module specifically includes:
分解单元。用于对空时积分协方差矩阵为进行特征值分解得到信号子空间E;其中E=[e1 e2 … eP],ei是第i个主特征值所对应的主特征向量,i的取值范围是[1,2,P],且i为整数,P为主特征值的个数;Decomposition unit. The covariance matrix for space-time integration is Perform eigenvalue decomposition to obtain the signal subspace E; where E=[e 1 e 2 ... e P ], e i is the main eigenvector corresponding to the i-th main eigenvalue, and the value range of i is [1, 2, P], and i is an integer, and P is the number of main eigenvalues;
正交单元,用于根据信号子空间E,得到其正交补空间且其中,ast0为期望目标回波信号的实际导向矢量,为杂波加噪声子空间。The orthogonal unit is used to obtain its orthogonal complement space according to the signal subspace E and Among them, ast0 is the actual steering vector of the expected target echo signal, is the clutter-plus-noise subspace.
所述导向矢量失配下的机载雷达稳健空时波束形成系统,其中,所述导向矢量获取模块具体包括:The airborne radar robust space-time beamforming system under the steering vector mismatch, wherein the steering vector acquisition module specifically includes:
导向矢量估计器获取单元,用于根据波束形成器抑制杂波和噪声之后的输出功率及最大化期望信号输出功率准则,确定导向矢量估计器的目标函数和约束条件为:Steering vector estimator acquisition unit for output power after clutter and noise suppression according to beamformer And maximize the expected signal output power criterion, determine the objective function and constraints of the steering vector estimator as:
其中为F的补集,为Θ的补集,N为雷达天线阵元数目,M为每个天线阵元发射脉冲数目,K为对回波信号的采样快拍数目;in is the complement of F, is the complement of Θ, N is the number of radar antenna elements, M is the number of pulses transmitted by each antenna element, K is the number of sampling snapshots of the echo signal;
实际导向矢量求解单元,用于根据半定规划松弛法求解得到目标回波信号的实际导向矢量 The actual steering vector solving unit is used to solve the actual steering vector of the target echo signal according to the semi-definite programming relaxation method
所述导向矢量失配下的机载雷达稳健空时波束形成系统,其中,所述权值系数获取模块中根据得出阵列天线的权值系数 The airborne radar robust space-time beamforming system under the steering vector mismatch, wherein, the weight coefficient acquisition module is based on Get the weight coefficient of the array antenna
本发明所述的导向矢量失配下的机载雷达稳健空时波束形成方法及系统,方法包括:初始化机载平台的飞行高度、速度及目标回波信号的到达角,并确定雷达回波信号的多普勒频率;建立阵列天线的接收信号模型,并根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵;根据空时积分协方差矩阵,确定杂波加噪声子空间;建立导向矢量估计器的目标函数和约束条件,并根据半定规划松弛法求解得到目标回波信号的实际导向矢量;根据最小方差无失真方法,获取阵列天线的权值系数。本发明能够获得期望目标导向矢量的最优估计值,使得波束形成器在成功抑制杂波的前提下,只在期望目标方向形成波束,避免了对噪声功率的放大,从而进一步扩大波束形成器的输出信干噪比。The airborne radar robust space-time beamforming method and system under steering vector mismatch according to the present invention, the method includes: initializing the flying height and speed of the airborne platform and the angle of arrival of the target echo signal, and determining the radar echo signal Doppler frequency; establish the receiving signal model of the array antenna, and construct the space-time integral covariance matrix according to the estimated value of the radar echo signal arrival angle and Doppler frequency; determine the clutter plus noise according to the space-time integral covariance matrix Subspace; establish the objective function and constraint conditions of the steering vector estimator, and solve the actual steering vector of the target echo signal according to the semidefinite programming relaxation method; obtain the weight coefficient of the array antenna according to the minimum variance undistorted method. The invention can obtain the optimal estimated value of the steering vector of the desired target, so that the beamformer can only form the beam in the direction of the desired target under the premise of successfully suppressing the clutter, avoiding the amplification of the noise power, thereby further expanding the beamformer Output SINR.
附图说明Description of drawings
图1为本发明所述导向矢量失配下的机载雷达稳健空时波束形成方法较佳实施例的流程图。FIG. 1 is a flow chart of a preferred embodiment of the airborne radar robust space-time beamforming method under steering vector mismatch according to the present invention.
图2为本发明所述导向矢量失配下的机载雷达稳健空时波束形成系统较佳实施例的结构框图。FIG. 2 is a structural block diagram of a preferred embodiment of an airborne radar robust space-time beamforming system under steering vector mismatch according to the present invention.
具体实施方式Detailed ways
本发明提供导向矢量失配下的机载雷达稳健空时波束形成方法及系统,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。The present invention provides an airborne radar robust space-time beamforming method and system under steering vector mismatch. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请参考图1,其为本发明所述导向矢量失配下的机载雷达稳健空时波束形成方法较佳实施例的流程图。如图1所示,所述Please refer to FIG. 1 , which is a flow chart of a preferred embodiment of the airborne radar robust space-time beamforming method under steering vector mismatch according to the present invention. As shown in Figure 1, the
步骤S100、初始化机载平台的飞行高度、速度及目标回波信号的到达角,并确定雷达回波信号的多普勒频率;Step S100, initializing the flight altitude and speed of the airborne platform and the angle of arrival of the target echo signal, and determining the Doppler frequency of the radar echo signal;
步骤S200、建立阵列天线的接收信号模型,并根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵;Step S200, establishing a receiving signal model of the array antenna, and constructing a space-time integral covariance matrix according to the estimated value of the angle of arrival of the radar echo signal and the Doppler frequency;
步骤S300、根据空时积分协方差矩阵,确定杂波加噪声子空间;Step S300, determining the clutter-plus-noise subspace according to the space-time integral covariance matrix;
步骤S400、建立导向矢量估计器的目标函数和约束条件,并根据半定规划松弛法求解得到目标回波信号的实际导向矢量;Step S400, establishing the objective function and constraint conditions of the steering vector estimator, and obtaining the actual steering vector of the target echo signal by solving according to the semidefinite programming relaxation method;
步骤S500、根据最小方差无失真方法,获取阵列天线的权值系数。Step S500 , according to the minimum variance non-distortion method, obtain the weight coefficients of the array antenna.
本发明的实施例中,首先根据预估的期望目标到达角(direction-of-arrival,DOA)和多普勒频率,构建一个包含期望信号导向矢量信息的空时积分协方差矩阵。然后利用期望信号和杂波、噪声子空间相互正交的特性,推导出杂波加噪声子空间,并作为导向矢量估计器的一个约束条件。接着采用导向矢量范数约束和最大化期望信号功率准则,设计一种最优导向矢量估计器。采用半定规划松弛方法将二次约束二次规划问题转化为线性规划问题。最后,采用最小方差无失真响应准则,建立稳健的空时波束形成器,求解阵列天线各阵元的权值系数。In the embodiment of the present invention, first, according to the estimated expected target angle of arrival (direction-of-arrival, DOA) and Doppler frequency, a space-time integral covariance matrix including the information of the expected signal steering vector is constructed. Then, the clutter-plus-noise subspace is deduced by using the orthogonal property of the desired signal, clutter and noise subspaces, and used as a constraint condition of the steering vector estimator. Then, an optimal steering vector estimator is designed by using the steering vector norm constraint and the criterion of maximizing the expected signal power. The semidefinite programming relaxation method is used to transform the quadratic constrained quadratic programming problem into a linear programming problem. Finally, a robust space-time beamformer is established by using the minimum-variance distortion-free response criterion, and the weight coefficients of each element of the array antenna are calculated.
具体的,在步骤S100中设定机载雷达工作于正侧面雷达模式,即机载平台飞行方向与天线阵元平面一致。设定雷达的脉冲重复频率为fr,雷达波长为λ,雷达距离地面高度为H,机载平台飞行速度为v,期望目标的雷达回波信号入射角为θ0。根据以上参数确定期望目标回波信号的多普勒频率fd0,且 Specifically, in step S100 , the airborne radar is set to work in the front and side radar mode, that is, the flight direction of the airborne platform is consistent with the plane of the antenna elements. Set the pulse repetition frequency of the radar as f r , the radar wavelength as λ, the height of the radar from the ground as H, the flight speed of the airborne platform as v, and the incident angle of the radar echo signal of the desired target as θ 0 . Determine the Doppler frequency f d0 of the desired target echo signal according to the above parameters, and
具体的,所述步骤S200具体包括:Specifically, the step S200 specifically includes:
步骤S201、建立阵列天线接收信号模型x(t)=ast(θ0,fd0)s(t)+ncn(t);其中,s(t)为期望目标的回波信号,ast(θ0,fd0)为空时导向矢量,ncn(t)为地杂波信号加空间白噪声;Step S201, establishing an array antenna receiving signal model x(t)=a st (θ 0 ,f d0 )s(t)+n cn (t); wherein, s(t) is the echo signal of the desired target, and a st (θ 0 , f d0 ) is the space-time steering vector, n cn (t) is the ground clutter signal plus space white noise;
步骤S202、记回波信号到达角位于的空间角度区间为Θ,多普勒频率区间为F,则根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵为 Step S202, remember that the space angle interval where the echo signal angle of arrival is located is Θ, and the Doppler frequency interval is F, then construct the space-time integral covariance matrix according to the estimated value of the radar echo signal angle of arrival and Doppler frequency as
在步骤S201中,采用由N个天线阵元组成的均匀线阵,相邻阵元的间隔为λ/2,每个阵元发射M个相干脉冲,则阵列天线的接收信号x(t)可以表示为:In step S201, a uniform linear array composed of N antenna elements is adopted, the interval between adjacent array elements is λ/2, and each array element transmits M coherent pulses, then the received signal x(t) of the array antenna can be Expressed as:
x(t)=ast(θ0,fd0)s(t)+ncn(t) (1)x(t)=a st (θ 0 ,f d0 )s(t)+n cn (t) (1)
其中,s(t)为期望目标的回波信号,ast(θ0,fd0)为空时导向矢量,ncn(t)为地杂波信号加空间白噪声。Among them, s(t) is the echo signal of the desired target, ast (θ 0 , f d0 ) is the space-time steering vector, and n cn (t) is the ground clutter signal plus spatial white noise.
ast(θ0,fd0)是对期望目标回波信号的空域导向矢量和时域导向矢量求克罗内克积(Kronecker product)得到的,即: a st (θ 0 , f d0 ) is obtained by calculating the Kronecker product (Kronecker product) of the spatial domain steering vector and time domain steering vector of the desired target echo signal, namely:
其中,as(θ0)为期望目标回波信号的空域导向矢量,at(fd0)为期望目标回波信号的时域导向矢量,表示克罗内克积运算。as(θ0)和at(fd0)分别可以表示为:Among them, a s (θ 0 ) is the spatial domain steering vector of the desired target echo signal, at ( f d0 ) is the time domain steering vector of the desired target echo signal, Represents the Kronecker product operation. a s (θ 0 ) and a t (f d0 ) can be expressed as:
其中,[·]T表示向量或矩阵的转置,d为相邻阵元的间隔。Among them, [ ] T represents the transposition of a vector or matrix, and d is the interval between adjacent array elements.
由于在机载雷达实际工作中,估计的回波信号到达角和多普勒频率不可避免会出现偏差。现假定回波信号到达角位于的空间角度区间为Θ,多普勒频率区间为F,则构建一个空时积分协方差矩阵Due to the actual work of airborne radar, the estimated angle of arrival and Doppler frequency of the echo signal will inevitably deviate. Now assuming that the angle of arrival of the echo signal is located in the space angle interval Θ, and the Doppler frequency interval is F, then construct a space-time integration covariance matrix
在式(2)中,(·)H表示向量或矩阵的共轭转置。该空时积分协方差矩阵包含着目标回波信号的导向矢量信息。In formula (2), (·) H represents the conjugate transpose of a vector or matrix. The space-time integral covariance matrix contains the steering vector information of the target echo signal.
当雷达回波信号到达角和多普勒频率的估计值存在偏差时,ast(θ0,fd0)进一步表示为其中,为存在偏差的到达角的估计值,为存在偏差的多普勒频率估计值,δ为估计的导向矢量误差。为表达方便,下文将ast(θ0,fd0)和分别简写为ast0和 When there is a deviation between the estimated angle of arrival of the radar echo signal and the Doppler frequency, ast (θ 0 ,f d0 ) is further expressed as in, is the estimated value of the angle of arrival with bias, is the biased Doppler frequency estimate, and δ is the estimated steering vector error. For the convenience of expression, a st (θ 0 ,f d0 ) and are abbreviated as a st0 and
进一步的,所述步骤S300具体包括:Further, the step S300 specifically includes:
步骤S301、对空时积分协方差矩阵为进行特征值分解得到信号子空间E;其中E=[e1 e2 … eP],ei是第i个主特征值所对应的主特征向量,i的取值范围是[1,2,P],且i为整数,P为主特征值的个数;Step S301, the space-time integral covariance matrix is Perform eigenvalue decomposition to obtain the signal subspace E; where E=[e 1 e 2 ... e P ], e i is the main eigenvector corresponding to the i-th main eigenvalue, and the value range of i is [1, 2, P], and i is an integer, and P is the number of main eigenvalues;
步骤S302、根据信号子空间E,得到其正交补空间且其中,ast0为期望目标回波信号的实际导向矢量,为杂波加噪声子空间。Step S302, according to the signal subspace E, obtain its orthogonal complement space and Among them, ast0 is the actual steering vector of the expected target echo signal, is the clutter-plus-noise subspace.
对步骤S202中的空时积分协方差矩阵进行特征值分解,得到信号子空间、杂波加噪声子空间。由子空间正交特性,期望目标回波信号的实际导向矢量应与杂波加噪声子空间正交,即Eigenvalue decomposition is performed on the space-time integral covariance matrix in step S202 to obtain a signal subspace and a clutter plus noise subspace. Due to the subspace orthogonality, the actual steering vector of the desired target echo signal should be orthogonal to the clutter plus noise subspace, that is,
在式(3)中,ast0为期望目标回波信号的实际导向矢量,为杂波加噪声子空间。In formula (3), a st0 is the actual steering vector of the desired target echo signal, is the clutter-plus-noise subspace.
进一步的,所述步骤S400具体包括:Further, the step S400 specifically includes:
步骤S401、根据波束形成器抑制杂波和噪声之后的输出功率及最大化期望信号输出功率准则,确定导向矢量估计器的目标函数和约束条件为:Step S401, output power after suppressing clutter and noise according to the beamformer And maximize the expected signal output power criterion, determine the objective function and constraints of the steering vector estimator as:
其中,为F的补集,为Θ的补集,N为雷达天线阵元数目,M为每个天线阵元发射脉冲数目,K为对回波信号的采样快拍数目;in, is the complement of F, is the complement of Θ, N is the number of radar antenna elements, M is the number of pulses transmitted by each antenna element, K is the number of sampling snapshots of the echo signal;
步骤S402、根据半定规划松弛法求解得到目标回波信号的实际导向矢量 Step S402, obtain the actual steering vector of the target echo signal by solving according to the semidefinite programming relaxation method
在建立导向矢量估计器的目标函数和约束条件时,波束形成器抑制杂波和噪声之后的输出功率表示为:When establishing the objective function and constraints of the steering vector estimator, the output power of the beamformer after suppressing clutter and noise is expressed as:
在式(4)中,是输入信号的阵列协方差矩阵估计值,且In formula (4), is the array covariance matrix estimate of the input signal, and
导向矢量估计器目标函数采用最大化期望信号输出功率准则,即最大化σout或最小化导向矢量估计器约束条件不仅需要满足式(4),而且需要约束导向矢量的范数,即令The objective function of the steering vector estimator adopts the criterion of maximizing the expected signal output power, that is, maximizing σ out or minimizing The constraint condition of the steering vector estimator not only needs to satisfy formula (4), but also needs to constrain the norm of the steering vector, that is,
在式(5)中,||·||表示向量的l2范数,N为雷达天线阵元数目,M为每个天线阵元发射脉冲数目。In formula (5), ||·|| represents the l 2 norm of the vector, N is the number of radar antenna elements, and M is the number of pulses transmitted by each antenna element.
步骤S401中的约束条件是非凸的形式,这里采用半定规划的形式将其转化为凸的形式,公式(5)等价为Constraints in step S401 It is a non-convex form. Here, it is transformed into a convex form by semi-definite programming. Formula (5) is equivalent to
tr(A0)=MN (6)tr(A 0 )=MN (6)
在式(6)中,tr(·)表示矩阵的迹,且理想情况下,矩阵A0的秩等于1,即rank(A0)=1,rank(·)表示对矩阵求秩运算。In Equation (6), tr( ) represents the trace of the matrix, and Ideally, the rank of the matrix A 0 is equal to 1, that is, rank(A 0 )=1, and rank(·) represents an operation to rank the matrix.
类似的,可以转化为akin, can be converted to
在式(7)中, In formula (7),
进一步的,式(7)可以表示为:Further, formula (7) can be expressed as:
在式(8)中,同时,约束条件也等价地表示为In formula (8), At the same time, the constraints is also equivalently expressed as
同样,在导向矢量估计器的目标函数和约束条件中等价为因此,导向矢量估计器模型进一步转化为:Likewise, in the objective function and constraints of the steering vector estimator Equivalent to Therefore, the steering vector estimator model is further transformed into:
在式(10)中rank(A0)=1仍为非凸约束,将其松弛为A0≥0,公式(10)松弛为:In formula (10), rank(A 0 )=1 is still a non-convex constraint, and it is relaxed to A 0 ≥ 0, and formula (10) is relaxed as:
采用CVX工具箱求得上式的解之后,期望目标回波信号的实际导向矢量估计值便可以从中提取出来。Use the CVX toolbox to find the solution of the above formula After that, the actual steering vector estimate of the desired target echo signal is then you can start from extracted from.
具体的,在所述步骤S500中,根据得出阵列天线的权值系数 Specifically, in the step S500, according to Get the weight coefficient of the array antenna
在步骤S402中,获得期望目标回波信号的实际导向矢量估计值之后,采用MVDR算法(即最小方差无失真方法)对回波信号进行约束,然后使得阵列输出功率最小,从而保护期望目标回波信号的同时抑制杂波信号。该算法的表达如下:In step S402, the actual steering vector estimated value of the desired target echo signal is obtained Afterwards, the MVDR algorithm (minimum variance and distortion-free method) is used to constrain the echo signal, and then the output power of the array is minimized, so as to protect the expected target echo signal and suppress the clutter signal at the same time. The algorithm is expressed as follows:
采用拉格朗日乘子法求解式(12),得到阵列天线的权值系数ω,表示为 Using the Lagrange multiplier method to solve equation (12), the weight coefficient ω of the array antenna is obtained, expressed as
可见,本发明能够获得期望目标导向矢量的最优估计值,使得波束形成器在成功抑制杂波的前提下,只在期望目标方向形成波束,避免了对噪声功率的放大,从而进一步扩大波束形成器的输出信干噪比。It can be seen that the present invention can obtain the optimal estimated value of the steering vector of the desired target, so that the beamformer can only form the beam in the direction of the desired target under the premise of successfully suppressing the clutter, avoiding the amplification of the noise power, thereby further expanding the beamforming The signal-to-interference-noise ratio of the output of the device.
基于上述方法实施例,本发明还提供了一种导向矢量失配下的机载雷达稳健空时波束形成系统。如图2所示,所述导向矢量失配下的机载雷达稳健空时波束形成系统,包括:Based on the above method embodiments, the present invention also provides an airborne radar robust space-time beamforming system under steering vector mismatch. As shown in Figure 2, the airborne radar robust space-time beamforming system under the steering vector mismatch includes:
初始化模块100,用于初始化机载平台的飞行高度、速度及目标回波信号的到达角,并确定雷达回波信号的多普勒频率;The initialization module 100 is used to initialize the flight height, speed and angle of arrival of the target echo signal of the airborne platform, and determine the Doppler frequency of the radar echo signal;
矩阵构建模块200,用于建立阵列天线的接收信号模型,并根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵;The matrix construction module 200 is used to establish the received signal model of the array antenna, and constructs a space-time integral covariance matrix according to the estimated value of the angle of arrival of the radar echo signal and the Doppler frequency;
子空间获取模块300,用于根据空时积分协方差矩阵,确定杂波加噪声子空间;The subspace acquisition module 300 is used to determine the clutter plus noise subspace according to the space-time integral covariance matrix;
导向矢量获取模块400,用于建立导向矢量估计器的目标函数和约束条件,并根据半定规划松弛法求解得到目标回波信号的实际导向矢量;The steering vector acquisition module 400 is used to establish the objective function and constraint conditions of the steering vector estimator, and obtain the actual steering vector of the target echo signal by solving according to the semidefinite programming relaxation method;
权值系数获取模块500,用于根据最小方差无失真方法,获取阵列天线的权值系数。The weight coefficient obtaining module 500 is configured to obtain the weight coefficient of the array antenna according to the minimum variance non-distortion method.
进一步的,在所述导向矢量失配下的机载雷达稳健空时波束形成系统中,所述矩阵构建模块200具体包括:Further, in the airborne radar robust space-time beamforming system under the steering vector mismatch, the matrix construction module 200 specifically includes:
模型建立单元,用于建立阵列天线接收信号模型x(t)=ast(θ0,fd0)s(t)+ncn(t);其中,s(t)为期望目标的回波信号,ast(θ0,fd0)为空时导向矢量,ncn(t)为地杂波信号加空间白噪声;The model building unit is used to establish the array antenna receiving signal model x(t)= ast (θ 0 ,f d0 )s(t)+n cn (t); wherein, s(t) is the echo signal of the desired target , a st (θ 0 ,f d0 ) is the space-time steering vector, n cn (t) is the ground clutter signal plus space white noise;
矩阵获取单元,用于当记回波信号到达角位于的空间角度区间为Θ,多普勒频率区间为F,则根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵为 The matrix acquisition unit is used to construct the space-time integration agreement according to the estimated value of the radar echo signal angle of arrival and the Doppler frequency when the space angle interval where the echo signal angle of arrival is located is Θ and the Doppler frequency interval is F. The variance matrix is
进一步的,在所述导向矢量失配下的机载雷达稳健空时波束形成系统中,所述子空间获取模块300具体包括:Further, in the airborne radar robust space-time beamforming system under the steering vector mismatch, the subspace acquisition module 300 specifically includes:
分解单元。用于对空时积分协方差矩阵为进行特征值分解得到信号子空间E;其中E=[e1 e2 … eP],ei是第i个主特征值所对应的主特征向量,i的取值范围是[1,2,P],且i为整数,P为主特征值的个数;Decomposition unit. The covariance matrix for space-time integration is Perform eigenvalue decomposition to obtain the signal subspace E; where E=[e 1 e 2 ... e P ], e i is the main eigenvector corresponding to the i-th main eigenvalue, and the value range of i is [1, 2, P], and i is an integer, and P is the number of main eigenvalues;
正交单元,用于根据信号子空间E,得到其正交补空间且 The orthogonal unit is used to obtain its orthogonal complement space according to the signal subspace E and
进一步的,在所述导向矢量失配下的机载雷达稳健空时波束形成系统中,所述导向矢量获取模块400具体包括:Further, in the airborne radar robust space-time beamforming system under the steering vector mismatch, the steering vector acquisition module 400 specifically includes:
导向矢量估计器获取单元,用于根据波束形成器抑制杂波和噪声之后的输出功率及最大化期望信号输出功率准则,确定导向矢量估计器的目标函数和约束条件为:Steering vector estimator acquisition unit for output power after clutter and noise suppression according to beamformer And maximize the expected signal output power criterion, determine the objective function and constraints of the steering vector estimator as:
其中为F的补集,为Θ的补集,N为雷达天线阵元数目,M为每个天线阵元发射脉冲数目,K为对回波信号的采样快拍数目;in is the complement of F, is the complement of Θ, N is the number of radar antenna elements, M is the number of pulses transmitted by each antenna element, K is the number of sampling snapshots of the echo signal;
实际导向矢量求解单元,用于根据半定规划松弛法求解得到目标回波信号的实际导向矢量 The actual steering vector solving unit is used to solve the actual steering vector of the target echo signal according to the semi-definite programming relaxation method
进一步的,在所述导向矢量失配下的机载雷达稳健空时波束形成系统中,所述权值系数获取模块500中根据得出阵列天线的权值系数 Further, in the airborne radar robust space-time beamforming system under the steering vector mismatch, the weight coefficient acquisition module 500 is based on Get the weight coefficient of the array antenna
综上所述,本发明提供了导向矢量失配下的机载雷达稳健空时波束形成方法及系统,方法包括:初始化机载平台的飞行高度、速度及目标回波信号的到达角,并确定雷达回波信号的多普勒频率;建立阵列天线的接收信号模型,并根据雷达回波信号到达角和多普勒频率的估计值构建空时积分协方差矩阵;根据空时积分协方差矩阵,确定杂波加噪声子空间;建立导向矢量估计器的目标函数和约束条件,并根据半定规划松弛法求解得到目标回波信号的实际导向矢量;根据最小方差无失真方法,获取阵列天线的权值系数。本发明能够获得期望目标导向矢量的最优估计值,使得波束形成器在成功抑制杂波的前提下,只在期望目标方向形成波束,避免了对噪声功率的放大,从而进一步扩大波束形成器的输出信干噪比。In summary, the present invention provides a method and system for airborne radar robust space-time beamforming under steering vector mismatch. The Doppler frequency of the echo signal; establish the receiving signal model of the array antenna, and construct the space-time integration covariance matrix according to the estimated value of the radar echo signal arrival angle and Doppler frequency; according to the space-time integration covariance matrix, determine Clutter plus noise subspace; establish the objective function and constraint conditions of the steering vector estimator, and obtain the actual steering vector of the target echo signal by solving it according to the semidefinite programming relaxation method; obtain the weight of the array antenna according to the minimum variance undistorted method coefficient. The invention can obtain the optimal estimated value of the steering vector of the desired target, so that the beamformer can only form the beam in the direction of the desired target under the premise of successfully suppressing the clutter, avoiding the amplification of the noise power, thereby further expanding the beamformer Output SINR.
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及本发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。It can be understood that those skilled in the art can make equivalent replacements or changes according to the technical solutions of the present invention and the concept of the present invention, and all these changes or replacements should belong to the protection scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610122010.1A CN105629206B (en) | 2016-03-03 | 2016-03-03 | The sane space-time Beamforming Method of airborne radar and system under steering vector mismatch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610122010.1A CN105629206B (en) | 2016-03-03 | 2016-03-03 | The sane space-time Beamforming Method of airborne radar and system under steering vector mismatch |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105629206A CN105629206A (en) | 2016-06-01 |
CN105629206B true CN105629206B (en) | 2018-03-06 |
Family
ID=56044322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610122010.1A Active CN105629206B (en) | 2016-03-03 | 2016-03-03 | The sane space-time Beamforming Method of airborne radar and system under steering vector mismatch |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105629206B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106338723B (en) * | 2016-09-12 | 2018-04-24 | 深圳大学 | A kind of space-time adaptive processing method and device based on relatively prime pulse recurrence interval |
WO2018045594A1 (en) * | 2016-09-12 | 2018-03-15 | 深圳大学 | Space-time adaptive processing method and apparatus based on co-prime pulse recurrence interval |
CN107728112B (en) * | 2017-09-29 | 2020-08-14 | 西安电子科技大学 | Robust beam forming method under condition of serious mismatching of target steering vector |
WO2019204976A1 (en) * | 2018-04-24 | 2019-10-31 | 深圳大学 | Sparse-based space-time adaptive processing method and system |
CN110208757B (en) * | 2019-06-05 | 2021-09-10 | 西安电子科技大学 | Steady self-adaptive beam forming method and device for inhibiting main lobe interference |
CN110764066B (en) * | 2019-08-14 | 2021-08-13 | 西安电子科技大学 | Target detection method based on real signal subspace in the presence of errors |
WO2021062750A1 (en) * | 2019-09-30 | 2021-04-08 | 华为技术有限公司 | Velocity ambiguity resolution method and echo signal processing apparatus |
CN111220977B (en) * | 2020-01-16 | 2022-04-08 | 深圳大学 | Likelihood MUSIC low elevation angle estimation method based on angle and frequency domain filtering |
CN113820728B (en) * | 2020-06-19 | 2024-05-10 | 河南省科学院应用物理研究所有限公司 | Beam forming interference suppression method and device for uncertain set search |
CN115980673A (en) * | 2022-12-01 | 2023-04-18 | 南京航空航天大学 | Method for forming high-power wide beam based on unmanned aerial vehicle cluster-mounted radar antenna array |
CN118759515B (en) * | 2024-09-06 | 2024-11-15 | 中国人民解放军火箭军工程大学 | Multi-unmanned aerial vehicle multi-target tracking method based on communication perception integration |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103293517A (en) * | 2013-05-13 | 2013-09-11 | 西安电子科技大学 | Diagonal-loading robust adaptive radar beam forming method based on ridge parameter estimation |
CN105137409A (en) * | 2015-07-24 | 2015-12-09 | 西安电子科技大学 | Target signal robust space-time adaptive processing method based on amplitude and phase constraints |
-
2016
- 2016-03-03 CN CN201610122010.1A patent/CN105629206B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103293517A (en) * | 2013-05-13 | 2013-09-11 | 西安电子科技大学 | Diagonal-loading robust adaptive radar beam forming method based on ridge parameter estimation |
CN105137409A (en) * | 2015-07-24 | 2015-12-09 | 西安电子科技大学 | Target signal robust space-time adaptive processing method based on amplitude and phase constraints |
Non-Patent Citations (4)
Title |
---|
Analysis of STAP Algorithms for Cases with Mismatched Steering and Clutter Statistics;Rick S. Blum et al.;《IEEE TRANSACTIONS ON SIGNAL PROCESSING》;20000229;第48卷(第2期);301-310 * |
Response Vector Constrained Robust LCMV Beamforming Based on Semidefinite Programming;Jingwei Xu et al.;《IEEE TRANSACTIONS ON SIGNAL PROCESSING》;20151103;第63卷(第21期);5720-5732 * |
基于三迭代与二阶锥规划的机载MIMO雷达稳健降维STAP方法;王珽 等;《航空学报》;20151125;第36卷(第11期);3706-3714 * |
基于最差性能最优的稳健STAP算法;刘聪锋 等;《电子学报》;20080331;第36卷(第3期);581-585 * |
Also Published As
Publication number | Publication date |
---|---|
CN105629206A (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105629206B (en) | The sane space-time Beamforming Method of airborne radar and system under steering vector mismatch | |
CN107390197B (en) | Radar self-adaption sum-difference beam angle measurement method based on feature space | |
CN103383449B (en) | ESPRIT algorithm based short-range clutter suppression method for airborne radar | |
CN104408278A (en) | A method for forming steady beam based on interfering noise covariance matrix estimation | |
CN103235292B (en) | Full-dimension and difference angle measurement method for zero setting conformal calibration of a planar phased array | |
CN105335336B (en) | A kind of robust adaptive beamforming method of sensor array | |
CN104199053B (en) | A kind of robust ada-ptive beamformer method arriving angle constraint based on satellite-signal | |
CN105445709B (en) | A kind of thinning array near field passive location amplitude and phase error correction method | |
CN110596692B (en) | Self-adaptive monopulse direction finding method based on joint constraint | |
KR101603630B1 (en) | Method and Apparatus for suppressing jammer signals and estimating Angle Of Arrival of original signal using orthogonal of transmitting signal waveform | |
CN105137409B (en) | The sane space-time adaptive processing method of echo signal mutually constrained based on width | |
CN103885045B (en) | Based on the circulation associating Adaptive beamformer method of Subarray partition | |
CN108828586B (en) | A beam-domain-based optimization method for angle measurement of bistatic MIMO radar | |
CN104931935A (en) | Robust beam formation method based on sidelobe cancellation | |
CN104076337B (en) | Airborne radar clutter suppression method based on array element amplitude and phase error correction | |
CN106324625A (en) | Adaptive anti-interference method for satellite navigation system based on 2-norm multi-target optimization | |
CN105403871A (en) | Bistatic MIMO radar array target angle estimation and mutual coupling error calibration method | |
CN112881975A (en) | Single pulse sum and difference beam angle measurement method based on subarray characteristic matrix joint diagonalization | |
CN108880586B (en) | A wideband weak signal enhancement method and device | |
CN101776763B (en) | Global Positioning System Interference Suppression Method Based on Autocoherent MUSIC Algorithm | |
Wang et al. | Design of optimum sparse array for robust MVDR beamforming against DOA mismatch | |
CN111999727B (en) | Method for detecting fast moving target of airborne frequency diversity array radar based on main lobe amplitude response control | |
CN104360337B (en) | Adaptive beam forming method based on 1 norm constraint | |
CN104360338B (en) | A kind of array antenna Adaptive beamformer method loaded based on diagonal angle | |
Kikuchi et al. | Autocalibration algorithm for robust Capon beamforming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |