CN105624626A - 一种基于生物模板的三维光子晶体的制备方法 - Google Patents

一种基于生物模板的三维光子晶体的制备方法 Download PDF

Info

Publication number
CN105624626A
CN105624626A CN201610142860.8A CN201610142860A CN105624626A CN 105624626 A CN105624626 A CN 105624626A CN 201610142860 A CN201610142860 A CN 201610142860A CN 105624626 A CN105624626 A CN 105624626A
Authority
CN
China
Prior art keywords
zno
preparation
photonic crystal
biological template
biology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610142860.8A
Other languages
English (en)
Other versions
CN105624626B (zh
Inventor
牛海红
徐进章
程聪
黄斌
周儒
张功海
胡雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610142860.8A priority Critical patent/CN105624626B/zh
Publication of CN105624626A publication Critical patent/CN105624626A/zh
Application granted granted Critical
Publication of CN105624626B publication Critical patent/CN105624626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Abstract

本发明公开了一种基于生物模板的三维光子晶体的制备方法,是在氩气和氧气气氛中采用射频溅射的方式向粘有生物模板的玻璃基底上溅射金属Ti或氧化锌ZnO?2-15分钟,形成生物-Ti或生物-ZnO;随后将生物-Ti或生物-ZnO送入马弗炉中极性原位高温退火处理,形成具有三维光子晶体结构的TiO2纳米颗粒或ZnO纳米颗粒。本发明基于生物模板的三维光子晶体制备方法可获得较高质量的具有三维光子晶体结构的TiO2纳米晶或ZnO纳米晶,整个制备方法中工艺简单、重复性良好、成本低廉。TiO2纳米晶颗粒或ZnO纳米晶颗粒因具有良好的长波段光散射能力而使得染料敏化太阳能电池的光电转换效率得以提升。

Description

一种基于生物模板的三维光子晶体的制备方法
一、技术领域
本发明涉及一种光子晶体的制备方法,具体地说是一种基于生物模板的三维光子晶体的制备方法,属于光子晶体技术领域。
二、背景技术
随着社会的发展,显赫一时的半导体器件已经不能满足信息技术发展的需要,必须寻找信息传输速率更高,效率更高的新材料。普遍认为,光子技术将续写电子技术的辉煌,光子晶体将成为未来所依赖的新材料。光子晶体(又称光子禁带材料)的出现,使人们操纵和控制光子的梦想成为可能。与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构光子晶体。光子晶体具有波长选择的功能,可以有选择地使某个波段的光通过而阻止其它波长的光通过其中。光子晶体和半导体在基本模型和研究思路上有许多相似之处,人们可以通过设计和制造光子晶体及其器件,达到控制光子运动的目的。
近些年来,在人们不断探索和试验的过程中,出现了许多可行的人工制备方法,如:介质棒堆积、精密机械钻孔、胶体颗粒自组织生长、胶体溶液自组织生长和半导体工艺等。用这些方法,通过人工地控制光子晶体中介电材料之间介电常数的配比和光子晶体的微周期性结构,可以制备出带有各种带隙的光子晶体。然而光子晶体的制备有一定的难度,因为光子晶体的晶格尺度和光的波长具有相同的数量级,如:对于光通信波段(波长1.55μm),要求光子晶体的晶格在0.5μm左右。但已有的方法因工艺的复杂不能达到令人满意的程度。尤其是类生物结构(比如蝴蝶、孔雀、甲虫等的翅膀)的光子晶体的精细制备有待长足发展。
迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。光子晶体在染料敏化太阳能电池的应用方面,虽然CarmenLópez-López(20121222-2)和S.Guldin(20121222-4)等将一维、反猫眼石等光子晶体应用于染料敏化太阳能电池中,但其光电性能不尽人意,并且,具有精准的复制结构、基于生物模板的三维光子晶体在染料敏化太阳能电池中的应用未见报道。
三、发明内容
本发明旨在提供一种基于生物模板的三维光子晶体的制备方法,该三维光子晶体的制备方法工艺过程简单、容易实现,克服了背景技术中光子晶体的工艺方法复杂的问题;且制备而成的三维光子晶体能更加有效增加太阳光在太阳能电池中的光程,提升太阳能电池器件内部的光散射能力,从而提高太阳能电池的光电转换效率。
本发明基于生物模板的三维光子晶体的制备方法,包括以下步骤:
步骤1,将具有三维光子晶体特性的生物模板粘于磁控溅射腔体的玻璃基底上,然后将粘有生物模板的玻璃基底置于磁控溅射系统的衬底上,选择Ti金属靶或ZnO陶瓷靶为磁控溅射靶材,在3×10-3-3×10-5Pa真空环境和40W-120W功率下,向溅射腔体内通入5-60sccm的氩气和氧气,同时采用射频溅射的方式向粘有生物模板的玻璃基底上溅射金属Ti或氧化锌ZnO2-15分钟,形成生物-Ti或生物-ZnO;
步骤2,将生物-Ti或生物-ZnO送入马弗炉中,在氧气氛围下于400-600℃原位高温退火处理60-300分钟,随后自然冷却到室温,形成具有三维光子晶体结构的TiO2纳米颗粒或ZnO纳米颗粒。
步骤1中氩气和氧气的流量比为(5-60):1。
步骤2中马弗炉升温速率为0.5-5℃/分钟。
步骤2中TiO2纳米颗粒或ZnO纳米颗粒的尺寸为60-80μm。
步骤1中所述生物模板为蝴蝶翅膀,所述蝴蝶类型为大紫蛱、蚊蛱、环蝶或武凯蛱等。
与已有技术相比,本发明的有益效果体现在:
本发明基于生物模板的三维光子晶体制备方法可获得较高质量的具有三维光子晶体结构的TiO2纳米晶或ZnO纳米晶,整个制备方法中工艺简单、重复性良好、成本低廉。TiO2纳米晶颗粒或ZnO纳米晶颗粒因具有良好的长波段光散射能力而使得染料敏化太阳能电池的光电转换效率得以提升。而且,所述纳米晶颗粒亦具有光催化效应,可用于光催化、气体敏感材料等领域应用。
四、附图说明
图1是以大紫蛱蝶翅膀为生物模板制备的TiO2光子晶体的XRD谱图。从图1中可以看出通过本发明的实施例1得到的纳米晶TiO2光子晶体,其结晶性能好,为TiO2的锐钛矿结构。
图2是以大紫蛱蝶翅膀为生物模板制备的TiO2光子晶体的SEM图像。从图2中可以看出根据本实施例1复制得到的纳米晶TiO2光子晶体,其扫描电子显微照片表明,大紫蛱蝶的多个鳞片均被完整复制,且排列整齐(图2A)。图2B-D为不同放大倍数的纳米晶TiO2光子晶体。此图说明具有天然光子晶体结构的大紫蛱蝶的鳞片在不同微观层次上均被精细地复制为纳米晶TiO2光子晶体,其尺寸在40至100微米之间。
图3是以大紫蛱蝶翅膀为生物模板制备的TiO2光子晶体的TEM图像。从图3中可以看出根据本实施例1复制得到的纳米晶TiO2光子晶体,其透射电子显微照片表明,大紫蛱蝶的单个鳞片被完整的复制,但略有卷曲。该鳞片宽度大概在40微米,长度大概为100微米。
图4是以蚊蛱蝶翅膀为生物模板制备的ZnO光子晶体的的XRD图像。从图4中可以看出通过本发明的实施例3得到的纳米晶ZnO光子晶体,其结晶性能好,为ZnO纤锌矿结构。
图5是以蚊蛱蝶翅膀为生物模板制备的ZnO光子晶体的的SEM图像。从图5中可以看出根据本实施例2复制得到的纳米晶ZnO光子晶体,其扫描电子显微照片表明,纹蛱蝶的多个鳞片均被较为完整的复制,无弯曲(图5A)。图5B-D为不同放大倍数的纳米晶ZnO光子晶体。此图说明具有天然光子晶体结构的纹蛱蝶的鳞片在不同微观层次上均被精细地复制为纳米晶ZnO光子晶体,其尺寸在30至70微米之间。
图6是以蚊蛱蝶翅膀为生物模板制备的ZnO光子晶体的的TEM图像。从图6中可以看出通过本发明的实施例2得到的纳米晶ZnO光子晶体其透射电子显微照片表明,大紫蛱蝶的鳞片被较为完整的复制,无弯曲。并且该鳞片的细节被复制的较为完好。
图7是以大紫蛱翅膀为生物模板制备的光子晶体应用于染料敏化太阳能电池的结构示意图。从图7中可以看出,依据本实施例1,得到的新型染料敏化太阳能电池是由导电玻璃、二氧化钛、蝴蝶散射层、电解质、铂对电极、导电玻璃等部分构成。
图8是以大紫蛱翅膀为生物模板制备的光子晶体应用于染料敏化太阳能电池的光散射层后的光电流-光电压图像。从图8中可以看出,较之没有加TiO2光子晶体散射层的染料敏化太阳能电池,加入TiO2光子晶体散射层的染料敏化太阳能电池的开路电压和电流密度均得以提升,特别是光电流密度大幅提升,表明TiO2光子晶体散射层的加入有效的提高的光的利用率。
五、具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:基于大紫蛱蝶模板的TiO2三维光子晶体
步骤1,将大紫蛱蝶翅膀粘于磁控溅射腔体的玻璃基底上,然后将粘有大紫蛱蝶翅膀的玻璃基底置于磁控溅射系统的衬底上,选择Ti金属靶为磁控溅射靶材,在3*10-3Pa真空环境和40W功率下,向溅射腔体内通入60sccm的氩气和2sccm氧气,同时采用射频溅射的方式向粘有蝴蝶翅膀的玻璃衬底上溅射金属Ti十五分钟,形成蝴蝶-Ti;
步骤2,将蝴蝶-Ti送入马弗炉中,在氧气氛围下于400-600℃原位高温退火处理200分钟,随后自然冷却到室温,马弗炉升温速率为5℃/分钟,形成具有三维光子晶体结构的TiO2纳米颗粒,不存在金属态Ti。所述TiO2纳米颗粒是整个蝴蝶翅膀鳞片的复制,尺寸为100微米,如图2和3所示为其扫描电镜和透射电极的图像。
实施例2:基于纹蛱蝶的ZnO三维光子晶体
步骤1,将蚊蛱蝶翅膀粘于磁控溅射腔体的玻璃基底上,然后将粘有蚊蛱蝶翅膀的玻璃基底置于磁控溅射系统的衬底上,选择ZnO陶瓷靶为磁控溅射靶材,在3*10-3Pa真空环境和120W功率下,向溅射腔体内通入80sccm的氩气和20sccm的氧气,同时采用射频溅射的方式向粘有蝴蝶翅膀的玻璃衬底上溅射ZnO两分钟;形成纹蛱蝶-ZnO;
步骤2,将蝴蝶-ZnO送入马弗炉中,在氧气氛围下于400-600℃原位高温退火处理120分钟,随后自然冷却到室温,马弗炉升温速率为0.5℃/分钟,形成具有三维光子晶体结构的ZnO纳米颗粒。所述ZnO纳米颗粒是整个蝴蝶翅膀鳞片的复制,尺寸在60-80微米之间,如图5和6所示为其扫描电镜和透射电极的图像。
实施例3:基于碧凤蝶模板的TiO2三维光子晶体
步骤1,将碧凤蝶翅膀粘于磁控溅射腔体的玻璃基底上,然后将粘有碧凤蝶翅膀的玻璃基底置于磁控溅射系统的衬底上,调节靶材和衬底之间的距离为50cm,选择Ti金属靶为磁控溅射靶材,在5*10-3Pa真空环境和60W功率下,向溅射腔体内通入40sccm的氩气和2sccm的氧气,同时采用射频溅射的方式向粘有蝴蝶翅膀的玻璃衬底上溅射金属Ti十分钟,形成碧凤蝶-Ti;
步骤2,将碧凤蝶-Ti送入马弗炉中,在氧气氛围下于400-600℃原位高温退火处理150分钟,随后自然冷却到室温,马弗炉升温速率为1℃/分钟,形成具有三维光子晶体结构的TiO2纳米颗粒,不存在金属态Ti。所述TiO2纳米颗粒是整个蝴蝶翅膀鳞片的复制,尺寸在60-150微米之间。
将实施例1中制备的纳米晶TiO2三维光子晶体应用于染料敏化太阳能电池,作为其光阳极上的散射层,其结构示意图如图7所示。具有TiO2-光子晶体散射层的太阳能电池的光伏性能均优于未具备TiO2三维光子晶体的染料敏化太阳能电池,光电转换效率从原来的5.6%增加到了8.7%,其光电流-电压曲线如图8所示。
本发明通过磁控溅射法制备TiO2或ZnO三维光子晶体纳米颗粒采用的是射频磁控溅射系统,由机械泵、分子泵、真空腔体、靶材基底、靶材、衬底旋转机构、真空计、射频电源等部件构成,为现有技术在此不再赘述,其他的溅射系统只要满足方法工艺需求也可实现本发明的工艺方法。

Claims (5)

1.一种基于生物模板的三维光子晶体的制备方法,其特征在于包括如下步骤:
步骤1,将具有三维光子晶体特性的生物模板粘于磁控溅射腔体的玻璃基底上,然后将粘有生物模板的玻璃基底置于磁控溅射系统的衬底上,选择Ti金属靶或ZnO陶瓷靶为磁控溅射靶材,在3×10-3-3×10-5Pa真空环境和40W-120W功率下,向溅射腔体内通入5-60sccm的氩气和氧气,同时采用射频溅射的方式向粘有生物模板的玻璃基底上溅射金属Ti或氧化锌ZnO2-15分钟,形成生物-Ti或生物-ZnO;
步骤2,将生物-Ti或生物-ZnO送入马弗炉中,在氧气氛围下于400-600℃原位高温退火处理60-300分钟,随后自然冷却到室温,形成具有三维光子晶体结构的TiO2纳米颗粒或ZnO纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于:
步骤1中氩气和氧气的流量比为(5-60):1。
3.根据权利要求1所述的制备方法,其特征在于:
步骤1中所述生物模板为蝴蝶翅膀。
4.根据权利要求1所述的制备方法,其特征在于:
步骤2中马弗炉升温速率为0.5-5℃/分钟。
5.根据权利要求1所述的制备方法,其特征在于:
步骤2中TiO2纳米颗粒或ZnO纳米颗粒的尺寸为60-80μm。
CN201610142860.8A 2016-03-14 2016-03-14 一种基于生物模板的三维光子晶体的制备方法 Active CN105624626B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610142860.8A CN105624626B (zh) 2016-03-14 2016-03-14 一种基于生物模板的三维光子晶体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610142860.8A CN105624626B (zh) 2016-03-14 2016-03-14 一种基于生物模板的三维光子晶体的制备方法

Publications (2)

Publication Number Publication Date
CN105624626A true CN105624626A (zh) 2016-06-01
CN105624626B CN105624626B (zh) 2018-03-09

Family

ID=56039964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610142860.8A Active CN105624626B (zh) 2016-03-14 2016-03-14 一种基于生物模板的三维光子晶体的制备方法

Country Status (1)

Country Link
CN (1) CN105624626B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039013A (ja) * 2003-07-18 2005-02-10 Bridgestone Corp 多孔質金属化合物薄膜の成膜方法及び有機色素増感型太陽電池
JP2005222782A (ja) * 2004-02-04 2005-08-18 Bridgestone Corp 多孔質薄膜の形成方法、並びに色素増感型太陽電池及び多孔質薄膜光触媒
CN101944439A (zh) * 2009-07-09 2011-01-12 中国科学院大连化学物理研究所 用于染料敏化太阳能电池的TiO2纳米棒阵列的制法
CN103741107A (zh) * 2013-12-26 2014-04-23 北京航空航天大学 一种在微生物表面磁控溅射金属镀膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039013A (ja) * 2003-07-18 2005-02-10 Bridgestone Corp 多孔質金属化合物薄膜の成膜方法及び有機色素増感型太陽電池
JP2005222782A (ja) * 2004-02-04 2005-08-18 Bridgestone Corp 多孔質薄膜の形成方法、並びに色素増感型太陽電池及び多孔質薄膜光触媒
CN101944439A (zh) * 2009-07-09 2011-01-12 中国科学院大连化学物理研究所 用于染料敏化太阳能电池的TiO2纳米棒阵列的制法
CN103741107A (zh) * 2013-12-26 2014-04-23 北京航空航天大学 一种在微生物表面磁控溅射金属镀膜的方法

Also Published As

Publication number Publication date
CN105624626B (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
Sawicka-Chudy et al. Review of the development of copper oxides with titanium dioxide thin-film solar cells
Salim et al. Growth of Nb2O5 film using hydrothermal method: effect of Nb concentration on physical properties
Mali et al. Low-cost electrospun highly crystalline kesterite Cu2ZnSnS4 nanofiber counter electrodes for efficient dye-sensitized solar cells
Pawar et al. Improved solar cell performance of chemosynthesized cadmium selenide pebbles
Aksoy et al. Effect of loading and standbye time of the organic dye N719 on the photovoltaic performance of ZnO based DSSC
Devi et al. Fabrication of nanocrystalline TiO2 thin films using Sol-Gel spin coating technology and investigation of its structural, morphology and optical characteristics
He et al. [1010] oriented multichannel ZnO nanowire arrays with enhanced optoelectronic device performance
Kottayi et al. Cu2AgInSe4 QDs sensitized electrospun porous TiO2 nanofibers as an efficient photoanode for quantum dot sensitized solar cells
Yathisha et al. Doping, structural, optical and electrical properties of Ni2+ doped CdO nanoparticles prepared by microwave combustion route
Agbo et al. Structural and optical properties of sulphurised Ag2S thin films
Kaza et al. Superstrate and substrate thin film configuration of CdS/CZTS solar cell fabricated using SILAR method
Reddy et al. Single compound in-situ synthesis of core-shell CaF2 nanoparticles based broad band antireflective coatings for solar energy conversion
Raguram et al. Influence of boron doping on the structural, spectral, optical and morphological properties of TiO2 nanoparticles synthesized by sol–gel technique for DSSC applications
Kulkarni et al. Room temperature synthesis of crystalline Sb 2 S 3 for SnO 2 photoanode-based solar cell application
Pawlicka et al. Synthesis of Nb2O5 thin films for electrochromic devices
Abdulelah et al. Fabrication and characterization of nanowalls CdS/dye sensitized solar cells
Baiju et al. Synthesis of hierarchical barium titanate micro flowers with superior light-harvesting characteristics for dye sensitized solar cells
Ling et al. Template synthesis and photovoltaic application of CdS nanotube arrays
Maqsood et al. Impact of amorphous and crystalline tungsten trioxide (WO3) thin films as an antireflection material for silicon (c-Si) solar cells
CN105624626A (zh) 一种基于生物模板的三维光子晶体的制备方法
CN108059183A (zh) 一种抗辐照氧化锌纳米材料及其制备方法
Girisun et al. Tunable photovoltaic performance of preferentially oriented rutile TiO2 nanorod photoanode based dye sensitized solar cells with quasi-state electrolyte
Yin et al. N-doped anatase TiO2 as an efficient electron transport layer for mesoporous perovskite solar cells
Han et al. Nanocrystalline titanium dioxide prepared by hydrothermal method and its application in dye‐sensitised solar cells
Abdulsada et al. Synthesis of TiO2 Thin Films Nanoparticles with Different Layers using Simple Sol-Gel Method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant