CN105608638A - Method and system for evaluating synchronous state of meter code data of intelligent terminal and electric energy meter - Google Patents
Method and system for evaluating synchronous state of meter code data of intelligent terminal and electric energy meter Download PDFInfo
- Publication number
- CN105608638A CN105608638A CN201510964701.1A CN201510964701A CN105608638A CN 105608638 A CN105608638 A CN 105608638A CN 201510964701 A CN201510964701 A CN 201510964701A CN 105608638 A CN105608638 A CN 105608638A
- Authority
- CN
- China
- Prior art keywords
- code data
- meter
- table code
- data
- electric energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 4
- 238000012545 processing Methods 0.000 claims abstract description 33
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 238000003064 k means clustering Methods 0.000 claims abstract description 11
- 238000007621 cluster analysis Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 abstract description 6
- 238000010801 machine learning Methods 0.000 abstract description 5
- 238000007418 data mining Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 3
- 101001122448 Rattus norvegicus Nociceptin receptor Proteins 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
本发明公开了一种评价智能终端与电能表的表码数据同步状态的方法,包括:从数据主站获取一预设时间内智能终端和电能表所采集的所有表码数据,并对表码数据进行预处理;根据表码数据在整点时刻上的存在情况进行去值化处理及异或处理;采用K-均值聚类算法对异或处理后的表码数据进行聚类分析,以得到聚类结果;根据聚类结果评价智能终端与电能表的表码数据的同步状态。与现有技术相比,该方法可以及时发现计量自动化系统中的电能表与智能终端采集数据的差异,从而对电网运行状态有一个整体的认识,提升了采集终端的运维水平,提高了终端完整率,且该方法是数据挖掘及机器学习在电网数据中的有效应用。本发明同时公开了一种系统。
The invention discloses a method for evaluating the synchronous state of meter code data of an intelligent terminal and an electric energy meter, which includes: obtaining all meter code data collected by the intelligent terminal and the electric energy meter within a preset time from a data master station, and comparing the meter code The data is preprocessed; devaluation processing and XOR processing are performed according to the existence of table code data at the hour; K-means clustering algorithm is used to cluster and analyze table code data after XOR processing to obtain Clustering results; evaluate the synchronization status of the smart terminal and the meter code data of the electric energy meter according to the clustering results. Compared with the existing technology, this method can timely discover the difference between the data collected by the electric energy meter in the metering automation system and the intelligent terminal, so as to have an overall understanding of the operation status of the power grid, improve the operation and maintenance level of the collection terminal, and improve the terminal performance. Integrity rate, and this method is an effective application of data mining and machine learning in power grid data. The invention also discloses a system.
Description
技术领域technical field
本发明涉及电力信息技术领域,尤其涉及一种评价智能终端与电能表的表码数据同步状态的方法及其系统。The invention relates to the technical field of electric power information, in particular to a method and system for evaluating the synchronization state of meter code data of an intelligent terminal and an electric energy meter.
背景技术Background technique
数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。Data is one of an organization's most valuable assets. There is a direct link between an enterprise's data quality and business performance, and high-quality data can keep a company competitive and invincible in times of economic turmoil. With pervasive in-depth data quality, businesses can trust all data for all needs at any time.
在智能电网中,影响电力数据质量的因素主要包括数据完整性和数据准确性。其中,数据完整性约束包括实体完整性约束、参照完整性约束、函数依赖约束、统计约束四类。而智能电网中的计量自动化终端通常会发生通信故障和记录时间对不齐等问题,这些问题在数据中心中直接反应为数据记录缺失和约束不严格。基于此,有必要研究计量自动化智能终端和电能表终端采集到的电能量表码数据在缺失同步性上的整体趋势,从而对电网运行状态有一个整体的认识,提升采集终端的运维水平,提高终端完整率。In the smart grid, the factors affecting the quality of power data mainly include data integrity and data accuracy. Among them, data integrity constraints include entity integrity constraints, referential integrity constraints, functional dependency constraints, and statistical constraints. However, the measurement automation terminal in the smart grid usually has problems such as communication failure and misalignment of recording time. These problems are directly reflected in the data center as missing data records and loose constraints. Based on this, it is necessary to study the overall trend of the lack of synchronization of the electric energy meter code data collected by the metering automation intelligent terminal and the electric energy meter terminal, so as to have an overall understanding of the operating status of the power grid and improve the operation and maintenance level of the collection terminal. Improve terminal integrity.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供一种评价智能终端与电能表的表码数据同步状态的方法及其系统,以分析智能终端和电能表的运行状态和数据传输的一致性,利于运维工作人员掌握计量自动化系统端运行状态,提升采集终端的运维水平及终端数据完整率。The technical problem to be solved by the present invention is to provide a method and system for evaluating the synchronous state of the code data of the smart terminal and the electric energy meter, so as to analyze the operating state and the consistency of data transmission of the intelligent terminal and the electric energy meter, which is beneficial to operation and maintenance The staff master the operation status of the metering automation system, and improve the operation and maintenance level of the collection terminal and the terminal data integrity rate.
为解决上述技术问题,本发明采用的技术方案如下:In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
提供一种评价智能终端与电能表的表码数据同步状态的方法,包括步骤:A method for evaluating the synchronization state of the meter code data of the smart terminal and the electric energy meter is provided, including steps:
从数据主站获取一预设时间内智能终端和电能表所采集的所有表码数据,并对表码数据进行预处理;Obtain all the meter code data collected by the smart terminal and the electric energy meter within a preset period of time from the data master station, and preprocess the meter code data;
根据表码数据在整点时刻上的存在情况,对预处理后的表码数据进行去值化处理;According to the existence of the table code data at the whole point, devalue the preprocessed table code data;
对去值化处理后的两份表码数据进行异或处理;Perform XOR processing on the two table code data after devaluation processing;
采用K-均值聚类算法对异或处理后的表码数据进行聚类分析,以得到聚类结果;Use the K-means clustering algorithm to perform clustering analysis on the table code data after XOR processing to obtain the clustering results;
根据聚类结果评价智能终端与电能表的表码数据的同步状态。According to the clustering results, the synchronization status of the code data of the smart terminal and the electric energy meter is evaluated.
与现有技术相比,该方法先从数据主站获取一预设时间内智能终端和电能表所采集的所有表码数据,并对其进行预处理及去值化处理,之后对两份数据进行异或处理以整合数据,接着采用及其学习中的K-均值聚类算法(即KMEANS算法)对处理后的数据进行聚类分析,最后根据聚类分析结果对智能终端和电能表的表码数据进行同步状态的整体评价;该方法可以及时发现计量自动化系统中的电能表与智能终端采集数据的差异,从而对电网运行状态有一个整体的认识,提升了采集终端的运维水平,提高了终端完整率,且该方法是数据挖掘及机器学习在电网数据中的有效应用,对数据质量的提升具有一定的指导意义。Compared with the existing technology, this method first obtains all the meter code data collected by the smart terminal and the electric energy meter within a preset period of time from the data master station, and performs preprocessing and devalue processing on it, and then the two data Carry out XOR processing to integrate the data, and then use the K-means clustering algorithm (ie KMEANS algorithm) in its learning to perform cluster analysis on the processed data, and finally perform cluster analysis on the smart terminals and electric energy meters according to the cluster analysis results. The overall evaluation of the synchronization state of the code data; this method can timely discover the difference between the energy meter in the metering automation system and the data collected by the smart terminal, so as to have an overall understanding of the operating state of the power grid, improve the operation and maintenance level of the collection terminal, and improve The complete rate of the terminal is obtained, and this method is an effective application of data mining and machine learning in power grid data, which has certain guiding significance for the improvement of data quality.
相应地,本发明还提供了一种评价智能终端与电能表的表码数据同步状态的系统,包括:Correspondingly, the present invention also provides a system for evaluating the synchronization state of the code data of the smart terminal and the electric energy meter, including:
获取模块,用于从数据主站获取一预设时间内智能终端和电能表所采集的所有表码数据,并对表码数据进行预处理;The acquisition module is used to acquire all the meter code data collected by the smart terminal and the electric energy meter within a preset time from the data master station, and preprocess the meter code data;
去值化处理模块,用于根据表码数据在整点时刻上的存在情况,对预处理后的表码数据进行去值化处理;A devaluation processing module is used to devalue the preprocessed table code data according to the existence of the table code data at the hour;
异或处理模块,用于对去值化处理后的表码数据进行异或处理;The XOR processing module is used to perform XOR processing on the table code data after the devaluation processing;
分析模块,用于采用K-均值聚类算法对异或处理后的表码数据进行聚类分析,以得到聚类结果;The analysis module is used to perform cluster analysis on the table code data after XOR processing by using the K-means clustering algorithm to obtain a clustering result;
评价模块,用于根据聚类结果评价智能终端与电能表的表码数据的同步状态。The evaluation module is used to evaluate the synchronization state of the smart terminal and the meter code data of the electric energy meter according to the clustering result.
附图说明Description of drawings
图1为本发明评价智能终端与电能表的表码数据同步状态的方法的主流程图。Fig. 1 is the main flow chart of the method for evaluating the synchronization state of the meter code data of the smart terminal and the electric energy meter in the present invention.
图2为本发明方法一实施例的流程图。Fig. 2 is a flowchart of an embodiment of the method of the present invention.
图3为图2中步骤S207的子流程图。FIG. 3 is a sub-flow chart of step S207 in FIG. 2 .
图4为本发明评价智能终端与电能表的表码数据同步状态的系统的结构框图。Fig. 4 is a structural block diagram of the system for evaluating the synchronization state of the smart terminal and the meter code data of the electric energy meter according to the present invention.
图5为图4中装置300的结构框图。FIG. 5 is a structural block diagram of the device 300 in FIG. 4 .
图6为图5中分析模块的结构框图。FIG. 6 is a structural block diagram of the analysis module in FIG. 5 .
具体实施方式detailed description
现在参考附图描述本发明的实施例,附图中类似的元件标号代表类似的元件。Embodiments of the present invention will now be described with reference to the drawings, in which like reference numerals represent like elements.
请参考图1,本发明评价智能终端与电能表的表码数据同步状态的方法,包括:Please refer to Fig. 1, the method for evaluating the data synchronization state of the smart terminal and the electric energy meter in the present invention includes:
S101,从数据主站获取一预设时间内智能终端和电能表所采集的所有表码数据,并对表码数据进行预处理;S101. Obtain all the meter code data collected by the smart terminal and the electric energy meter within a preset period of time from the data master station, and preprocess the meter code data;
S102,根据表码数据在整点时刻上的存在情况,对预处理后的表码数据进行去值化处理;S102, according to the presence of the table code data at the hour, devalue the preprocessed table code data;
S103,对去值化处理后的两份表码数据进行异或处理;S103, performing XOR processing on the two sets of table code data after the devaluation processing;
S104,采用K-均值聚类算法对异或处理后的表码数据进行聚类分析,以得到聚类结果;S104, using the K-means clustering algorithm to perform cluster analysis on the XOR-processed table code data to obtain a clustering result;
S105,根据聚类结果评价智能终端与电能表的表码数据的同步状态。S105, evaluating the synchronization state of the meter code data of the smart terminal and the electric energy meter according to the clustering result.
再请参考图2,在本发明的一优选实施例中,该方法具体包括:Please refer to Fig. 2 again, in a preferred embodiment of the present invention, this method specifically comprises:
S201,通过智能终端和电能表分别采集整点时刻的表码数据,即智能终端和电能表采集表码数据的频率为1h一次。S201, respectively collect meter code data on the hour through the smart terminal and the electric energy meter, that is, the frequency of collecting meter code data by the smart terminal and the electric energy meter is once every hour.
S202,电能表所采集的表码数据通过485总线传输至智能终端。S202, the meter code data collected by the electric energy meter is transmitted to the intelligent terminal through the 485 bus.
S203,智能终端将两份表码数据通过GPRS网络传输至数据主站;具体地,智能终端包含信号传输模块,可以将自身采集到的和电能表传输来的这两份冗余的数据一并通过GPRS移动网络传输到数据主站。需要说明的是,当发生硬件损坏、SIM故障、485规约错误、无信号等软硬件问题时,传输采集到的表码数据至主站便会发生缺失或者数据损坏。且,发送至数据主站的表码数据包含了用户实时用电信息,其所包含的具体内容如表1所示:S203, the intelligent terminal transmits the two sets of meter code data to the data master station through the GPRS network; specifically, the intelligent terminal includes a signal transmission module, which can combine the two sets of redundant data collected by itself and transmitted by the electric energy meter It is transmitted to the data master station through the GPRS mobile network. It should be noted that when there are software and hardware problems such as hardware damage, SIM failure, 485 protocol error, no signal, etc., the data collected by the watch code will be lost or damaged when it is transmitted to the master station. Moreover, the table code data sent to the data master station contains the user's real-time power consumption information, and the specific content contained in it is shown in Table 1:
表1:表码数据样例表Table 1: Table Code Data Sample Table
S204,从数据主站获取一预设时间内智能终端和电能表所采集的所有表码数据,并对,表码数据进行预处理;具体地,从数据主站获取2014年12月1日当天所有的智能终端和电能表采集到的表码数据,判断任一条表码数据的重要字段是否发生缺失,若发生缺失,则抛弃该条表码数据并视该条表码数据为空。S204. Obtain from the data master station all the meter code data collected by the smart terminal and the electric energy meter within a preset period of time, and preprocess the meter code data; specifically, obtain the date of December 1, 2014 from the data master station All the meter code data collected by the smart terminal and the electric energy meter judge whether any important field of the meter code data is missing, and if it is missing, discard the meter code data and regard the meter code data as empty.
S205,根据表码数据在整点时刻上的存在情况,对预处理后的表码数据进行去值化处理;具体地,每份智能终端和电能表的表码数据根据其在相应的整点时间的数据存在与否,化为表2所示的数据格式:S205. According to the existence of the meter code data at the hour, devalue the preprocessed meter code data; specifically, the meter code data of each smart terminal and electric energy meter is Whether the time data exists or not is converted into the data format shown in Table 2:
表2:评价模型数据选取Table 2: Evaluation model data selection
其中POINTID代表智能终端或者电能表的数据点编号,BM0、BM1、…、BM23分别代表数据在0点时刻、1点时刻、…、23点时刻的数据存在与否,若数据存在则标记为1,否则标记为0。Among them, POINTID represents the data point number of the smart terminal or electric energy meter, and BM0, BM1, ..., BM23 respectively represent whether the data exists at 0:00, 1:00, ..., 23:00, and if the data exists, it is marked as 1 , otherwise marked as 0.
S206,对去值化处理后的两份所述表码数据进行异或处理;具体地,将去值化并整理好格式的智能终端和电能表的两份数据在相应的时间位置上进行异或处理,得到如表3所示的数据:S206, perform XOR processing on the two pieces of meter code data after the devaluation processing; specifically, perform XOR processing on the two pieces of data of the smart terminal and the electric energy meter that have been devalued and formatted in a corresponding time position. Or process to get the data shown in Table 3:
表3:评价模型数据构造Table 3: Evaluation model data structure
其中POINTID代表智能终端的数据点编号,DATATIME代表数据时间,以天为准,XOR0、XOR1、…、XOR23分别代表互相关联的智能终端和电能表在0点时刻、1点时刻、…、23点时刻的去值化后的数据的异或结果,若智能终端和电能表的表码数据均缺失或者均存在则标记为1,否则标记为0。Among them, POINTID represents the data point number of the smart terminal, DATATIME represents the data time, which is based on the day, and XOR0, XOR1, ..., XOR23 respectively represent the interconnected smart terminal and the electric energy meter at 0:00, 1:00, ..., 23:00 The XOR result of the devalued data at time, if the meter code data of the smart terminal and the electric energy meter are missing or both exist, it is marked as 1, otherwise it is marked as 0.
S207,采用K-均值聚类算法对异或处理后的所述表码数据进行聚类分析,以得到聚类结果。考虑到计量自动化系统采集的表码数据并没有完整性标注,且需要从原始的表码数据中辨别出智能终端和电能表采集到的数据的差异,因此使用无监督的机器学习模型比较合适,其中K-均值聚类算法可以将相似的对象归到同一个簇中并且易于实现,在海量数据处理中有应用优势。其中,K-均值聚类算法具体步骤将在下文详述。S207. Perform cluster analysis on the XOR-processed table code data by using a K-means clustering algorithm to obtain a clustering result. Considering that the meter code data collected by the metering automation system is not completely marked, and it is necessary to distinguish the difference between the data collected by the smart terminal and the electric energy meter from the original meter code data, it is more appropriate to use an unsupervised machine learning model. Among them, the K-means clustering algorithm can group similar objects into the same cluster and is easy to implement, and has application advantages in massive data processing. Among them, the specific steps of the K-means clustering algorithm will be described in detail below.
S208,根据聚类结果评价所述智能终端与电能表的表码数据的同步状态。S208. Evaluate the synchronization state of the smart terminal and the meter code data of the electric energy meter according to the clustering result.
具体地,请参考图3,步骤S207包括:Specifically, referring to FIG. 3, step S207 includes:
S2071,设定多个簇,提取任一条所述表码数据并将该条表码数据分配于任一簇中;S2071, setting multiple clusters, extracting any one of the table code data and distributing the table code data in any cluster;
S2072,设定算法中K的数值;其中,K由所述聚类结果的精度确定,如果想让数据结果更加精准,可以是当地增加K的数值,在本实施例中,取K=4;S2072, setting the value of K in the algorithm; wherein, K is determined by the accuracy of the clustering result, if you want to make the data result more accurate, you can increase the value of K locally, in this embodiment, take K=4;
S2073,随机确定K个初始点作为各个簇的初始质心,根据剩余的表码数据与各个簇的初始质心的欧式距离,将剩余的表码数据分配到最相近的簇中;S2073, randomly determining K initial points as the initial centroids of each cluster, and assigning the remaining table code data to the closest cluster according to the Euclidean distance between the remaining table code data and the initial centroid of each cluster;
S2074,计算每一个簇中所有表码数据的均值,并将均值作为该簇的新质心;S2074, calculate the mean value of all table code data in each cluster, and use the mean value as the new centroid of the cluster;
S2075,根据新质心重新分配所有的表码数据;S2075, redistribute all table code data according to the new centroid;
S2076,迭代S2074和S2075直到所有的所述表码数据分配不再变化;S2076, iterating S2074 and S2075 until all the table code data allocations no longer change;
S2077,将所有的表码数据均分类到其应属的类别。S2077. Classify all table code data into their proper categories.
相应地,请参考图4,本发明还提供了一种评价智能终端与电能表的表码数据同步状态的系统,该系统包括电能表100、智能终端200及装置300,装置300与数据主站400连接。其中,电能表100和智能终端200用于分别采集整点时刻的表码数据,电能表100所采集的表码数据通过485总线传输至智能终端200,智能终端200将两份表码数据通过GPRS网络传输至数据主站400,装置300从数据主站400获取表码数据以完成评价智能终端200与电能表100的表码数据同步状态的评价。Correspondingly, referring to FIG. 4, the present invention also provides a system for evaluating the synchronization state of the meter code data of the smart terminal and the electric energy meter. 400 connections. Among them, the electric energy meter 100 and the intelligent terminal 200 are used to collect the meter code data at the hour respectively, and the meter code data collected by the electric energy meter 100 is transmitted to the intelligent terminal 200 through the 485 bus, and the intelligent terminal 200 transmits the two meter code data through the GPRS The network is transmitted to the data master station 400, and the device 300 obtains the meter code data from the data master station 400 to complete the evaluation of the synchronization status of the meter code data of the smart terminal 200 and the electric energy meter 100.
再请参考图5,装置300包括:Please refer to FIG. 5 again, the device 300 includes:
获取模块30,用于从数据主站400获取一预设时间内智能终端200和电能表100所采集的所有表码数据,并对表码数据进行预处理;其中,预设时间为24小时。The acquiring module 30 is used to acquire all the meter code data collected by the smart terminal 200 and the electric energy meter 100 within a preset time from the data master station 400, and preprocess the meter code data; wherein, the preset time is 24 hours.
去值化处理模块31,用于根据表码数据在整点时刻上的存在情况,对预处理后的表码数据进行去值化处理;The devaluation processing module 31 is used to carry out devaluation processing to the preprocessed table code data according to the existence of the table code data at the whole hour;
异或处理模块32,用于对去值化处理后的表码数据进行异或处理;XOR processing module 32, for carrying out XOR processing to the table code data after devalue processing;
分析模块33,用于采用K-均值聚类算法对异或处理后的所述表码数据进行聚类分析,以得到聚类结果;An analysis module 33, configured to use a K-means clustering algorithm to perform cluster analysis on the XOR-processed table code data to obtain a clustering result;
评价模块34,用于根据聚类结果评价智能终端与电能表的表码数据的同步状态。The evaluation module 34 is used to evaluate the synchronization state of the smart terminal and the meter code data of the electric energy meter according to the clustering result.
具体地,获取模块30具体包括:Specifically, the acquisition module 30 specifically includes:
获取单元,用于从数据主站400获取一预设时间内智能终端200和电能表100所采集的所有表码数据;An acquisition unit, configured to acquire all meter code data collected by the smart terminal 200 and the electric energy meter 100 within a preset period of time from the data master station 400;
预处理单元,用于判断任一条表码数据的重要字段是否发生缺失、并根据判断结果抛弃该条表码数据并视该条表码数据为空。The preprocessing unit is used for judging whether an important field of any piece of table code data is missing, discarding the piece of table code data according to the judgment result and treating the piece of table code data as empty.
具体地,请参考图6,分析模块33包括:Specifically, referring to FIG. 6, the analysis module 33 includes:
设定单元331,用于设定多个簇和算法中K的数值,其中,K由所述聚类结果的精度确定,且K=4;A setting unit 331, configured to set the value of K in multiple clusters and algorithms, wherein K is determined by the accuracy of the clustering result, and K=4;
提取单元332,用于提取任一条表码数据并将该条表码数据分配于任一簇中;Extraction unit 332, for extracting any table code data and distributing the table code data in any cluster;
确定单元333,用于随机确定K个初始点作为各个簇的初始质心;A determining unit 333, configured to randomly determine K initial points as the initial centroids of each cluster;
第一分配单元334,用于根据剩余的表码数据与各个簇的初始质心的欧式距离将剩余的表码数据分配到最相近的簇中;The first allocation unit 334 is used for distributing the remaining table code data to the closest cluster according to the Euclidean distance between the remaining table code data and the initial centroid of each cluster;
计算单元335,用于计算每一个簇中所有表码数据的均值,并将均值作为该簇的新质心;Calculation unit 335, used to calculate the mean value of all table code data in each cluster, and use the mean value as the new centroid of the cluster;
第二分配单元336,根据新质心重新分配所有的表码数据;The second distribution unit 336 redistributes all table code data according to the new centroid;
迭代单元337,用于迭代计算单元和第二分配单元336中的数据直到所有的表码数据分配不再变化;The iteration unit 337 is used to iterate the data in the calculation unit and the second allocation unit 336 until all table code data allocations no longer change;
分类单元338,用于将所有的表码数据均分类到其应属的类别。The classification unit 338 is configured to classify all table code data into their proper categories.
从以上描述可以看出,本发明的方法及其系统具有以下优点:As can be seen from the above description, the method and system of the present invention have the following advantages:
(1)将电能表和智能终端收集到的电能量数据进行去值化操作,得到了代表其在相应时间上的数据存在与否,然后对经过处理的数据在相应时间位上进行异或操作,最后使用机器学习算法对数据进行整体的聚类,得到了数据同步状态的整体评价;(1) Devalue the electric energy data collected by the electric energy meter and the intelligent terminal, and obtain the existence or non-existence of the data representing it at the corresponding time, and then perform the XOR operation on the processed data at the corresponding time position , and finally use the machine learning algorithm to cluster the data as a whole, and get the overall evaluation of the data synchronization status;
(2)建立了预测模型经过严格的逻辑推理和实验论证,能及时发现计量自动化系统中的电能表与智能终端采集数据的差异,从而对电网运行状态有一个整体的认识,提升了采集终端的运维水平,提高了终端完整率,且该方法是数据挖掘及机器学习在电网数据中的有效应用,对数据质量的提升具有一定的指导意义。(2) The prediction model has been established. After strict logical reasoning and experimental demonstration, the difference between the energy meter in the metering automation system and the data collected by the smart terminal can be found in time, so as to have an overall understanding of the operating status of the power grid and improve the collection terminal. The operation and maintenance level improves the terminal integrity rate, and this method is an effective application of data mining and machine learning in power grid data, which has certain guiding significance for the improvement of data quality.
以上结合最佳实施例对本发明进行了描述,但本发明并不局限于以上揭示的实施例,而应当涵盖各种根据本发明的本质进行的修改、等效组合。The present invention has been described above in conjunction with the best embodiments, but the present invention is not limited to the above-disclosed embodiments, but should cover various modifications and equivalent combinations made according to the essence of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510964701.1A CN105608638B (en) | 2015-12-21 | 2015-12-21 | A method and system for judging the synchronization state of meter code data between an intelligent terminal and an electric energy meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510964701.1A CN105608638B (en) | 2015-12-21 | 2015-12-21 | A method and system for judging the synchronization state of meter code data between an intelligent terminal and an electric energy meter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105608638A true CN105608638A (en) | 2016-05-25 |
CN105608638B CN105608638B (en) | 2019-10-22 |
Family
ID=55988556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510964701.1A Active CN105608638B (en) | 2015-12-21 | 2015-12-21 | A method and system for judging the synchronization state of meter code data between an intelligent terminal and an electric energy meter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105608638B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109635950A (en) * | 2018-11-30 | 2019-04-16 | 国网上海市电力公司 | The electric energy meter method for monitoring operation states clustered based on genetic algorithm and corporations |
CN110321389A (en) * | 2019-05-14 | 2019-10-11 | 南京浦和数据有限公司 | A kind of electric energy meter device class recognition methods based on Time Series Clustering |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101557111A (en) * | 2009-05-20 | 2009-10-14 | 重庆市电力公司 | Intelligent acquired electricity consumption data screening processing system |
CN104183110A (en) * | 2014-09-05 | 2014-12-03 | 国家电网公司 | Automatic production line device checking system applied to acquisition terminal and automatic production line device checking method applied to acquisition terminal |
CN104655926A (en) * | 2015-02-10 | 2015-05-27 | 南京正泰龙科技有限公司 | Embedded terminal capable of monitoring electricity utilization information and electric charge data and monitoring method thereof |
CN205384740U (en) * | 2015-12-14 | 2016-07-13 | 国网重庆市电力公司电力科学研究院 | Terminal Test system device is gathered to digital intelligent electric flux |
CN106056896A (en) * | 2016-06-23 | 2016-10-26 | 国网天津市电力公司 | Intelligent power utilization system and test method based on low-voltage power line carrier |
-
2015
- 2015-12-21 CN CN201510964701.1A patent/CN105608638B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101557111A (en) * | 2009-05-20 | 2009-10-14 | 重庆市电力公司 | Intelligent acquired electricity consumption data screening processing system |
CN104183110A (en) * | 2014-09-05 | 2014-12-03 | 国家电网公司 | Automatic production line device checking system applied to acquisition terminal and automatic production line device checking method applied to acquisition terminal |
CN104655926A (en) * | 2015-02-10 | 2015-05-27 | 南京正泰龙科技有限公司 | Embedded terminal capable of monitoring electricity utilization information and electric charge data and monitoring method thereof |
CN205384740U (en) * | 2015-12-14 | 2016-07-13 | 国网重庆市电力公司电力科学研究院 | Terminal Test system device is gathered to digital intelligent electric flux |
CN106056896A (en) * | 2016-06-23 | 2016-10-26 | 国网天津市电力公司 | Intelligent power utilization system and test method based on low-voltage power line carrier |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109635950A (en) * | 2018-11-30 | 2019-04-16 | 国网上海市电力公司 | The electric energy meter method for monitoring operation states clustered based on genetic algorithm and corporations |
CN110321389A (en) * | 2019-05-14 | 2019-10-11 | 南京浦和数据有限公司 | A kind of electric energy meter device class recognition methods based on Time Series Clustering |
CN110321389B (en) * | 2019-05-14 | 2023-06-23 | 南京浦和数据有限公司 | Electric energy meter equipment category identification method based on time sequence clustering |
Also Published As
Publication number | Publication date |
---|---|
CN105608638B (en) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109492774B (en) | Deep learning-based cloud resource scheduling method | |
CN103440539B (en) | A method for processing user electricity data | |
WO2022247955A1 (en) | Abnormal account identification method, apparatus and device, and storage medium | |
CN106803799B (en) | Performance test method and device | |
CN106685674A (en) | Network event prediction and method and device for establishing network event prediction model | |
CN106530132A (en) | Power load clustering method and device | |
CN112819299A (en) | Differential K-means load clustering method based on center optimization | |
CN103325071A (en) | User typical load curve construction method based on density clustering | |
CN105844294A (en) | Electricity usage behavior analysis method based on FCM cluster algorithm | |
CN105825232A (en) | Classification method and device for electromobile users | |
CN104102706A (en) | Hierarchical clustering-based suspicious taxpayer detection method | |
CN114066073A (en) | Grid Load Forecasting Method | |
CN114897097A (en) | Power consumer portrait method, device, equipment and medium | |
CN112365070A (en) | Power load prediction method, device, equipment and readable storage medium | |
CN105653670A (en) | A method of intelligent power consumption data mining based on manifold learning clustering algorithm | |
CN112508512B (en) | Power grid engineering cost data management method, device and terminal equipment | |
CN107274066A (en) | A kind of shared traffic Customer Value Analysis method based on LRFMD models | |
CN105608638B (en) | A method and system for judging the synchronization state of meter code data between an intelligent terminal and an electric energy meter | |
CN110188255A (en) | Power user behavior mining method and system based on business data sharing and fusion | |
CN116304673A (en) | Model training method, device and computer equipment for abnormal electricity consumption recognition | |
CN117151934B (en) | A multi-dimensional cluster analysis method and device for distribution network uninterrupted operation projects | |
CN112949697A (en) | Method and device for confirming pipeline abnormity and computer readable storage medium | |
CN112612934A (en) | User charging behavior portrait processing method and device | |
CN109871998A (en) | A method and device for predicting line loss rate of distribution network based on expert sample library | |
CN114971532A (en) | Enterprise full-channel member management method and system based on big data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |