CN105608118B - 基于用户交互信息的结果推送方法 - Google Patents

基于用户交互信息的结果推送方法 Download PDF

Info

Publication number
CN105608118B
CN105608118B CN201510930067.XA CN201510930067A CN105608118B CN 105608118 B CN105608118 B CN 105608118B CN 201510930067 A CN201510930067 A CN 201510930067A CN 105608118 B CN105608118 B CN 105608118B
Authority
CN
China
Prior art keywords
user
context
push
interest
result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510930067.XA
Other languages
English (en)
Other versions
CN105608118A (zh
Inventor
董政
吴文杰
陈露
李学生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongguan Shuke Chengdu Network Technology Co ltd
Original Assignee
Chengdu Mo Yun Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Mo Yun Science And Technology Ltd filed Critical Chengdu Mo Yun Science And Technology Ltd
Priority to CN201510930067.XA priority Critical patent/CN105608118B/zh
Publication of CN105608118A publication Critical patent/CN105608118A/zh
Application granted granted Critical
Publication of CN105608118B publication Critical patent/CN105608118B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明提供了一种基于用户交互信息的结果推送方法,该方法包括:通过用户的交互行为获取用户兴趣特征,检索与当前用户兴趣相似的近邻用户以及与当前上下文相似的历史上下文集合;基于所述上下文集合进行协同过滤推送,为目标用户生成推送结果。本发明提出了一种基于用户交互信息的结果推送方法,通过分析用户兴趣获得用户的需求,提高用户获取所需信息和信息推送的效率。

Description

基于用户交互信息的结果推送方法
技术领域
本发明涉及大数据,特别涉及一种基于用户交互信息的结果推送方法。
背景技术
随着互联网的发展及普及,信息爆炸性增长使用户难以及时准确地发现有用的数据源,导致人们在获取丰富的数据源过程中受到信息过载的困扰。如何帮助用户从激增的海量信息中获取有效的数据源,主动地为用户提供更丰富、全面并符合其潜在需求的数据源,给电子商务领域技术带来了极大的挑战。然而,当前技术中忽略了具体环境对用户兴趣的影响。另一方面,面对众多资源,现有的方案根据用户对资源的评价信息产生的推送,这种基于项目记分的推送只能体现用户对项目整体的兴趣情况。然而实际上用户对项目资源的评价往往是根据它所具有的属性特征产生的,因此根据仅仅根据用户对资源的整体记分而产生的推送结果往往具有片面性。
发明内容
为解决上述现有技术所存在的问题,本发明提出了一种基于用户交互信息的结果推送方法,包括:
通过用户的交互行为获取用户兴趣特征,检索与当前用户兴趣相似的近邻用户以及与当前上下文相似的历史上下文集合;基于所述上下文集合进行协同过滤推送,为目标用户生成推送结果。
优选地,所述推送系统包括数据层、计算层和应用层,数据层提供数据组织模块,通过对相关数据源的整合,采用语义化的方式构建相应的模型;计算层根据数据层所提供的信息,为推送的实现提供计算服务,包括兴趣采集模块、上下文计算模块、语义匹配模块以及推送生成模块,所述兴趣采集模块根据数据层提供的上下文知识和用户知识,提供深度信念网络概率计算获取用户兴趣信息,所述上下文计算模块用于根据用户当前的上下文信息,在数据层的模型中采用预定义的计算规则来获取扩展的上下文信息以及用户兴趣的相关信息,所述语义匹配模块用于对各种数据源之间的进行语义相似匹配,进而获取各种资源之间的相似度情况;所述推送生成模块用于根据上下文计算模块和语义匹配模块所提供的知识,生成与用户上下文及需求相似的最终推送结果;应用层提供用户与推送服务的交互,通过用户对推送结果的反馈信息,更新数据层的用户相关模型。
优选地,所述基于所述上下文集合进行协同过滤推送,为目标用户生成推送结果,进一步包括:
提取己获取的用户兴趣数据信息,以及对用户兴趣相关联的上下文;对当前上下文数据、历史上下文数据相关的用户行为记录进行预处理;从用户对项目属性的兴趣和用户对项目的记分来计算用户之间的相似性,进而找到邻居集合,将上下文的相似度匹配及上下文关键度值加入推送生成过程中;根据用户当前的上下文,采用基于上下文的关键词过滤方法产生对项目资源的推送结果;根据协同过滤和关键词过滤所产生的推送结果,生成最终推送结果的访问序列,将该推送结果通过界面反馈给用户。
本发明相比现有技术,具有以下优点:
本发明提出了一种基于用户交互信息的结果推送方法,通过分析用户兴趣获得用户的需求,提高用户获取所需信息和信息推送的效率。
附图说明
图1是根据本发明实施例的基于用户交互信息的结果推送方法的流程图。
具体实施方式
下文与图示本发明原理的附图一起提供对本发明一个或者多个实施例的详细描述。结合这样的实施例描述本发明,但是本发明不限于任何实施例。本发明的范围仅由权利要求书限定,并且本发明涵盖诸多替代、修改和等同物。在下文描述中阐述诸多具体细节以便提供对本发明的透彻理解。出于示例的目的而提供这些细节,并且无这些具体细节中的一些或者所有细节也可以根据权利要求书实现本发明。
本发明的一方面提供了一种基于用户交互信息的结果推送方法。图1是根据本发明实施例的基于用户交互信息的结果推送方法流程图。
本发明建立包含上下文实体、用户实体和项目实体的推送方法。针对上下文与用户兴趣之间的关系,根据推送方法中各个实体要素之间的联系建立用户兴趣模型,表述用户上下文及其兴趣之间的关联关系,并分析用户在某个特定上下文中的兴趣;计算上下文信息熵和上下文关键度值的概念,并计算上下文信息熵值以及上下文要素的关键度值,根据这些上下文的关键度值来计算用户兴趣。基于上下文的结合协同过滤和关键词过滤的进行合并推送。首先结合用户对项目的记分和用户对项目属性的兴趣两个方面搜寻目标用户的邻居,并将上下文相似度匹配和上下文关键度值加入基于用户的协同过滤推送的生成过程中,利用协同过滤推送方法;根据当前上下文信息以及用户对项目属性的兴趣,采用基于知识推送的方法生成推送结果;最后通过基于上下文的计算优化方法对两种推送方法产生的结果进行整合而形成最终结果。
在上述所建立的推送方法的基础上,本发明从结构要素和实现过程的角度,建立基于上下文的项目推送逻辑框架。推送框架由输入、推送过程、输出三个阶段组成;该框架包含了知识建模、用户兴趣挖掘、推送生成和用户反馈四个层次。
首先,推送实现的首要任务就是建立关于用户、上下文和项目的推送方法,然后从该模型中提取用于推送过程的有效数据,该部分对应于推送的输入阶段;其次,挖掘用户兴趣,这一过程是推送生成的关键前提;在推送生成部分,将提取的用户兴趣与和当前上下文相似的用户历史行为数据相结合,同时利用领域知识进行语义匹配,进而产生推送结果;最后,将推送结果以排序推送、预测值或其它形式呈现给用户,并根据用户的反馈结果更新推送方法中的用户模型,即为推送的输出阶段。
本发明所建立的推送架构获取用户兴趣,然后结合与当前上下文相似的用户行为记录,基于该领域推送知识的特点采用某种技术生成推送结果。基于推送方法,采用深度信念网络来分析用户在不同上下文中对项目属性类型的兴趣;然后考虑不同上下文对用户兴趣产生影响的差异,计算各种上下文对用户兴趣产生影响的差异。
基于实体概念间丰富的语义关系和逻辑计算功能,根据该模型能够实现对用户兴趣的深层次计算。对己建立的推送方法中的用户实体和上下文实体及其之间的关系进行概率上的扩展,采用概率模型的思想建立基于实体的用户兴趣深度信念网络模型,实现对用户兴趣的计算,进而获取潜在的用户兴趣来过滤不相关的资源项目,并结合基于知识推送的方法进行推送,从而为用户提供满足其需求的结果。
本发明针对上下文、用户和项目资源之间的关系建立用户兴趣的深度信念网络模型。构建用户兴趣深度信念网络模型的步骤如下:
步骤1:将用户上下文和环境上下文插入深度信念网络作为两个不同的上下文根节点,分别将对应的用户上下文和环境上下文本体的概念按照它们在实体中的结构依次插入深度信念网络树中;
步骤2:根据上下文实体中的关系属性,连接步骤1中的节点,使得上述节点之间存在依赖关系;
步骤3:将用户兴趣数据作为深度信念网络中的叶子节点加入到深度信念网络底层中,并将这些代表的用户对项目属性兴趣的叶子节点与项目实体中的项目属性类相关联。
根据上述网络建立过程的描述,将该上下文用户兴趣深度信念网络表示为:
深度信任网络=<Nu,Eu,PN>
其中,Nu为变量集合,Eu为有向边集合,PN为节点变量上的条件概率集合。
基于实体的上下文用户兴趣深度信念网络模型由用户兴趣深度信念网络和基于属性的项目实体两部分构成。
在顶层用户兴趣深度信念网络结构中,由上下文要素Ck、具体上下文实例Ckq,以及用户兴趣pu三部分相应的构成了网络的输入、状态和输出结构。即根节点为环境上下文和用户上下文实体中的相应父概念,上下文实体中的各种上下文要素Ck及相应的各种上下文实例分别按照实体中的层次结构相应的构成了该模型中的父节点,将实体中的用户兴趣作为该网络结构中的叶子节点。
在底层项目实体描述了项目的属性关系概念及其实例,且这两部分通过实体的语义映射刻画了用户兴趣与项目之间的联系。将上下文实例作为深度信任网络中的证据节点,即Ci为Nu中的父节点,用户对项目属性的兴趣则作为计算结果表示为叶子节点,则节点之间的有向弧Eu表示各种上下文之间,以及上下文和用户兴趣之间的概率依赖关系。
本发明识别对用户选择行为或兴趣产生影响的重要上下文要素,并通过对这些上下文要素对用户产生影响的重要程度的计算,进一步分析基于这些重要上下文要素影响下的用户兴趣。计算某一具体上下文实例ckq下,用户选择属性类型为aij的项目的熵值,进而获取用户在该上下文实例下对某属性类型的项目的选择。
Iaij ckq=fckq(aij)logn/fckq(aij)
其中,fckq(aij)表示在上下文实例下,用户u所选择的所有项目中属于属性类型aij的项目的概率。根据具体上下文实例下用户对项目的选择,采用用户在某上下文要素所包含的不同上下文实例下对所选择项目的熵值,来表达该上下文要素所包含的各个实例对用户选择结果的贡献程度。对上下文信息熵的计算过程包含以下几个步骤。
步骤1获取并计算用户反馈信息。
将用户的反馈信息二值化,对于具有用户记分的反馈将其定量化为0和1两种状态值,在上下文实例ckq的影响下,用户u在项目资源空间中对具有属性特征为aij的项目评价值的定义为:
fckq(aij)=count(ur=1|aij)/count(ur=1)
其中,ur取1时表示用户的积极反馈即状态值为1的反馈,count(ur=1|aij)表示用户在上下文实例ckq下对具有属性特征为aij的项目所具有的积极反馈次数,count(ur=1)表示用户在上下文实例ckq下对所有项目所具有的积极反馈次数。
步骤2:产生上下文实例ckq下的评价值集合。
fckq(ai)={fckq(aij),…,fckq(aij)}
其中,aij为项目第i个属性类型下的第j个属性特征。
步骤3:计算上下文实例的熵值。
其中,I(ckq)表示用户在上下文实例ckq下对不同属性类型的项目选择;fckq(aij)表示在上下文实例ckq下,用户u所选择的属性类型ai项目中属于某一特征aij的项目的概率;n为项目所具有的属性类型的个数。
步骤4:计算上下文信息熵,即不同上下文实例分布下相应上下文要素Ck的熵值。
其中,p(ckq)为上下文实例ckq下在给定上下文要素ck样本中的分布,t为该上下文要素中所包含的上下文实例样本的个数。
在推送生成之前,选择那些熵值较小的上下文要素作为推送生成的数据输入。此外,在挖掘用户兴趣时,根据上下文信息熵的大小不断调整用户兴趣深度信念网络模型,去除网络模型中对目标用户的兴趣不起任何作用的上下文要素。根据上下文要素的关键度值以及它所包含的上下文实例来分析用户兴趣。上下文关键度值的计算方式如式:.
DCk=l-E(Ck)
其中,Ck为对用户兴趣相关联的上下文要素,而DCk表示该上下文要素的关键度值。
用户ui在一组上下文信息cd下对项目属性aij的兴趣度计算如下:
其中,ckq是该组上下文信息cd中对该用户的兴趣相关联的上下文实例,p(aij|ckq)为上下文实例ckq下用户对属性特征为aij的项目的初步兴趣值,n为对用户兴趣相关联的上下文实例的个数。
本发明进一步从用户对项目属性特征兴趣和用户记分两方面考虑,提出合并推送方法。首先,采用基于项目属性的语义相似度的协同过滤来填充用户记分矩阵的缺失值,然后从用户对项目属性的兴趣角度出发,结合用户记分共同搜索目标用户的邻居集合;然后将上下文相似度的匹配和上下文关键度值进行协同过滤,产生推送结果集;最后将基于上下文的关键词过滤推送与协同过滤的结果相融合,得到最终的推送结果。基于上下文的项目合并推送的基本流程为:
提取己获取的用户兴趣数据信息,以及对用户兴趣相关联的上下文;然后在推送方法中对当前上下文数据、历史上下文数据相关的用户行为记录进行预处理;
从用户对项目属性的兴趣和用户对项目的记分来计算用户之间的相似性,进而找到邻居集合,然后将上下文的相似度匹配及上下文关键度值加入基于用户的推送生成过程中;
根据用户当前的上下文,采用基于上下文的关键词过滤方法产生对项目资源的推送结果;
根据协同过滤和关键词过滤所产生的推送结果,进而生成最终推送结果的访问序列,并将该推送结果通过界面反馈给用户;通过用户获取推送序列后给出的反馈信息。
在协同过滤推送中,根据不同用户对项目的记分信息产生推送结果。设用户信息为U={u1,u2,…,um},代表用户集合,I={I1,I2,…,Im}为项目资源集合,则A={Rij|ui×Ij}为用户资源记分集合,其中ui∈U,Ij∈I。因此用m*n矩阵A(m,n)表示上述用户记分数据集合,m行和n列分别代表该记分矩阵中有m个用户和n个项目资源,第i行第j列的元素表示用户ui对项目资源Ij的记分。
本发明采用面向服务分层及模块化的方式构建了基于上下文的推送系统体系结构。该架构共分为3层,分别为数据层、计算层和应用层,每一个层次都包含了不同的模块来实现相应层次下的服务。数据层是对实现推送服务中所使用的相关信息源的描述。该层次相应的提供了数据组织模块,通过对相关数据源的整合,采用语义化的方式构建相应的模型,为用户推送的实现提供了知识基础。计算层根据数据层所提供的信息,为推送的实现提供核心服务。该层次包含的模块有兴趣采集模块、上下文计算模块、语义匹配模块以及推送生成模块。兴趣采集模块:根据数据层提供的上下文知识和用户知识,采用深度信念网络概率计算的方法获取用户兴趣信息。上下文计算模块:根据用户当前的上下文信息,在数据层的模型中采用预定义的计算规则来获取扩展的上下文信息以及用户兴趣的相关信息。语义匹配模块:通过基于实体的方法对各种数据源之间的进行语义相似匹配,进而获取各种资源之间的相似度情况,为推送生成模块提供知识支持。推送生成模块:根据上下文计算模块和语义匹配模块所提供的知识,采用一定的方法来生成与用户上下文及需求相似的最终推送结果。应用层提供用户与推送服务的交互服务,通过用户对推送结果的反馈信息,不断更新数据层的用户相关模型。根据本发明提出的推送体系结构,基于上下文的推送服务的实现过程分为以下步骤。推送系统首先通过交互界面实现推送服务于用户之间的信息沟通,根据用户简单的行为操作获取用户的相关上下文信息,收集用户的兴趣特征,依此为推送过程的实现提供信息依据;根据用户的行为记录以及当前上下文,采用深度信念网络计算的方法来分析用户兴趣情况;基于推送用户实体的相关知识,结合用户兴趣,检索与当前用户兴趣相似的近邻用户;结合当前上下文,采用相似度计算的方法检索与当前上下文相似的历史上下文集合;基于上下文建模的推送模式,采用基于上下文的改进协同过滤推送方法,为目标用户生成推送结果;根据当前上下文信息以及用户兴趣,基于推送方法中的预定规则进行关键词过滤推送,生成基于规则知识的推送结果;采用上下文计算优化方法,将关键词过滤与协同过滤中相冲突的结果过滤掉,进而生成最终的推送结果集合并反馈给目标用户。
综上所述,本发明提出了一种基于用户交互信息的结果推送方法,通过分析用户兴趣获得用户的需求,提高用户获取所需信息和信息推送的效率。
显然,本领域的技术人员应该理解,上述的本发明的各模块或各步骤可以用通用的计算系统来实现,它们可以集中在单个的计算系统上,或者分布在多个计算系统所组成的网络上,可选地,它们可以用计算系统可执行的程序代码来实现,从而,可以将它们存储在存储系统中由计算系统来执行。这样,本发明不限制于任何特定的硬件和软件结合。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (3)

1.一种基于用户交互信息的结果推送方法,该方法利用推送系统将感兴趣的内容推送给相关用户,其特征在于,包括:
通过用户的交互行为获取用户兴趣特征,检索与当前用户兴趣相似的近邻用户以及与当前上下文相似的历史上下文集合;基于所述上下文集合进行协同过滤推送,为目标用户生成推送结果;
针对上下文、用户和项目资源之间的关系建立用户兴趣的深度信念网络模型,具体步骤包括:
步骤1:将用户上下文和环境上下文插入深度信念网络作为两个不同的上下文根节点,分别将对应的用户上下文和环境上下文本体的概念按照它们在实体中的结构依次插入深度信念网络树中;
步骤2:根据上下文实体中的关系属性,连接步骤1中的节点,使得上述节点之间存在依赖关系;
步骤3:将用户兴趣数据作为深度信念网络中的叶子节点加入到深度信念网络底层中,并将这些代表的用户对项目属性兴趣的叶子节点与项目实体中的项目属性类相关联。
2.根据权利要求1所述的方法,其特征在于,所述推送系统包括数据层、计算层和应用层,数据层提供数据组织模块,通过对相关数据源的整合,采用语义化的方式构建相应的模型;计算层根据数据层所提供的信息,为推送的实现提供计算服务,包括兴趣采集模块、上下文计算模块、语义匹配模块以及推送生成模块,所述兴趣采集模块根据数据层提供的上下文知识和用户知识,提供深度信念网络概率计算获取用户兴趣信息,所述上下文计算模块用于根据用户当前的上下文信息,在数据层的模型中采用预定义的计算规则来获取扩展的上下文信息以及用户兴趣的相关信息,所述语义匹配模块用于对各种数据源之间的进行语义相似匹配,进而获取各种资源之间的相似度情况;所述推送生成模块用于根据上下文计算模块和语义匹配模块所提供的知识,生成与用户上下文及需求相似的最终推送结果;应用层提供用户与推送服务的交互,通过用户对推送结果的反馈信息,更新数据层的用户相关模型。
3.根据权利要求2所述的方法,其特征在于,所述基于所述上下文集合进行协同过滤推送,为目标用户生成推送结果,进一步包括:
提取己获取的用户兴趣数据信息,以及对用户兴趣相关联的上下文;对当前上下文数据、历史上下文数据相关的用户行为记录进行预处理;从用户对项目属性的兴趣和用户对项目的记分来计算用户之间的相似性,进而找到邻居集合,将上下文的相似度匹配及上下文关键度值加入推送生成过程中;根据用户当前的上下文,采用基于上下文的关键词过滤方法产生对项目资源的推送结果;根据协同过滤和关键词过滤所产生的推送结果,生成最终推送结果的访问序列,将该推送结果通过界面反馈给用户。
CN201510930067.XA 2015-12-15 2015-12-15 基于用户交互信息的结果推送方法 Expired - Fee Related CN105608118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510930067.XA CN105608118B (zh) 2015-12-15 2015-12-15 基于用户交互信息的结果推送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510930067.XA CN105608118B (zh) 2015-12-15 2015-12-15 基于用户交互信息的结果推送方法

Publications (2)

Publication Number Publication Date
CN105608118A CN105608118A (zh) 2016-05-25
CN105608118B true CN105608118B (zh) 2018-12-18

Family

ID=55988058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510930067.XA Expired - Fee Related CN105608118B (zh) 2015-12-15 2015-12-15 基于用户交互信息的结果推送方法

Country Status (1)

Country Link
CN (1) CN105608118B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108920649B (zh) * 2018-06-29 2021-09-17 北京百度网讯科技有限公司 一种信息推荐方法、装置、设备和介质
CN108920716B (zh) * 2018-07-27 2022-11-25 中国电子科技集团公司第二十八研究所 基于知识图谱的数据检索与可视化系统及方法
CN110581802A (zh) * 2019-08-27 2019-12-17 北京邮电大学 基于深度信念网络的全自主智能路由方法及装置
CN113806484B (zh) * 2021-09-18 2022-08-05 橙色云互联网设计有限公司 关于用户需求信息的交互方法、装置以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271559A (zh) * 2008-05-16 2008-09-24 华东师范大学 一种基于用户局部兴趣挖掘的协作推荐系统
CN101287082A (zh) * 2008-05-16 2008-10-15 华东师范大学 一种引入节目热门度权重的协作过滤推荐方法
CN102376063A (zh) * 2011-11-29 2012-03-14 北京航空航天大学 一种基于社会化标签的个性化推荐系统优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271559A (zh) * 2008-05-16 2008-09-24 华东师范大学 一种基于用户局部兴趣挖掘的协作推荐系统
CN101287082A (zh) * 2008-05-16 2008-10-15 华东师范大学 一种引入节目热门度权重的协作过滤推荐方法
CN102376063A (zh) * 2011-11-29 2012-03-14 北京航空航天大学 一种基于社会化标签的个性化推荐系统优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于目标用户近邻修正的协同过滤算法;张佳等;《模式识别与人工智能》;20150930;第28卷(第9期);第802-810页 *
基于近邻用户和近邻项目的协同过滤改进算法;张阳等;《沈阳师范大学学报(自然科学版)》;20120731;第30卷(第3期);第382-385页 *

Also Published As

Publication number Publication date
CN105608118A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN109597855A (zh) 基于大数据驱动的领域知识图谱构建方法及系统
CN105320719B (zh) 一种基于项目标签和图形关系的众筹网站项目推荐方法
CN107609052A (zh) 一种基于语义三角的领域知识图谱的生成方法及装置
CN113806630B (zh) 基于注意力的多视角特征融合跨域推荐方法及装置
Li et al. Spectral clustering in heterogeneous information networks
CN105760443B (zh) 项目推荐系统、项目推荐装置以及项目推荐方法
CA2802887A1 (en) Systems of computerized agents and user-directed semantic networking
Gheisari et al. Data mining techniques for web mining: a survey
CN105608118B (zh) 基于用户交互信息的结果推送方法
CN108875090A (zh) 一种歌曲推荐方法、装置和存储介质
CN113254630B (zh) 一种面向全球综合观测成果的领域知识图谱推荐方法
CN102968465A (zh) 网络信息服务平台及其基于该平台的搜索服务方法
JP2016540332A (ja) 視覚・意味複合ネットワーク、および当該ネットワークを形成するための方法
CN105354339B (zh) 基于上下文的内容个性化提供方法
CN104298785A (zh) 一种众搜资源搜索方法
CN113051468B (zh) 一种基于知识图谱和强化学习的电影推荐方法及系统
Lokoč et al. Using an interactive video retrieval tool for lifelog data
Do et al. Semantic-enhanced neural collaborative filtering models in recommender systems
US20240078473A1 (en) Systems and methods for end-to-end machine learning with automated machine learning explainable artificial intelligence
Yigit et al. Extended topology based recommendation system for unidirectional social networks
CN116561446B (zh) 多模态项目推荐方法、系统及设备和存储介质
CN109062551A (zh) 基于大数据开发命令集的开发框架
Alhaj Ali et al. Distributed data mining systems: techniques, approaches and algorithms
CN111638926A (zh) 人工智能在Django框架中的一种实现方法
CN115293479A (zh) 舆情分析工作流系统及其方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200306

Address after: 571924 3001, floor 2, building A17, Hainan Ecological Software Park, hi tech industry demonstration zone, old town, Chengmai County, Haikou City, Hainan Province

Patentee after: Hainan anmaiyun Technology Co.,Ltd.

Address before: China high tech Zone of Chengdu City, Sichuan province 610041 Road 99, 7 Building 3 layer 312-315

Patentee before: CHENGDU BAIYUN SCIENCE & TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20210128

Address after: 610000 China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan

Patentee after: Delu Power Technology (Chengdu) Co.,Ltd.

Address before: 571924 3001, 2nd floor, building A17, Hainan Ecological Software Park, hi tech Industrial Demonstration Zone, Laocheng Town, Chengmai County, Haikou City, Hainan Province

Patentee before: Hainan anmaiyun Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211129

Address after: No. 505, 5th floor, building 6, No. 599, shijicheng South Road, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610000

Patentee after: Zhongguan Shuke (Chengdu) Network Technology Co.,Ltd.

Address before: 610000 China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan

Patentee before: Delu Power Technology (Chengdu) Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181218

CF01 Termination of patent right due to non-payment of annual fee