CN105606590A - Method for simultaneously determining contents of various elements in soil or deposits - Google Patents
Method for simultaneously determining contents of various elements in soil or deposits Download PDFInfo
- Publication number
- CN105606590A CN105606590A CN201410680284.3A CN201410680284A CN105606590A CN 105606590 A CN105606590 A CN 105606590A CN 201410680284 A CN201410680284 A CN 201410680284A CN 105606590 A CN105606590 A CN 105606590A
- Authority
- CN
- China
- Prior art keywords
- soil
- cadmium
- vanadium
- manganese
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及元素含量的检测技术。The invention relates to detection technology of element content.
背景技术Background technique
我国目前针对土壤或天然水体沉积物监测的标准主要是原国家环境保护总局颁布的《土壤环境监测技术规范》(HJ/T166-2004)、国家水利部颁布的《铅、镉、钒、磷等34种元素的测定》(SL394-2007)和国家质量监督检验检疫总局和国家标准化管理委员会联合颁布的《海洋监测规范》(GB17378-2007)和《土壤质量总汞、总砷、总铅的测定原子荧光法》(GB/T22105-2008)。这些标准采用电热板(大多数元素)或水浴(砷)消解法对土壤或沉积物样品进行前处理,这些方法操作复杂,取样量大,耗费时间和人力,对周边环境污染大。这些标准对不同元素含量的测定方法有不同的规定,如果要调查某一土壤或沉积物样品中砷、镉、铅、钒、锌、锰和磷等多种元素的含量,需多次测定,操作繁杂,耗时耗力且干扰因素多。近年来美国环保局(US-EPA)推荐使用微波消解法对土壤或沉积物进行前处理,该法具有消解快速、回收率高和对环境污染小的优点。我国参考该法制定了《海洋沉积物与海洋生物体中重金属分析前处理微波消解法》(HY/T132-2010),但只适用于铜、铅、镉、锌和铬这五种元素。在元素测定方法上,美国环保局(US-EPA)推荐使用电感耦合等离子体光谱仪(ICP-OES)或电感耦合等离子体质谱仪(ICP-MS),这两种仪器能够一次性测定多种元素,并且具有分析速度快、线性范围宽和精确度高的优势,只是前者比后者的测定上限高,后者比前者的检出限低。为了与国际接轨,并且提高测定多种元素含量的效率和准确度,本发明将微波消解法和ICP-OES/ICP-MS相结合,同时测定了土壤或沉积物中砷、镉、铅、钒、锌、锰和磷元素含量,并优化操作步骤和条件参数,从而扩展了消解方法的适用范围并简化了元素测定操作。my country's current monitoring standards for soil or natural water sediments are mainly "Technical Specifications for Soil Environment Monitoring" (HJ/T166-2004) issued by the former State Environmental Protection Administration, and "Lead, Cadmium, Vanadium, Phosphorus, etc." issued by the Ministry of Water Resources. "Determination of 34 Elements" (SL394-2007) and "Marine Monitoring Regulations" (GB17378-2007) jointly promulgated by the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and the National Standardization Administration Atomic Fluorescence Method" (GB/T22105-2008). These standards use electric hot plate (most elements) or water bath (arsenic) digestion method to pre-treat soil or sediment samples. These methods are complicated to operate, large in sampling volume, time-consuming and labor-intensive, and cause great pollution to the surrounding environment. These standards have different regulations on the determination methods of different elements. If you want to investigate the content of various elements such as arsenic, cadmium, lead, vanadium, zinc, manganese and phosphorus in a soil or sediment sample, you need to measure it many times. The operation is complicated, time-consuming and labor-intensive, and there are many interference factors. In recent years, the United States Environmental Protection Agency (US-EPA) recommends the use of microwave digestion method for pretreatment of soil or sediment, which has the advantages of rapid digestion, high recovery rate and low environmental pollution. With reference to this law, my country has formulated the Microwave Digestion Method for Pretreatment of Heavy Metals in Marine Sediments and Marine Organisms (HY/T132-2010), but it is only applicable to the five elements of copper, lead, cadmium, zinc and chromium. In terms of element determination methods, the U.S. Environmental Protection Agency (US-EPA) recommends the use of inductively coupled plasma spectrometer (ICP-OES) or inductively coupled plasma mass spectrometer (ICP-MS), which can determine multiple elements at one time , and has the advantages of fast analysis speed, wide linear range and high precision, but the former has a higher upper limit of determination than the latter, and the latter has a lower detection limit than the former. In order to be in line with international standards and improve the efficiency and accuracy of determining the content of various elements, the present invention combines the microwave digestion method with ICP-OES/ICP-MS to simultaneously measure arsenic, cadmium, lead, vanadium in soil or sediment , zinc, manganese and phosphorus element content, and optimize the operation steps and condition parameters, thus expanding the scope of application of the digestion method and simplifying the element determination operation.
发明内容Contents of the invention
为了解决现有土壤或沉积物样品消解步骤复杂、适用范围窄以及元素测定方法繁冗的问题,本发明提出以下技术方案:In order to solve the problems of complicated digestion steps of existing soil or sediment samples, narrow scope of application and complicated element determination methods, the present invention proposes the following technical solutions:
(1)取待测土壤干燥样品,研磨至全部能通过100目尼龙筛;(1) Get the dry sample of the soil to be tested and grind until all can pass through a 100-mesh nylon sieve;
(2)准确称取0.1000±0.0010g研磨好的待测土壤干燥样品,置于TFM聚四氟乙烯微波消解罐中,加入一定比例的王水(优级纯浓硝酸和优级纯浓盐酸的体积比为1:3)和氢氟酸(优级纯),静置,同时以不加土样的消解液做空白对照;(2) Accurately weigh 0.1000 ± 0.0010g of ground dry soil sample to be tested, place it in a TFM polytetrafluoroethylene microwave digestion tank, add a certain proportion of aqua regia (premium grade pure concentrated nitric acid and superior grade pure concentrated hydrochloric acid) The volume ratio is 1:3) and hydrofluoric acid (excellent grade), let it stand still, and at the same time use the digestion solution without adding soil samples as a blank control;
(3)设置微波消解程序的温度和时间参数,对上述步骤(2)中的溶液进行微波消解,具体微波消解程序如下:(3) The temperature and time parameters of the microwave digestion program are set, and the solution in the above step (2) is subjected to microwave digestion. The specific microwave digestion program is as follows:
(4)微波消解程序结束后,利用赶酸器将上述步骤(3)得到的消解液加热蒸发至尽干状态,然后全部转移到容量瓶中进行定容,再通过0.45μm的混合纤维滤膜进行过滤;(4) After the microwave digestion program is over, use an acid catcher to heat and evaporate the digestion solution obtained in the above step (3) to a dry state, then transfer it to a volumetric flask for constant volume, and then pass it through a 0.45 μm mixed fiber filter membrane to filter;
(5)利用ICP-OES对上述步骤(4)得到的澄清稀释溶液中的砷、镉、铅、钒、锌、锰和磷含量进行测定;(5) Utilize ICP-OES to measure the content of arsenic, cadmium, lead, vanadium, zinc, manganese and phosphorus in the clear dilute solution that above-mentioned step (4) obtains;
(6)利用ICP-MS对上述步骤(4)得到的澄清稀释溶液中在上述步骤(5)中未达检出限的元素含量进行再次测定。(6) Using ICP-MS to re-determine the contents of the elements in the clear dilute solution obtained in the above step (4) that have not reached the detection limit in the above step (5).
本发明的特点是:The features of the present invention are:
l、本发明方法有效缩短了消解时间和测定时间,简化了取样次数减少了取样量,节省土样并改善工作环境;1. The inventive method effectively shortens the digestion time and the measurement time, simplifies the sampling times and reduces the sampling volume, saves soil samples and improves the working environment;
2、本发明方法只需进行一次消解过程即可测定多种元素,节约取样量,防止交叉污染;2. The method of the present invention can measure multiple elements only by performing one digestion process, saving sampling volume and preventing cross-contamination;
3、本发明方法采用的TFM微波消解罐适用于微量土样的测定,保证多次使用的结果稳定性和微量土样测定的重现性;3. The TFM microwave digestion tank adopted by the method of the present invention is suitable for the determination of trace soil samples, ensuring the stability of the results of repeated use and the reproducibility of trace soil samples;
4、本发明方法采用的微波消解程序既适用于测砷这种具有挥发性的元素,也适用于铅、镉这些难消解的元素,可以同时保证多种元素的回收率;4. The microwave digestion program adopted by the method of the present invention is not only suitable for measuring volatile elements such as arsenic, but also for difficult to digest elements such as lead and cadmium, and can ensure the recovery rate of multiple elements at the same time;
5、本发明方法将ICP-OES和ICP-MS相结合用于元素含量测定,一次性即可测定不同浓度范围的各种元素含量,以避免重复进行取样、消解和稀释操作,并降低人为误差,减少环境干扰,保证测定结果的稳定性。5. The method of the present invention combines ICP-OES and ICP-MS for the determination of element content, and the content of various elements in different concentration ranges can be determined at one time, so as to avoid repeated sampling, digestion and dilution operations, and reduce human error , reduce environmental interference, and ensure the stability of the measurement results.
附图说明Description of drawings
图1为“同时测定土壤或沉积物中砷、镉、铅、钒、锌、锰和磷含量”流程图,综合结果A和结果B即为各种元素含量的测定值。Figure 1 is a flow chart of "simultaneous determination of arsenic, cadmium, lead, vanadium, zinc, manganese and phosphorus in soil or sediment", and the comprehensive results A and B are the measured values of the contents of various elements.
具体实施方式detailed description
1.GSS-15标准土样(GBW07429,长江平原区)1. GSS-15 standard soil sample (GBW07429, Yangtze River plain area)
本实施例适用本发明方法对土壤样品中金属元素和磷元素的测定,具体测定步骤如下:The present embodiment applies the method of the present invention to the determination of metal elements and phosphorus elements in soil samples, and the specific determination steps are as follows:
(1)准确称取研磨好的待测土壤干燥样品0.1000±0.0010g,置于10mLTFM聚四氟乙烯微波消解罐中,加入6mL优级纯王水(浓硝酸和浓盐酸的体积比为1:3)和2mL优级纯氢氟酸,静置10min,同时以不加土样的消解液做空白对照;(1) Accurately weigh 0.1000±0.0010g of the ground dry soil sample to be tested, place it in a 10mL TFM polytetrafluoroethylene microwave digestion tank, add 6mL of high-grade pure aqua regia (the volume ratio of concentrated nitric acid and concentrated hydrochloric acid is 1: 3) and 2mL of high-grade pure hydrofluoric acid, let it stand for 10 minutes, and use the digestion solution without adding soil samples as a blank control;
(2)设置微波消解程序的温度和时间参数,对上述步骤(1)中的溶液进行微波消解,具体微波消解程序如下:(2) The temperature and time parameters of the microwave digestion program are set, and the solution in the above step (1) is subjected to microwave digestion. The specific microwave digestion program is as follows:
(3)微波消解程序结束后,利用赶酸器将TFM微波消解罐中消解液加热蒸发至尽干状态,将得到的土壤消解溶液全部转移到容量瓶中进行定容,再通过0.45μm的混合纤维滤膜进行过滤;(3) After the microwave digestion program is over, use an acid catcher to heat and evaporate the digestion solution in the TFM microwave digestion tank to the dry state, transfer all the obtained soil digestion solution to a volumetric flask for constant volume, and then pass through a 0.45 μm mixing Fibrous filter membrane for filtration;
(4)利用ICP-OES对上述步骤(3)得到的澄清稀释溶液中的锰和磷含量进行测定;(4) Utilize ICP-OES to measure the manganese and phosphorus content in the clear dilute solution that above-mentioned step (3) obtains;
(5)利用ICP-MS对对上述步骤(3)得到的澄清稀释溶液中的砷、镉、铅、钒和锌含量进行测定;(5) Utilize ICP-MS to measure the content of arsenic, cadmium, lead, vanadium and zinc in the clear dilute solution that above-mentioned step (3) obtains;
(6)同时测定四个平行土样,以计算回收率平均值和相对标准偏差。(6) Measure four parallel soil samples at the same time to calculate the average recovery rate and relative standard deviation.
测定结果如表1和表2:The measurement results are shown in Table 1 and Table 2:
表1GSS-15标准土样ICP-OES测定结果统计Table 1 Statistics of ICP-OES measurement results of GSS-15 standard soil samples
表2GSS-15标准土样ICP-MS测定结果统计Table 2 GSS-15 standard soil sample ICP-MS measurement results statistics
2.GSD-4a标准土样(GBW07304a,安徽铜陵灰岩和矽卡岩矿化区)2. GSD-4a standard soil sample (GBW07304a, Tongling limestone and skarn mineralized area, Anhui)
本实施例适用本发明方法对自然水系沉积物样品中金属元素和磷元素的测定,具体测定步骤如下:The present embodiment applies the method of the present invention to the determination of metal elements and phosphorus elements in natural water system sediment samples, and the specific determination steps are as follows:
(1)准确称取研磨好的待测土壤干燥样品0.1000±0.0010g,置于10mLTFM聚四氟乙烯微波消解罐中,加入6mL优级纯王水(浓硝酸和浓盐酸的体积比为1:3)和2mL优级纯氢氟酸,静置10min,同时以不加土样的消解液做空白对照;(1) Accurately weigh 0.1000±0.0010g of the ground dry soil sample to be tested, place it in a 10mL TFM polytetrafluoroethylene microwave digestion tank, add 6mL of high-grade pure aqua regia (the volume ratio of concentrated nitric acid and concentrated hydrochloric acid is 1: 3) and 2mL of high-grade pure hydrofluoric acid, let it stand for 10 minutes, and use the digestion solution without adding soil samples as a blank control;
(2)设置微波消解程序的温度和时间参数,对上述步骤(1)中的溶液进行微波消解,具体微波消解程序如下:(2) The temperature and time parameters of the microwave digestion program are set, and the solution in the above step (1) is subjected to microwave digestion. The specific microwave digestion program is as follows:
(3)微波消解程序结束后,利用赶酸器将TFM微波消解罐中消解液加热蒸发至尽干状态,将得到的土壤消解溶液全部转移到容量瓶中进行定容,再通过0.45μm的混合纤维滤膜进行过滤;(3) After the microwave digestion program is over, use an acid catcher to heat and evaporate the digestion solution in the TFM microwave digestion tank to the dry state, transfer all the obtained soil digestion solution to a volumetric flask for constant volume, and then pass through a 0.45 μm mixing Fibrous filter membrane for filtration;
(4)利用ICP-OES对上述步骤(3)得到的澄清稀释溶液中的铁、锰和磷含量进行测定;(4) Utilize ICP-OES to measure the iron, manganese and phosphorus content in the clear dilute solution that above-mentioned step (3) obtains;
(5)利用ICP-MS对对上述步骤(3)得到的澄清稀释溶液中的砷、镉、铬、铜、镍、铅、钒、锌含量进行测定;(5) Utilize ICP-MS to measure the arsenic, cadmium, chromium, copper, nickel, lead, vanadium, zinc content in the clarification dilute solution that above-mentioned step (3) obtains;
(6)同时测定四个平行土样,以计算回收率平均值和相对标准偏差。(6) Measure four parallel soil samples at the same time to calculate the average recovery rate and relative standard deviation.
测定结果如表3和表4:The measurement results are shown in Table 3 and Table 4:
表3GSD-4a标准土样ICP-OES测定结果统计Table 3 GSD-4a standard soil sample ICP-OES measurement results statistics
表4GSD-4a标准土样ICP-MS测定结果统计Table 4GSD-4a standard soil sample ICP-MS measurement results statistics
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410680284.3A CN105606590A (en) | 2014-11-24 | 2014-11-24 | Method for simultaneously determining contents of various elements in soil or deposits |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410680284.3A CN105606590A (en) | 2014-11-24 | 2014-11-24 | Method for simultaneously determining contents of various elements in soil or deposits |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105606590A true CN105606590A (en) | 2016-05-25 |
Family
ID=55986695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410680284.3A Pending CN105606590A (en) | 2014-11-24 | 2014-11-24 | Method for simultaneously determining contents of various elements in soil or deposits |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105606590A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106153417A (en) * | 2016-06-24 | 2016-11-23 | 安徽创新检测技术有限公司 | A kind of digestion procedure of water quality total metal content |
CN106644984A (en) * | 2016-12-29 | 2017-05-10 | 贵州省土壤肥料研究所 | Method and correction factor for determining content of chromium in limestone soil of Guizhou province |
CN106706602A (en) * | 2016-12-29 | 2017-05-24 | 贵州省土壤肥料研究所 | Method for determining lead content of yellow brown soil in Guizhou province and correction factor thereof |
CN106706606A (en) * | 2016-12-29 | 2017-05-24 | 贵州省土壤肥料研究所 | Method for determining lead content of limestone soil in Guizhou province and correction factor thereof |
CN106769924A (en) * | 2016-11-30 | 2017-05-31 | 马健 | A kind of method for detecting heavy metal content in soil |
CN106990097A (en) * | 2017-03-23 | 2017-07-28 | 华润水泥技术研发有限公司 | A kind of method of content of beary metal in quick detection clinker |
CN107036876A (en) * | 2016-11-24 | 2017-08-11 | 普洱市质量技术监督综合检测中心 | It is a kind of at the same determine soil detection device for multi metallic elements preprocess method |
CN108226275A (en) * | 2018-01-31 | 2018-06-29 | 鹤壁市疾病预防控制中心 | A kind of method of 33 kinds of elements while Accurate Determining in soil |
CN108362545A (en) * | 2018-03-21 | 2018-08-03 | 江苏实朴检测服务有限公司 | The method for measuring soil available arsenic |
CN108693016A (en) * | 2018-04-24 | 2018-10-23 | 广东省农业科学院农产品公共监测中心 | A kind of pre-treating method for the detection of batch heavy metal in soil |
CN109163958A (en) * | 2018-10-18 | 2019-01-08 | 福建省农业科学院农业质量标准与检测技术研究所 | A kind of Methods of Soil Digestion and a kind of detection method for measuring various heavy in soil simultaneously |
CN109239759A (en) * | 2018-07-27 | 2019-01-18 | 国家海洋局南海环境监测中心(中国海监南海区检验鉴定中心) | A kind of method of rapid-digestion sample measurement radionuclide |
CN109425531A (en) * | 2017-08-24 | 2019-03-05 | 上海利元环保检测技术有限公司 | Mercury in Soil, arsenic, copper, zinc, lead, cadmium ultrasound rapid assay methods |
CN109596603A (en) * | 2018-12-24 | 2019-04-09 | 河南省核工业放射性核素检测中心 | Trace arsenic and Determination of multiple metal elements method for measuring simultaneously in a kind of soil |
CN110118815A (en) * | 2019-05-15 | 2019-08-13 | 上海大学 | The method that micro-wave digestion-ICP-MS measures content of beary metal in sediments |
CN110308197A (en) * | 2019-08-09 | 2019-10-08 | 福建省农业科学院农业质量标准与检测技术研究所 | Inductively coupled plasma mass spectrometry measures the detection method of Theil indices in soil |
CN110702774A (en) * | 2019-11-26 | 2020-01-17 | 浙江省海洋水产研究所 | Method for measuring total arsenic in sediment |
CN111189690A (en) * | 2020-03-04 | 2020-05-22 | 重庆中科检测技术服务有限公司 | Method for detecting heavy metal in soil |
CN111855645A (en) * | 2020-08-06 | 2020-10-30 | 黄麟杰 | Method for jointly measuring phosphorus in soil by high-pressure digestion-inductively coupled plasma spectrometer |
CN113504219A (en) * | 2021-07-23 | 2021-10-15 | 深圳市市政工程总公司 | Method for measuring heavy metal content in sludge |
CN114608927A (en) * | 2022-03-16 | 2022-06-10 | 昆明理工大学 | A method for extracting microplastics from soil by microwave digestion |
CN114689569A (en) * | 2022-04-02 | 2022-07-01 | 北京科技大学 | Method for testing silicon-aluminum ratio of molecular sieve |
CN115201133A (en) * | 2022-08-04 | 2022-10-18 | 成都都市现代农业产业技术研究院有限公司 | Method for detecting soil microorganisms by using different mixed inocula |
CN116046843A (en) * | 2022-12-30 | 2023-05-02 | 江苏旭博环境科技有限公司 | Soil water-soluble fluoride measuring device |
CN116642876A (en) * | 2023-05-05 | 2023-08-25 | 北京先通国际医药科技股份有限公司 | Method for determining content of related metal elements in yttrium-containing glass microspheres and application thereof |
-
2014
- 2014-11-24 CN CN201410680284.3A patent/CN105606590A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106153417A (en) * | 2016-06-24 | 2016-11-23 | 安徽创新检测技术有限公司 | A kind of digestion procedure of water quality total metal content |
CN107036876A (en) * | 2016-11-24 | 2017-08-11 | 普洱市质量技术监督综合检测中心 | It is a kind of at the same determine soil detection device for multi metallic elements preprocess method |
CN106769924A (en) * | 2016-11-30 | 2017-05-31 | 马健 | A kind of method for detecting heavy metal content in soil |
CN106644984A (en) * | 2016-12-29 | 2017-05-10 | 贵州省土壤肥料研究所 | Method and correction factor for determining content of chromium in limestone soil of Guizhou province |
CN106706602A (en) * | 2016-12-29 | 2017-05-24 | 贵州省土壤肥料研究所 | Method for determining lead content of yellow brown soil in Guizhou province and correction factor thereof |
CN106706606A (en) * | 2016-12-29 | 2017-05-24 | 贵州省土壤肥料研究所 | Method for determining lead content of limestone soil in Guizhou province and correction factor thereof |
CN106990097A (en) * | 2017-03-23 | 2017-07-28 | 华润水泥技术研发有限公司 | A kind of method of content of beary metal in quick detection clinker |
CN109425531A (en) * | 2017-08-24 | 2019-03-05 | 上海利元环保检测技术有限公司 | Mercury in Soil, arsenic, copper, zinc, lead, cadmium ultrasound rapid assay methods |
CN108226275A (en) * | 2018-01-31 | 2018-06-29 | 鹤壁市疾病预防控制中心 | A kind of method of 33 kinds of elements while Accurate Determining in soil |
CN108362545A (en) * | 2018-03-21 | 2018-08-03 | 江苏实朴检测服务有限公司 | The method for measuring soil available arsenic |
CN108693016A (en) * | 2018-04-24 | 2018-10-23 | 广东省农业科学院农产品公共监测中心 | A kind of pre-treating method for the detection of batch heavy metal in soil |
CN109239759A (en) * | 2018-07-27 | 2019-01-18 | 国家海洋局南海环境监测中心(中国海监南海区检验鉴定中心) | A kind of method of rapid-digestion sample measurement radionuclide |
CN109163958A (en) * | 2018-10-18 | 2019-01-08 | 福建省农业科学院农业质量标准与检测技术研究所 | A kind of Methods of Soil Digestion and a kind of detection method for measuring various heavy in soil simultaneously |
CN109596603B (en) * | 2018-12-24 | 2021-04-02 | 河南省核工业放射性核素检测中心 | Method for simultaneously measuring trace arsenic and multiple metal elements in soil |
CN109596603A (en) * | 2018-12-24 | 2019-04-09 | 河南省核工业放射性核素检测中心 | Trace arsenic and Determination of multiple metal elements method for measuring simultaneously in a kind of soil |
CN110118815A (en) * | 2019-05-15 | 2019-08-13 | 上海大学 | The method that micro-wave digestion-ICP-MS measures content of beary metal in sediments |
CN110308197A (en) * | 2019-08-09 | 2019-10-08 | 福建省农业科学院农业质量标准与检测技术研究所 | Inductively coupled plasma mass spectrometry measures the detection method of Theil indices in soil |
CN110702774A (en) * | 2019-11-26 | 2020-01-17 | 浙江省海洋水产研究所 | Method for measuring total arsenic in sediment |
CN111189690A (en) * | 2020-03-04 | 2020-05-22 | 重庆中科检测技术服务有限公司 | Method for detecting heavy metal in soil |
CN111855645A (en) * | 2020-08-06 | 2020-10-30 | 黄麟杰 | Method for jointly measuring phosphorus in soil by high-pressure digestion-inductively coupled plasma spectrometer |
CN113504219A (en) * | 2021-07-23 | 2021-10-15 | 深圳市市政工程总公司 | Method for measuring heavy metal content in sludge |
CN114608927A (en) * | 2022-03-16 | 2022-06-10 | 昆明理工大学 | A method for extracting microplastics from soil by microwave digestion |
CN114689569A (en) * | 2022-04-02 | 2022-07-01 | 北京科技大学 | Method for testing silicon-aluminum ratio of molecular sieve |
CN115201133A (en) * | 2022-08-04 | 2022-10-18 | 成都都市现代农业产业技术研究院有限公司 | Method for detecting soil microorganisms by using different mixed inocula |
CN116046843A (en) * | 2022-12-30 | 2023-05-02 | 江苏旭博环境科技有限公司 | Soil water-soluble fluoride measuring device |
CN116642876A (en) * | 2023-05-05 | 2023-08-25 | 北京先通国际医药科技股份有限公司 | Method for determining content of related metal elements in yttrium-containing glass microspheres and application thereof |
CN118817664A (en) * | 2023-05-05 | 2024-10-22 | 北京先通国际医药科技股份有限公司 | Method for determining the content of relevant metal elements in yttrium-containing glass microspheres and its use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105606590A (en) | Method for simultaneously determining contents of various elements in soil or deposits | |
CN109142004B (en) | A kind of detection method of bioavailable cadmium in soil | |
CN103926236B (en) | The method of impurity element and matrix element content of niobium in simultaneous determination ferrocolumbium | |
CN103954678B (en) | The detection method of chromium, nickel, arsenic, selenium, cadmium, lead element in a kind of cigarette ash | |
CN102866046A (en) | Method for determining contents of heavy metals in sample | |
CN109060777A (en) | The measuring method of nickel content in siderochrome nickel corrosion resisting alloy | |
CN111257247B (en) | Method for measuring iron content in marine sediments | |
CN107024529B (en) | A method for the determination of lead isotope ratios in environmental samples using inductively coupled plasma mass spectrometry | |
CN101082588A (en) | Method for rapid detecting chemical fertillizers effective phosphorus content | |
CN102269733A (en) | A Determination Method of Trace Selenium Content in Low Alloy Steel | |
CN109470689A (en) | The measuring method of slowly available potassium and available potassium in a kind of soil | |
CN106248609B (en) | A kind of method that ultraviolet specrophotometer measures hexafluorophosphoric acid lithium content in lithium-ion battery electrolytes | |
CN106168600A (en) | Calcium carbonate and the method for content of beary metal in a kind of reconstituted tobacco finished product of detection simultaneously | |
CN105004691A (en) | Method for measuring content of phosphorus in steel through spectrophotometry | |
CN107677790A (en) | The method of the hardening simulating experiment of soil containing heavy metal | |
CN102768191B (en) | Method for easily detecting trace thallium in water | |
CN104198412A (en) | Method for detecting trace zinc ions by using cloud point extraction and ultraviolet-visible spectrophotometry | |
CN106770240A (en) | A kind of cement determination of chloride ion titration outfit and titration method | |
CN114965444A (en) | Method for rapidly determining 12 impurity elements in battery-grade cobalt sulfate | |
CN105445208A (en) | Determination method for trace thallium in high-salt waste water | |
CN112129744B (en) | Chemical phase analysis method for lithium in ore | |
CN104677883A (en) | Analytical method for measuring impurity content in tin sample | |
CN110308196B (en) | Method for measuring 19 elements such as germanium, boron, tin, iodine, fluorine, arsenic, strontium, barium and the like in geochemical sample | |
CN104101553B (en) | Non-heated ore pulp enriched fineness rapid assay methods | |
CN106885799B (en) | Method for measuring magnesium content in nuclear-grade sponge zirconium particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160525 |
|
WD01 | Invention patent application deemed withdrawn after publication |