CN105606536A - 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器 - Google Patents

一种基于偏振光干涉的保偏光子晶体光纤氢气传感器 Download PDF

Info

Publication number
CN105606536A
CN105606536A CN201610185087.3A CN201610185087A CN105606536A CN 105606536 A CN105606536 A CN 105606536A CN 201610185087 A CN201610185087 A CN 201610185087A CN 105606536 A CN105606536 A CN 105606536A
Authority
CN
China
Prior art keywords
polarization
hydrogen
pcf
photonic crystal
crystal fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610185087.3A
Other languages
English (en)
Other versions
CN105606536B (zh
Inventor
包立峰
沈常宇
姚宇竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610185087.3A priority Critical patent/CN105606536B/zh
Publication of CN105606536A publication Critical patent/CN105606536A/zh
Application granted granted Critical
Publication of CN105606536B publication Critical patent/CN105606536B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • G01N2021/458Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods using interferential sensor, e.g. sensor fibre, possibly on optical waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明公开了一种基于部分偏振光干涉的保偏光子晶体光纤氢气传感器,由宽带光源,传输光纤,偏振控制器,PM-PCF,Pd/Ag氢敏感膜,二维光纤夹具,恒温气室,光谱仪组成。宽带光源发射的光束通过偏振控制器调整偏振态后入射PM-PCF,PM-PCF的慢轴外侧均匀溅射Pd/Ag氢敏感膜并覆盖了外周的二分之一。光纤表面镀膜分布沿轴向不对称导致Pd/Ag氢敏感膜吸氢膨胀对快慢轴双折射造成的影响不同,慢轴光的偏振方向和相位发生改变,而快轴光状态保持不变。两个传输模式在传输光纤内发生干涉,光谱被光谱仪接收。Pd/Ag氢敏感膜对氢气非常敏感,因此干涉光谱漂移量能精确反映环境氢气浓度。该发明结构简单,灵敏度高,温度漂移小,为氢气浓度在线监测提供了切实可行的方案。

Description

一种基于偏振光干涉的保偏光子晶体光纤氢气传感器
技术领域
本发明属于光纤氢气传感技术领域,具体涉及一种基于偏振光干涉的保偏光子晶体光纤氢气传感器。
背景技术
氢气(H2)的能量密度高,燃烧产物无毒无害,被公认为二十一世纪最具发展潜力的二次能源。在室温和标准大气压条件下,氢气的爆炸浓度范围非常广(4%~74.2%),点火能量极小(0.02mJ),强烈的易燃易爆性对氢气检测装置的安全性,可靠性以及对超低浓度氢气的响应能力提出了较高要求。
光学氢气传感器,尤其是光纤氢气传感器,利用光作为媒介进行氢气浓度传感,由于传感部分不存在电学部件,具有本质防爆,灵敏度高,对电磁干扰免疫等优势,近年来引起了广泛的关注和研究。常见的光纤光栅型氢气传感器,需要额外的温度补偿措施抑制中心波长的温度漂移,检测精度不高的同时还存在对温度交叉敏感的问题。
保偏光子晶体光纤(PM-PCF)是具有保偏特性的光子晶体光纤,通过纤芯周围的光子晶体结构结合应力棒产生统一的应力双折射效应,能够长距离地保持偏振光的偏振态同位,其良好的温度特性,有利于制作对温度不敏感的光纤器件,能有效简化仪器结构,提高装置稳定性。
发明内容
针对现有技术的不足,本发明的目的在于提供一种基于偏振光干涉的保偏光子晶体光纤氢气传感器,通过干涉波谷波长的漂移量反应氢气浓度,该结构易于实现,灵敏度高,温度特性优良,能有效减轻环境温度波动对氢气浓度检测带来的不利影响。
本发明通过以下技术方案实现:一种基于偏振光干涉的保偏光子晶体光纤氢气传感器,由宽带光源(1),传输光纤(2),偏振控制器(3),PM-PCF(4),Pd/Ag氢敏感膜(5),二维光纤夹具(6),恒温气室(7),光谱仪(8)组成;宽带光源(1)通过传输光纤(2)连接至偏振控制器(3),偏振控制器(3)通过传输光纤(2)与PM-PCF(4)左端相连,PM-PCF(4)右端通过传输光纤(2)与光谱仪(9)相连;其中,PM-PCF(4)的慢轴外侧均匀溅射Pd/Ag氢敏感膜(5)覆盖外周的二分之一构成氢敏感头,二维光纤夹具(6)将PM-PCF(4)固定在恒温气室(8)底部。
所述的PM-PCF(4)的长度为30mm~50mm,Pd/Ag氢敏感膜(5)的镀膜长度为20mm~30mm,膜厚为40nm~50nm,Ag质量分数为20%~40%。
所述的PM-PCF(4)选用的保偏光子晶体光纤的优选型号是PM-1550-01,工作波长在1550nm。
本发明的工作原理是:宽带光源(1)发射波长1500nm~1600nm的光束,通过偏振控制器(3)调整偏振态后沿传输光纤(2)入射PM-PCF。由于PM-PCF(4)的慢轴外侧均匀溅射Pd/Ag氢敏感膜(5)并覆盖外周的二分之一,包层表面镀膜分布沿轴向不对称,在Pd/Ag氢敏感膜(5)吸收氢气发生体积膨胀后,挤压包层内空气孔能对快轴、慢轴的双折射效应产生不同影响。受调制后慢轴光的偏振方向和相位发生改变,而快轴光状态保持不变,两个传输模式之间出现相位差并在传输光纤(2)内发生干涉,干涉信号沿传输光纤(2)被光谱仪(8)接收。由此可知,干涉光谱的漂移量由Pd/Ag氢敏感膜(5)挤压PM-PCF(4)引入的相位差决定,而Pd/Ag氢敏感膜(5)对氢气非常敏感,因此能够实现对环境氢气浓度的高精度传感。
快轴光与慢轴光之间的相位差由PM-PCF自身和Pd/Ag氢敏感膜(5)的挤压同时决定,可以表示为
(1)
式中,整数m为干涉级次,为第m级波谷波长,分别为PM-PCF的固有双折射和光纤长度;分别为Pd/Ag氢敏感膜(5)引入的附加双折射和镀膜区域的长度。
Pd由于吸收H2分子晶格体积发生膨胀,挤压包层内空气孔引起慢轴的双折射改变,两个传输模式之间的相位差变为
(2)
由(1)式和(2)式可得,第m级干涉波谷漂移量
(3)
附加双折射变化量决定了第m级干涉波谷漂移量,而Pd/Ag氢敏感膜(5)对氢气非常敏感,因此能够实现氢气浓度的高精度传感。
本发明的有益效果是:(1)选用温度特性优良的PM-PCF制作对温度不敏感的光纤氢气传感器,无需温度补偿环节,有效简化仪器结构,节约制作成本;(2)Ag能有效抑制Pd结合H原子发生的相变,稳定金属晶格结构,缓解Pd涂层表面起泡、层错现象,提高氢敏感膜机械性能,延长装置使用寿命;因此,本发明具有结构简单,灵敏度高,能减轻温度波动对氢气浓度检测带来的影响等优点,为氢气浓度在线监测提供了一种切实可行的方案。
附图说明
图1是一种基于偏振光干涉的保偏光子晶体光纤氢气传感器的系统原理图。
图2是一种基于偏振光干涉的保偏光子晶体光纤氢气传感器中氢敏感头的横截面示意图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
参见附图1,一种基于偏振光干涉的保偏光子晶体光纤氢气传感器,其特征在于:由宽带光源(1),传输光纤(2),偏振控制器(3),PM-PCF(4),Pd/Ag氢敏感膜(5),二维光纤夹具(6),恒温气室(7),光谱仪(8)组成;宽带光源(1)通过传输光纤(2)连接至偏振控制器(3),偏振控制器(3)通过传输光纤(2)与PM-PCF(4)左端相连,PM-PCF(4)右端通过传输光纤(2)与光谱仪(9)相连;二维光纤夹具(6)将PM-PCF(4)固定在恒温气室(8)底部;氢敏感头横截面参见附图2,PM-PCF(4)的慢轴外侧均匀溅射Pd/Ag氢敏感膜(5)覆盖外周的二分之一,PM-PCF(4)的长度为40mm,镀膜区域的长度为30mm,Pd/Ag氢敏感膜(5)的膜厚为40nm,Ag的质量分数为25%,PM-PCF(4)是PM-1550-01型号的保偏光子晶体光纤。
传输光纤(2)利用单模光纤制作而成,传输光纤(2)和PM-PCF(4)之间使用光纤熔接机标准程序熔接,采用的光纤熔接机型号为Fujikura60s。二维光纤夹具(6)维持PM-PCF(4)水平绷直,以免Pd/Ag氢敏感膜(5)因为光纤弯曲脱落和保持PM-PCF(4)固有双折射恒定。恒温气室(7)内气温保持在25摄氏度。
本发明的工作原理是:宽带光源(1)发射波长1500nm~1600nm的光束,通过偏振控制器(3)调整偏振态后沿传输光纤(2)入射PM-PCF。由于PM-PCF(4)的慢轴外侧均匀溅射Pd/Ag氢敏感膜(5)并覆盖外周的二分之一,包层表面镀膜分布沿轴向不对称,在Pd/Ag氢敏感膜(5)吸收氢气发生体积膨胀后,挤压包层内空气孔能对快轴、慢轴的双折射效应产生不同影响。受调制后慢轴光的偏振方向和相位发生改变,而快轴光状态保持不变,两个传输模式之间出现相位差并在传输光纤(2)内发生干涉,干涉信号沿传输光纤(2)被光谱仪(8)接收。由此可知,干涉光谱的漂移量由Pd/Ag氢敏感膜(5)挤压PM-PCF(4)引入的相位差决定,而Pd/Ag氢敏感膜(5)对氢气非常敏感,因此能够实现对环境氢气浓度的高精度传感。

Claims (3)

1.一种基于偏振光干涉的保偏光子晶体光纤氢气传感器,其特征在于:由宽带光源(1),传输光纤(2),偏振控制器(3),PM-PCF(4),Pd/Ag氢敏感膜(5),二维光纤夹具(6),恒温气室(7),光谱仪(8)组成;宽带光源(1)通过传输光纤(2)连接至偏振控制器(3),偏振控制器(3)由一个偏振片、一个四分之一波片和一个二分之一波片组合而成,偏振控制器(3)通过传输光纤(2)与PM-PCF(4)左端相连,PM-PCF(4)右端通过传输光纤(2)与光谱仪(9)相连;其中,PM-PCF(4)的慢轴外侧均匀溅射Pd/Ag氢敏感膜(5)覆盖该PM-PCF(4)外周的二分之一构成氢敏感头,二维光纤夹具(6)将PM-PCF(4)固定在恒温气室(8)底部。
2.根据权利要求1所述的一种基于偏振光干涉的保偏光子晶体光纤氢气传感器,其特征在于:所述的PM-PCF(4)的长度为30mm~50mm,Pd/Ag氢敏感膜(5)的镀膜长度为20mm~30mm,膜厚为40nm~50nm,Ag质量分数为20%~40%。
3.根据权利要求1所述的一种基于偏振光干涉的保偏光子晶体光纤氢气传感器,其特征在于:所述的PM-PCF(4)选用的保偏光子晶体光纤的优选型号是PM-1550-01,工作波长在1550nm。
CN201610185087.3A 2016-03-29 2016-03-29 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器 Expired - Fee Related CN105606536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610185087.3A CN105606536B (zh) 2016-03-29 2016-03-29 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610185087.3A CN105606536B (zh) 2016-03-29 2016-03-29 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器

Publications (2)

Publication Number Publication Date
CN105606536A true CN105606536A (zh) 2016-05-25
CN105606536B CN105606536B (zh) 2018-04-27

Family

ID=55986643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610185087.3A Expired - Fee Related CN105606536B (zh) 2016-03-29 2016-03-29 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器

Country Status (1)

Country Link
CN (1) CN105606536B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672557A (zh) * 2019-11-06 2020-01-10 中国计量大学 一种多浓度区间光纤氢气传感器
CN110927113A (zh) * 2019-10-29 2020-03-27 桂林电子科技大学 一种纤维集成氢气传感器及其制作方法
CN111679230A (zh) * 2020-05-25 2020-09-18 汕头大学 一种基于磁流体的磁场传感装置
CN115452720A (zh) * 2022-09-06 2022-12-09 大连理工大学 一种基于光子准晶体光纤的氢气传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576488A (zh) * 2009-06-05 2009-11-11 西南石油大学 光电混合集成硫化氢气体浓度传感器装置及其测试方法
CN102778443A (zh) * 2012-08-08 2012-11-14 北京航空航天大学 一种氢气浓度检测装置
US20130230271A1 (en) * 2012-03-05 2013-09-05 Pukyong National University Industry-University Cooperation Foundation Optical Fiber Hydrogen Sensor and Method of Measuring Hydrogen Concentration Using the Same
CN105388128A (zh) * 2015-11-07 2016-03-09 包立峰 一种基于PM-PCF的Michelson干涉型光纤氢气传感器
CN205426774U (zh) * 2016-03-29 2016-08-03 中国计量学院 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576488A (zh) * 2009-06-05 2009-11-11 西南石油大学 光电混合集成硫化氢气体浓度传感器装置及其测试方法
US20130230271A1 (en) * 2012-03-05 2013-09-05 Pukyong National University Industry-University Cooperation Foundation Optical Fiber Hydrogen Sensor and Method of Measuring Hydrogen Concentration Using the Same
CN102778443A (zh) * 2012-08-08 2012-11-14 北京航空航天大学 一种氢气浓度检测装置
CN105388128A (zh) * 2015-11-07 2016-03-09 包立峰 一种基于PM-PCF的Michelson干涉型光纤氢气传感器
CN205426774U (zh) * 2016-03-29 2016-08-03 中国计量学院 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BONGKYUN KIM 等: "Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications", 《OPTICS EXPRESS》 *
HAIYU TANG 等: "Optical Fiber Refractometer Based on Etched-Stress Applying Parts PANDA Fiber", 《IEEE PHOTONICS TECHNOLOGY LETTERS》 *
HYUN-JOO KIM 等: "Polarization-Dependent In-Line Mach–Zehnder Interferometer for Discrimination of Temperature and Ambient Index Sensitivities", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 *
LEI CHEN 等: "In-fiber torsion sensor based on dual polarized Mach-Zehnder interference", 《OPTICS EXPRESS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927113A (zh) * 2019-10-29 2020-03-27 桂林电子科技大学 一种纤维集成氢气传感器及其制作方法
CN110672557A (zh) * 2019-11-06 2020-01-10 中国计量大学 一种多浓度区间光纤氢气传感器
CN110672557B (zh) * 2019-11-06 2023-08-22 中国计量大学 一种多浓度区间光纤氢气传感器
CN111679230A (zh) * 2020-05-25 2020-09-18 汕头大学 一种基于磁流体的磁场传感装置
CN111679230B (zh) * 2020-05-25 2022-12-06 汕头大学 一种基于磁流体的磁场传感装置
CN115452720A (zh) * 2022-09-06 2022-12-09 大连理工大学 一种基于光子准晶体光纤的氢气传感器

Also Published As

Publication number Publication date
CN105606536B (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
Qian et al. Review of salinity measurement technology based on optical fiber sensor
Su et al. A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement
CN105606536A (zh) 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器
CN103175807B (zh) 一种反射型全光纤氢气传感器及其制备和测量方法
CN106248622B (zh) 一种基于pcf空气腔和倾斜光纤光栅的相对湿度传感器
CN206627147U (zh) 一种温‑压传感器的结构以及温度和压力的测量系统
CN105388128A (zh) 一种基于PM-PCF的Michelson干涉型光纤氢气传感器
CN103852191B (zh) 一种折射率不敏感的光纤温度传感器
CN105572054A (zh) 一种具有温度补偿功能的光纤氢气传感器
CN110632028B (zh) 基于光纤偏振模间干涉的零背景激光吸收光谱检测系统
CN102778306A (zh) 光子晶体光纤折射率温度传感器、制作方法及测量系统
Wang et al. Optical fiber sensor based on SPR and MZI for seawater salinity and temperature measurement
Cao et al. High sensitivity conductivity-temperature-depth sensing based on an optical microfiber coupler combined fiber loop
CN109932078A (zh) 一种高灵敏光纤温度传感探头及其制作方法
CN108717042B (zh) 一种全保偏反射式氢气浓度检测装置
CN205080057U (zh) 一种基于PM-PCF的Michelson干涉型光纤氢气传感器
CN111208087B (zh) 一种基于粗锥的光纤湿度传感器及其工作原理和制备方法
Wang et al. Development of fabrication technique and sensing performance of optical fiber humidity sensors in the most recent decade
CN106370626A (zh) 基于氧化石墨烯薄膜和花生形结构的光纤湿度传感器
CN108732561A (zh) 基于双波长干涉的激光追踪测量系统空气折射率补偿方法
CN205691260U (zh) 一种基于fp腔的光纤光栅温度氢气传感器
CN205426774U (zh) 一种基于偏振光干涉的保偏光子晶体光纤氢气传感器
CN102183487A (zh) 一种基于spr镀金属膜双峰谐振液体传感器的制造方法
CN104729494A (zh) 一种谐振式空芯光子晶体光纤陀螺及应用
CN112432924A (zh) 基于spr的方孔光子晶体光纤折射率传感装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park source Street No. 258

Applicant after: China Jiliang University

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park source Street No. 258

Applicant before: China Jiliang University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180427

CF01 Termination of patent right due to non-payment of annual fee