CN105604483A - 一种基于等时界面推演的水平井靶点设计方法 - Google Patents

一种基于等时界面推演的水平井靶点设计方法 Download PDF

Info

Publication number
CN105604483A
CN105604483A CN201511017487.5A CN201511017487A CN105604483A CN 105604483 A CN105604483 A CN 105604483A CN 201511017487 A CN201511017487 A CN 201511017487A CN 105604483 A CN105604483 A CN 105604483A
Authority
CN
China
Prior art keywords
interface
well
horizontal well
horizontal
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201511017487.5A
Other languages
English (en)
Other versions
CN105604483B (zh
Inventor
夏勇
张明禄
谭中国
赵继勇
徐黎明
王东旭
兰义飞
王�华
刘海锋
张芳
崔越华
王准备
袁继明
张保国
何鎏
薛云龙
费世祥
于雷
刘雪玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201511017487.5A priority Critical patent/CN105604483B/zh
Publication of CN105604483A publication Critical patent/CN105604483A/zh
Application granted granted Critical
Publication of CN105604483B publication Critical patent/CN105604483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明属于油气田开采技术领域,具体提供了一种基于等时界面推演的水平井靶点设计方法,包括步骤:1)在水平井目标层上、下确定等时界面;2)初步确定等时界面海拔值;3)初步确定各小层地层厚度值;4)采用由下等时界面向上推演和上等时界面向下推演两种方法,综合确定水平井井口点的目标层海拔和各小层地层厚度;5)采用构造趋势面定向预测法预测水平井方向的构造变化;6)确定利用构造趋势面预测结果,设计水平井入窗点及水平段各靶点坐标;7)修正等时界面构造图和地层厚度图,调整设计水平井靶点位置,提高预测精度。本发明有效提高了薄层岩性油气藏水平井靶点设计精度,对水平井储层钻遇率的提高起到了重要指导作用。

Description

一种基于等时界面推演的水平井靶点设计方法
技术领域
本发明属于油气田开采技术领域,具体是一种基于等时界面推演的水平井靶点设计方法。
背景技术
小型鼻状构造(起伏5-40m/km,地层倾角一般小于1°)条件下发育的薄层油气藏(一般储层厚度<3m)空间展布形态复杂,水平井钻探过程中存在目的层预测困难、脱靶钻出储层等技术难题,严重制约水平井实施效果。同时薄储层研究对地震、测井等配套技术要求较高,实际操作中存在较多难点和局限性。由于厚层黄土塬、沙漠等地面条件限制,导致地震资料品质较差,给精确描述薄储层展布带来很大困难;早期开发油气田普遍采用二维地震,难以满足水平井开发要求。目前,国内新疆、大庆、长庆等油气田已利用水平井开发薄储层,但受上述等条件限制,储层钻遇率一直维持在较低水平。
水平井靶点设计就是对水平段所要钻遇的轨迹位置给出阶段预测点,为后期水平段实际钻进提供参数指导和依据,设计的合理性和精准度决定了水平井能否最大程度的钻遇有效储层。但如何提高薄储层的水平井靶点设计精度,是水平井技术中努力攻克的难题之一。现有技术多针对水平井在厚度大于3m的储层中进行论证,而在提高小型鼻状构造下的薄储层水平井靶点设计精度方面缺乏相应技术方法。
发明内容
本发明的目的在于解决上述难题,提供一种针对薄层岩性油气藏的、基于等时界面推演的水平井靶点设计方法。
本发明的技术方案是:
一种基于等时界面推演的水平井靶点设计方法,包括如下步骤:
(1)在水平井目标层上、下确定等时界面:在水平井目标层上、下分别确定距离较近的、分布稳定的等时界面。
(2)初步确定等时界面海拔值:利用钻井和录井作业中录取的等时界面海拔分别绘制上、下等时界面构造图,在构造图上读取水平井井口点的等时界面海拔PH上-钻井、PH下-钻井;若等时界面为地震强放射面,则利用地震解释资料中的等时界面反射时间预测等时界面海拔PH上-地震、PH下-地震;将钻井预测结果与地震预测结果进行对比分析,如果PH上-钻井=PH上-地震、PH下-钻井=PH下-地震,则初步确定PH、PH值;否则修正等时界面构造图,使结果相吻合并确定PH、PH值;若等时界面为非地震强反射面,则以构造图读取值为初步等时界面海拔值;其中,PH、PH为水平井井口位置下、上等时界面的海拔高度;
(3)初步确定各小层地层厚度值:先利用地震资料,预测得出水平井井口点的地震强反射面之间的地层厚度,该地层厚度一般为多个小层的合层厚度。利用钻井分层绘制等时界面距目标层之间各小层的地层厚度图,在图上读取水平井井口点的各小层地层厚度H1、H2、…Hx与Ha、Hb、…Hn,其中,H1、H2…Hx分别为下等时界面距目标层之间第一小层至第x小层的地层厚度;Ha、Hb…Hn分别为上等时界面距目标层之间第一小层至第n小层的地层厚度;若各小层地层厚度之和与地震预测地层厚度H地震预测的误差在水平井区内钻井实钻地层厚度与地震预测地层厚度之差的概率统计范围内,即Ha1+Ha2+…+Hay≈H地震预测;其中,Ha1、Ha2、…Hay为地震预测强反射面之间的各小层地层厚度,则确定Ha1+Ha2+…+Hay为初步的小层地层厚度值,其余不在地震预测地层厚度范围内的以地质图件为准;如果结果不符,则修正各小层地层厚度图的变化趋势及水平井井口点地层厚度值,使两个结果吻合;
(4)利用等时界面推演法确定水平井井口点的目标层海拔:以等时界面海拔为基点,采用由下等时界面向上推演目标层位置和上等时界面向下推演目标层位置两种方法,预测水平井井口点的目标层垂向位置;通过验证下等时界面推演法、上等时界面推演法计算的目标层海拔的一致性,综合确定水平井井口点的目标层海拔;
(5)采用构造趋势面定向预测法预测水平井方向的构造变化:基于上、下等时界面构造趋势的近似性及差异性,预测水平井沿水平段方向的地层坡降Grad及地层倾角θ°;
(6)设计水平井各靶点:以满足钻井工程要求为前提,设定靶点时须考虑地层的顶低变化和构造的坡降变化类型,计算水平井水平段各靶点坐标;将入窗点B设在储层顶部,水平段其余靶点均匀分布于储层中部,其中窗点B即首次打开气层位置;靶点计算公式如下:
BX=A+Grad×Vs
BX:水平井靶点海拔
Grad:水平段方向的地层坡降
Vs:所计算靶点距井口点的水平位移;
(7)根据钻井施工进度,分阶段修正水平井各靶点:水平井在导眼井完钻及斜井段完钻阶段施工完成后,根据邻井、导眼井、斜井段的实钻信息分别修正各等时界面构造图、各小层地层厚度图,编制水平井补充地质设计,按照步骤(4)、步骤(5)、步骤(6),重新设计水平井各靶点位置,提高预测精度。
上述步骤(1)中所述的距离较近的等时界面,其距离判定标准为:该距离不超过50m;所述的分布稳定的等时界面其判定标准为:其油气藏内部90%以上钻井均有钻遇。
上述步骤(4)中所述的等时界面推演法分为下等时界面推演法和上等时界面推演法,其公式为:
下等时界面推演法:A=PH+H1+H2+…+Hx
上等时界面推演法:A=PH+Ha+Hb+…+Hn
其中,A:水平井井口位置A点的目的层海拔高度;
PH、PH:水平井井口位置下、上等时界面的海拔高度;
H1、H2…Hx分别为下等时界面距目标层之间第一小层至第x小层的地层厚度;
Ha、Hb…Hn分别为上等时界面距目标层之间第一小层至第n小层的地层厚度。
上述步骤(4)中所述的验证下等时界面推演法、上等时界面推演法计算的目标层海拔的一致性,验证时,如果下等时界面与上等时界面推演的目标层海拔一致,则该值为水平井井口位置目标层海拔值;如果不一致,则在地震预测结果范围内,修改相应的各小层地层厚度图,在小层地层厚度值误差范围内调整地层厚度预测值,最终使上、下推演结果吻合,即最终使:A=PH+H1+H2+…+Hx=PH+Ha+Hb+…+Hn
上述的小层地层厚度值误差范围内为±5%内。
上述步骤(5)中所述的构造趋势面定向预测法是基于上、下等时界面构造趋势的近似性及差异性分析,预测水平井沿水平段方向的坡降Grad及地层倾角θ°,其具体方法是:沿水平段方向或夹角±5%以内选择多个两口井的组合,计算Grad值,将多个Grad值按照水平位移远近进行加权平均,获取水平段方向坡降和地层倾角。其中,沿水平段坡降
地层倾角θ=Arctg(Grad)。
为提高制定方位构造起伏变化的预测精度,通过细化目的层上、下多个等时界面的构造图,预测构造起伏变化。
Grad:水平段方向的地层坡降;
Vs:靶点距井口位置的水平井位移。
上述的为提高制定方位构造起伏变化的预测精度,通过细化目的层上、下多个等时界面的构造图,预测构造起伏变化,即:当地层中水平井目标层上、下存在多个等时界面时,对多个等时界面的构造图进行步骤(2)-步骤(5)的操作。
上述步骤(3)中,所述的概率统计范围具体为水平井区内地震预测地层厚度与钻井实钻地层厚度之差的90%概率区间。
本发明的有益效果:本发明有效提高了薄层岩性油气藏水平井靶点设计精度,对水平井实钻效果的提高起到了重要指导作用。2010-2013年国内某大型气田进行靶点设计20口水平井,设计靶点与实钻结果误差普遍在5m以内,将储层钻遇率提高至80%以上,较之开发初期或国内油气田普遍低于50%的情况提高了30%。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1为本发明的方法流程示意图。
具体实施方式
参照图1,本发明提供了一种基于等时界面推演的水平井靶点设计方法,包括如下步骤:
(1)在水平井目标层上、下确定等时界面:在水平井目标层上、下分别确定距离较近的、分布稳定的等时界面;其中距离较近的等时界面,其距离判定标准为:该距离不超过50m;分布稳定的等时界面其判定标准为:其油气藏内部90%以上钻井均有钻遇。
(2)初步确定等时界面海拔值:利用钻井和录井作业中录取的等时界面海拔分别绘制上、下等时界面构造图,在构造图上读取水平井井口点的等时界面海拔PH上-钻井、PH下-钻井;若等时界面为地震强放射面,则利用地震解释资料中的等时界面反射时间预测等时界面海拔PH上-地震、PH下-地震;将钻井预测结果与地震预测结果进行对比分析,如果PH上-钻井=PH上-地震、PH下-钻井=PH下-地震,则初步确定PH、PH值;否则修正等时界面构造图,使结果相吻合并确定PH、PH值;若等时界面为非地震强反射面,则以构造图读取值为初步等时界面海拔值;其中,PH、PH为水平井井口位置下、上等时界面的海拔高度;
(3)初步确定各小层地层厚度值:先利用地震资料,预测得出水平井井口点的地震强反射面之间的地层厚度,该地层厚度一般为多个小层的合层厚度。利用钻井分层绘制等时界面距目标层之间各小层的地层厚度图,在图上读取水平井井口点的各小层地层厚度H1、H2、…Hx与Ha、Hb、…Hn,其中,H1、H2…Hx分别为下等时界面距目标层之间第一小层至第x小层的地层厚度;Ha、Hb…Hn分别为上等时界面距目标层之间第一小层至第n小层的地层厚度;若各小层地层厚度之和与地震预测地层厚度H地震预测的误差在水平井区内钻井实钻地层厚度与地震预测地层厚度之差的概率统计范围内,(一般为水平井区内地震预测地层厚度与钻井实钻地层厚度之差的90%概率区间,地震解释精度不同有一定差异),则认为Ha1+Ha2+…+Hay≈H地震预测;其中,Ha1、Ha2、…Hay为地震预测强反射面之间的各小层地层厚度,一般为H1、H2、…Hx与Ha、Hb、…Hn内的一部分,则确定Ha1+Ha2+…+Hay为初步的小层地层厚度值,其余不在地震预测地层厚度范围内的以地质图件为准;如果结果不符,则修正各小层地层厚度图的变化趋势及水平井井口点地层厚度值,使两个结果吻合;
(4)利用等时界面推演法确定水平井井口点的目标层海拔:以等时界面海拔为基点,采用由下等时界面向上推演目标层位置和上等时界面向下推演目标层位置两种方法,预测水平井井口点的目标层垂向位置;通过验证下等时界面推演法、上等时界面推演法计算的目标层海拔的一致性,综合确定水平井井口点的目标层海拔;上述等时界面推演法分为下等时界面推演法和上等时界面推演法,其公式为:
下等时界面推演法:A=PH+H1+H2+…+Hx
上等时界面推演法:A=PH+Ha+Hb+…+Hn
其中,A:水平井井口位置A点的目的层海拔高度;
PH、PH:水平井井口位置下、上等时界面的海拔高度;
H1、H2…Hx分别为下等时界面距目标层之间第一小层至第x小层的地层厚度;
Ha、Hb…Hn分别为上等时界面距目标层之间第一小层至第n小层的地层厚度。
验证下等时界面推演法、上等时界面推演法计算的目标层海拔的一致性时,如果下等时界面与上等时界面推演的目标层海拔一致,则该值为水平井井口位置目标层海拔值;如果不一致,则在地震预测结果范围内,修改相应的各小层地层厚度图,在小层地层厚度值误差范围内(±5%内)调整地层厚度预测值,最终使上、下推演结果吻合,即最终使:A=PH+H1+H2+…+Hx=PH+Ha+Hb+…+Hn
(5)采用构造趋势面定向预测法预测水平井方向的构造变化:基于上、下等时界面构造趋势的近似性及差异性分析,预测水平井沿水平段方向的地层坡降Grad及地层倾角θ°;所述的构造趋势面定向预测法是基于上、下等时界面构造趋势的近似性及差异性分析,预测水平井沿水平段方向的坡降Grad及地层倾角θ°,其具体方法是沿水平段方向或与水平段方位夹角在5%以内,选择不同的井组计算多个Grad值,取该多个Grad值按照距离的加权平均,获取水平段方向坡降和地层倾角;为提高制定方位构造起伏变化的预测精度,通过细化目的层上下多个等时界面的构造图,预测构造起伏变化:即当地层中水平井目标层上、下存在多个等时界面时,对多个等时界面的构造图进行步骤(2)-步骤(5)的操作。
其中,沿水平段坡降
地层倾角θ=Arctg(Grad)。
为提高制定方位构造起伏变化的预测精度,通过细化目的层上、下多个等时界面的构造图,预测构造起伏变化。
Grad:水平段方向的地层坡降;
Vs:靶点距井口位置的水平井位移。
(6)设计水平井各靶点:以满足钻井工程要求为前提,设定靶点时须考虑地层的顶低变化和构造的坡降变化类型,计算水平井水平段各靶点坐标;将入窗点B设在储层顶部,水平段其余靶点均匀分布于储层中部,其中窗点B即首次打开气层位置;靶点计算公式如下:
BX=A+Grad×Vs
BX:水平井靶点海拔
Grad:水平段方向的地层坡降
Vs:所计算靶点距井口点的水平位移;
(7)根据钻井施工进度,分阶段修正水平井各靶点:水平井在导眼井完钻及斜井段完钻(入窗后套管固井)等阶段施工完成后,根据邻井、导眼井、斜井段的实钻信息分别修正各等时界面构造图、各小层地层厚度图,编制水平井补充地质设计,按照步骤(4)、步骤(5)、步骤(6)所列设计方法,重新设计水平井各靶点位置,提高预测精度。
现结合工程实际具体详述本发明的实施过程:
步骤1、确定目标层上、下等时界面
首先在水平井目标层上、下确定距离较近的、分布稳定的等时界面。长期地质年代条件下,常发育形成于一个较短地质时期内、具有等时性、横向分布连续且可对比的等时界面,如短期火山爆发沉积的凝灰岩层、大型地质历史转换时期形成的岩性转化面(碳酸盐岩与碎屑岩转换面、碳酸盐岩与煤层转换面等),在钻井过程中具有较高的钻遇率,这些界面对卡定地层纵向分布位置具有重要的作用。但一般情况下,水平井目标层又很少与该类型的等时界面直接接触,因此可利用等时界面与目标层中间所夹地层的厚度变化,来逐步推演水平井目标层的垂向位置。如国内某大型气藏,水平井目标层为奥陶系马家沟组马五1 3小层,其下部发育的奥陶系马家沟组马五1 4底界为一套凝灰质泥岩层(K1层),具有等时性,且距离水平井目标层较近;上部明显等时界面有:太原组灰岩顶面、本溪组9#煤层顶、奥陶系风化壳顶面等。各等时界面均具有发育稳定、横向连续性好,易于刻画,能有效预测该层系的构造形态的特点。
步骤2、初步确定等时界面海拔值
如国内某大型气藏,利用钻井资料分别绘制上等时界面太原组灰岩顶面构造图、本溪组9#煤层顶构造图、奥陶系风化壳顶面构造图和下等时界面K1构造图,在构造图上读取水平井井口点的等时界面海拔:太原组顶面海拔PHP1t、本溪组9#煤层顶海拔PHC2b、奥陶系风化壳顶面海拔PHO、K1构造海拔PHK1。利用地震资料预测太原组顶面海拔PHTP、本溪组9#煤层顶海拔PHTC2、奥陶系风化壳顶面海拔PHTC、K1构造海拔PHTO14,通过修正各等时界面构造图,使上等时界面海拔值PHP1t=PHTP、PHC2b=PHTC2、PHO=PHTC,下等时界面海拔PHK1=PHTO14
步骤3、初步确定各小层地层厚度值
先利用地震资料,预测得出水平井井口点的地震强反射面之间的地层厚度;利用钻井分层绘制等时界面距目标层之间各小层的地层厚度图,并在图上读取水平井井口点的各小层地层厚度。如国内某大型气藏,先利用地震强反射面预测石炭系地层厚度HTp-Tc,马五1地层厚度HTc-TO14。绘制各小层地层厚度图,并读取相应的水平井井口点的数据:太原组地层厚度HP1t、本溪组地层厚度HC2b、马五1 1地层厚度Hmw11、马五1 2地层厚度Hmw12、马五1 3地层厚度Hmw13、马五1 4地层厚度Hmw14。通过反复修正各小层地层厚度图,使HTp-Tc=HP1t+HC2b,HTc-TO14=Hmw11+Hmw12+Hmw13+Hmw14,并确定相关厚度值。
步骤4、等时界面推演法
采用由下等时界面向上推演目标层位置和上等时界面向下推演目标层位置两种方法,精确预测水平井井口点目标层的垂向位置。
1)下等时界面推演法
按照步骤(3)、(4),地质绘图与地震预测结果结合,精细刻画目标层下部典型等时界面的构造形态和地层厚度,进行水平井靶点预测。如国内某大型气藏,水平井目标层下部发育奥陶系马家沟组马五1 4底界为一套凝灰质泥岩层(K1层),利用该等时界面计算靶点公式为:
其计算公式为:BKB=PHK1+Hmw13+Hmw14
BKB:水平井井口位置的目标层海拔
PHK1:水平井井口位置的K1海拔
Hmw13:马五1 3地层厚度
Hmw14:马五1 4地层厚度
2)上等时界面推演法
按照步骤(3)、(4),地质绘图与地震预测结果结合,精细刻画目的层上覆地层中典型等时界面的构造形态及地层厚度,进行水平井靶点预测。如国内某大型气藏,在太原组、本溪组地层厚度预测的基础上,结合马家沟组马五1 1、2、3的地层厚度和气层厚度,以三个等时界面为基准,分别利用等时界面和距目标层的地层厚度,从上往下计算井口位置目标层马五1 3气层顶面深度(井口靶点),且要求三种计算结果吻合。这种方法的优点是有效缓解了地震资料对薄层厚度预测精度不高的难点,发挥了地震资料横向预测的优势。
其计算公式为:
则:BKB=PHTc-(Hmw11+Hmw12)=PHTC2-HC2b-(Hmw11+Hmw12)=PHTP-HTp-Tc-(Hmw11+Hmw12)
HTp-Tc:地震预测的石炭系地层厚度
PHTc:地震预测奥陶系风化壳顶面海拔
Hmw11:马五1 1地层厚度
Hmw12:马五1 2地层厚度
PHTP:地震预测太原组灰岩顶面海拔
PHTC2:地震预测本溪组9#煤层顶面海拔
HP1t:太原组地层厚度
HC2b:本溪组地层厚度
通过验证下等时界面推演法、上等时界面推演法计算的目标层海拔的一致性,综合确定水平井井口位置的目标层海拔和马五1 3地层厚度。
即:BKB=PHTC+Hmw11+Hmw12=PHK1+Hmw13+Hmw14
步骤5构造趋势面定向预测法
基于上、下等时界面构造趋势的近似性及差异性分析,预测水平井沿水平段方向的坡降Grad及地层倾角θ°。主要技术方法是沿水平段方向或大致水平段方向选择不同的井组计算多个Grad值,取上述多个Grad值按照距离的加权平均,获取水平段方向坡降和地层倾角。为提高制定方位构造起伏变化的预测精度,通过绘制目标层上、下多个等时界面的构造图,预测构造起伏变化。以国内某大型岩性气田为例,下等时界面K1构造、以及上等时界面太原组、本溪组、奥陶系等顶面构造趋势的一致性或近似性,以距离目标层最近等时界面构造(K1小幅度构造)为基础,以远距离等时界面构造为辅助,计算多个同方向井组的海拔高差,取距离加权平均值,预测水平段方向的坡降和地层倾角。
沿水平段坡降
地层倾角θ=Arctg(Grad)
步骤6水平井靶点设计
以国内某大型岩性气田为例,在满足钻井工程要求的前提下,设定靶点考虑目标层的顶低变化和构造的坡降变化,计算水平井各靶点坐标。将入窗点B(首次打开气层位置)设在马五1 3储层顶部,水平段其余靶点均匀分布于马五1 3储层中部。靶点计算公式如下:
BX=A+Grad×Vs
BX:水平井靶点海拔
Grad:水平段方向的地层坡降
Vs:所计算靶点距井口点的水平位移
步骤7分阶段修正水平井各靶点
根据钻井施工进度,在水平井导眼井完钻及斜井段完钻(入窗后套管固井)等阶段施工完成后,根据邻井、导眼井、斜井段的实钻信息分别修正各等时界面构造图、各小层地层厚度图,编制水平井补充地质设计,按照步骤(4)、步骤(5)、步骤(6)所列设计方法,重新计算水平井各靶点位置,提高预测精度。
综上,本发明能有效提高薄层岩性油气藏水平井靶点设计精度,对水平井实钻效果的提高起到了重要指导作用。2010-2013年国内某大型气田进行靶点设计20口水平井,设计靶点与实钻结果误差普遍在5m以内,将储层钻遇率提高至80%以上,较之开发初期或国内油气田普遍低于50%的情况提高了30%。
本实施方式中没有详细叙述的部分属本行业的公知的常用手段,这里不一一叙述。以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (8)

1.一种基于等时界面推演的水平井靶点设计方法,其特征在于,包括如下步骤:
(1)在水平井目标层上、下确定等时界面:在水平井目标层上、下分别确定距离较近的、分布稳定的等时界面;
(2)初步确定等时界面海拔值:利用钻井和录井作业中录取的等时界面海拔分别绘制上、下等时界面构造图,在构造图上读取水平井井口点的等时界面海拔PH上-钻井、PH下-钻井;若等时界面为地震强放射面,则利用地震解释资料中的等时界面反射时间预测等时界面海拔PH上-地震、PH下-地震;将钻井预测结果与地震预测结果进行对比分析,如果PH上-钻井=PH上-地震、PH下-钻井=PH下-地震,则初步确定PH、PH值;否则修正等时界面构造图,使结果相吻合并确定PH、PH值;若等时界面为非地震强反射面,则以构造图读取值为初步等时界面海拔值;其中,PH、PH为水平井井口位置下、上等时界面的海拔高度;
(3)初步确定各小层地层厚度值:先利用地震资料,预测得出水平井井口点的地震强反射面之间的地层厚度,该地层厚度一般为多个小层的合层厚度;利用钻井分层绘制等时界面距目标层之间各小层的地层厚度图,在图上读取水平井井口点的各小层地层厚度H1、H2、…Hx与Ha、Hb、…Hn,其中,H1、H2…Hx分别为下等时界面距目标层之间第一小层至第x小层的地层厚度;Ha、Hb…Hn分别为上等时界面距目标层之间第一小层至第n小层的地层厚度;若各小层地层厚度之和与地震预测地层厚度H地震预测的误差在水平井区内钻井实钻地层厚度与地震预测地层厚度之差的概率统计范围内,则认为Ha1+Ha2+…+Hay≈H地震预测;其中,Ha1、Ha2、…Hay为地震预测强反射面之间的各小层地层厚度,则确定Ha1+Ha2+…+Hay为初步的小层地层厚度值,其余不在地震预测地层厚度范围内的以地质图件为准;如果结果不符,则修正各小层地层厚度图的变化趋势及水平井井口点地层厚度值,使两个结果吻合;
(4)利用等时界面推演法确定水平井井口点的目标层海拔:以等时界面海拔为基点,采用由下等时界面向上推演目标层位置和上等时界面向下推演目标层位置两种方法,预测水平井井口点的目标层垂向位置;通过验证下等时界面推演法、上等时界面推演法计算的目标层海拔的一致性,综合确定水平井井口点的目标层海拔;
(5)采用构造趋势面定向预测法预测水平井方向的构造变化:基于上、下等时界面构造趋势的近似性及差异性,预测水平井沿水平段方向的地层坡降Grad及地层倾角θ°;
(6)设计水平井各靶点:以满足钻井工程要求为前提,设定靶点时须考虑地层的顶低变化和构造的坡降变化类型,计算水平井水平段各靶点坐标;将入窗点B设在储层顶部,水平段其余靶点均匀分布于储层中部,其中窗点B即首次打开气层位置;靶点计算公式如下:
BX=A+Grad×Vs
BX:水平井靶点海拔
Grad:水平段方向的地层坡降
Vs:所计算靶点距井口点的水平位移;
(7)根据钻井施工进度,分阶段修正水平井各靶点:水平井在导眼井完钻及斜井段完钻阶段施工完成后,根据邻井、导眼井、斜井段的实钻信息分别修正各等时界面构造图、各小层地层厚度图,编制水平井补充地质设计,按照步骤(4)、步骤(5)、步骤(6),重新设计水平井各靶点位置,提高预测精度。
2.如权利要求1所述的一种基于等时界面推演的水平井靶点设计方法,其特征在于,步骤(1)中所述的距离较近的等时界面,其距离判定标准为:该距离不超过50m;所述的分布稳定的等时界面其判定标准为:其油气藏内部90%以上钻井均有钻遇。
3.如权利要求1所述的一种基于等时界面推演的水平井靶点设计方法,其特征在于,步骤(4)中所述的等时界面推演法分为下等时界面推演法和上等时界面推演法,其公式为:
下等时界面推演法:A=PH+H1+H2+…+Hx
上等时界面推演法:A=PH+Ha+Hb+…+Hn
其中,A:水平井井口位置A点的目的层海拔高度;
PH、PH:水平井井口位置下、上等时界面的海拔高度;
H1、H2…Hx分别为下等时界面距目标层之间第一小层至第x小层的地层厚度;
Ha、Hb…Hn分别为上等时界面距目标层之间第一小层至第n小层的地层厚度。
4.如权利要求1所述的一种基于等时界面推演的水平井靶点设计方法,其特征在于:其中步骤(4)中所述的验证下等时界面推演法、上等时界面推演法计算的目标层海拔的一致性,验证时,如果下等时界面与上等时界面推演的目标层海拔一致,则该值为水平井井口位置目标层海拔值;如果不一致,则在地震预测结果范围内,修改相应的各小层地层厚度图,在小层地层厚度值误差范围内调整地层厚度预测值,最终使上、下推演结果吻合,即最终使:A=PH+H1+H2+…+Hx=PH+Ha+Hb+…+Hn
5.如权利要求4所述的一种基于等时界面推演的水平井靶点设计方法,其特征在于:所述的小层地层厚度值误差范围内为±5%内。
6.如权利要求1所述的一种基于等时界面推演的水平井靶点设计方法,其特征在于:其中步骤(5)中所述的构造趋势面定向预测法是基于上、下等时界面构造趋势的近似性及差异性分析,预测水平井沿水平段方向的坡降Grad及地层倾角θ°,其具体方法是:沿水平段方向或夹角±5%以内选择多个两口井的组合,计算Grad值,将多个Grad值按照水平位移远近进行加权平均,获取水平段方向坡降和地层倾角;其中,沿水平段坡降
地层倾角θ=Arctg(Grad);
为提高制定方位构造起伏变化的预测精度,通过细化目的层上、下多个等时界面的构造图,预测构造起伏变化;
Grad:水平段方向的地层坡降;
Vs:靶点距井口位置的水平井位移。
7.如权利要求6所述的一种基于等时界面推演的水平井靶点设计方法,其特征在于:所述的为提高制定方位构造起伏变化的预测精度,通过细化目的层上、下多个等时界面的构造图,预测构造起伏变化,即:当地层中水平井目标层上、下存在多个等时界面时,对多个等时界面的构造图进行步骤(2)-步骤(5)的操作。
8.如权利要求1所述的一种基于等时界面推演的水平井靶点设计方法,其特征在于:步骤(3)中,所述的概率统计范围具体为水平井区内地震预测地层厚度与钻井实钻地层厚度之差的90%概率区间。
CN201511017487.5A 2015-12-29 2015-12-29 一种基于等时界面推演的水平井靶点设计方法 Active CN105604483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511017487.5A CN105604483B (zh) 2015-12-29 2015-12-29 一种基于等时界面推演的水平井靶点设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511017487.5A CN105604483B (zh) 2015-12-29 2015-12-29 一种基于等时界面推演的水平井靶点设计方法

Publications (2)

Publication Number Publication Date
CN105604483A true CN105604483A (zh) 2016-05-25
CN105604483B CN105604483B (zh) 2018-02-02

Family

ID=55984769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511017487.5A Active CN105604483B (zh) 2015-12-29 2015-12-29 一种基于等时界面推演的水平井靶点设计方法

Country Status (1)

Country Link
CN (1) CN105604483B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107676084A (zh) * 2017-08-17 2018-02-09 中国石油天然气股份有限公司 致密油层长水平段轨迹设计方法
CN108051860A (zh) * 2017-11-28 2018-05-18 北京金双狐油气技术有限公司 一种利用趋势面形态生成误差校正面的方法
CN106437512B (zh) * 2016-08-31 2018-09-18 中国石油集团渤海钻探工程有限公司 一种页岩气水平井着陆轨迹随钻跟踪调控方法
CN109267996A (zh) * 2018-10-22 2019-01-25 中国石油天然气股份有限公司 一种坳陷盆地河流相地层水平钻井轨迹预测方法
CN112377104A (zh) * 2020-10-30 2021-02-19 中国石油天然气集团有限公司 动态调整致密砂岩气藏水平井实钻轨迹的方法及装置
CN114200539A (zh) * 2020-09-18 2022-03-18 中国石油天然气股份有限公司 以热液成因硅质岩为等时基准面的岩溶古地貌恢复方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424166A (zh) * 2008-12-01 2009-05-06 中国石油集团长城钻探工程有限公司 边顶水油藏特殊型水平井井眼轨迹控制方法
CN101949286A (zh) * 2010-08-26 2011-01-19 中国石油集团川庆钻探工程有限公司 井眼轨迹远程实时跟踪方法
CN102392601A (zh) * 2011-10-09 2012-03-28 中国石油化工股份有限公司 一种多靶点水平井井眼轨道的确定方法
CN102518433A (zh) * 2011-12-31 2012-06-27 中国石油天然气股份有限公司 薄层碳酸盐岩储层水平井的靶点调整方法
US20120267171A1 (en) * 2011-04-19 2012-10-25 Saudi Arabian Oil Company Well System With Lateral Main Bore and Strategically Disposed Lateral Bores and Method of Forming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424166A (zh) * 2008-12-01 2009-05-06 中国石油集团长城钻探工程有限公司 边顶水油藏特殊型水平井井眼轨迹控制方法
CN101949286A (zh) * 2010-08-26 2011-01-19 中国石油集团川庆钻探工程有限公司 井眼轨迹远程实时跟踪方法
US20120267171A1 (en) * 2011-04-19 2012-10-25 Saudi Arabian Oil Company Well System With Lateral Main Bore and Strategically Disposed Lateral Bores and Method of Forming
CN102392601A (zh) * 2011-10-09 2012-03-28 中国石油化工股份有限公司 一种多靶点水平井井眼轨道的确定方法
CN102518433A (zh) * 2011-12-31 2012-06-27 中国石油天然气股份有限公司 薄层碳酸盐岩储层水平井的靶点调整方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106437512B (zh) * 2016-08-31 2018-09-18 中国石油集团渤海钻探工程有限公司 一种页岩气水平井着陆轨迹随钻跟踪调控方法
CN107676084A (zh) * 2017-08-17 2018-02-09 中国石油天然气股份有限公司 致密油层长水平段轨迹设计方法
CN108051860A (zh) * 2017-11-28 2018-05-18 北京金双狐油气技术有限公司 一种利用趋势面形态生成误差校正面的方法
CN108051860B (zh) * 2017-11-28 2021-08-03 北京金双狐油气技术有限公司 一种利用趋势面形态生成误差校正面的方法
CN109267996A (zh) * 2018-10-22 2019-01-25 中国石油天然气股份有限公司 一种坳陷盆地河流相地层水平钻井轨迹预测方法
CN114200539A (zh) * 2020-09-18 2022-03-18 中国石油天然气股份有限公司 以热液成因硅质岩为等时基准面的岩溶古地貌恢复方法
CN112377104A (zh) * 2020-10-30 2021-02-19 中国石油天然气集团有限公司 动态调整致密砂岩气藏水平井实钻轨迹的方法及装置

Also Published As

Publication number Publication date
CN105604483B (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
CN105604483A (zh) 一种基于等时界面推演的水平井靶点设计方法
CN106869790B (zh) 一种页岩气水平井快速精细地质导向方法
He et al. 3-D geologic architecture of Xiong’an New Area: Constraints from seismic reflection data
CN106285476B (zh) 一种水平钻井实时地震地质综合导向方法
CN104975808B (zh) 一种深层水平井钻井轨迹调整方法
CN104615803B (zh) 一种三维水平井井眼轨道设计方法及系统
CN102272414B (zh) 优化具有流动障碍物的储层中的井产量的方法
CN102518433B (zh) 薄层碳酸盐岩储层水平井的靶点调整方法
CN108625782B (zh) 一种水平井造斜段地质导向方法
CN105464592B (zh) 一种页岩气水平井地质导向方法
CN103790577B (zh) 基于水平井水平段虚拟直井化的深度域约束反演方法
CN103226210B (zh) 一种圈闭落实方法
CN105631753B (zh) 一种基于地层产状的水平井油藏剖面建模方法
CN108442882B (zh) 基于二维地震资料的页岩气大位移水平井随钻地质导向方法
CN109267996A (zh) 一种坳陷盆地河流相地层水平钻井轨迹预测方法
CN106894761A (zh) 利用时间域地震体的地质导向模型的地质导向方法
CN109557584A (zh) 一种水平钻井实时地震地质综合导向方法
RU2447270C1 (ru) Способ разработки нефтяной малоразведанной залежи
CN108518181B (zh) 一种致密砂岩气藏水平井轨迹动态调整方法
CN105608500A (zh) 复杂断块油藏直井井斜空间归位预测方法
CN111090918B (zh) 一种水平井井眼轨迹的设计方法及系统
CN107341850A (zh) 一种开发井网下曲流河单一点坝储层构型地质建模的方法
CN104251135B (zh) 大斜度井空间归位方法
CN112523744A (zh) 一种薄差层水平井井位设计及实时跟踪导向方法
Wang et al. Numerical simulation research on well pattern optimization in high–dip angle coal seams: a case of Baiyanghe Block

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant