CN105589203B - Produce the method and device of radial polarisation array beams - Google Patents

Produce the method and device of radial polarisation array beams Download PDF

Info

Publication number
CN105589203B
CN105589203B CN201610142131.2A CN201610142131A CN105589203B CN 105589203 B CN105589203 B CN 105589203B CN 201610142131 A CN201610142131 A CN 201610142131A CN 105589203 B CN105589203 B CN 105589203B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mfrac
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610142131.2A
Other languages
Chinese (zh)
Other versions
CN105589203A (en
Inventor
王静
朱时军
李振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610142131.2A priority Critical patent/CN105589203B/en
Publication of CN105589203A publication Critical patent/CN105589203A/en
Application granted granted Critical
Publication of CN105589203B publication Critical patent/CN105589203B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/288Filters employing polarising elements, e.g. Lyot or Solc filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The present invention relates to a kind of method and device for producing radial polarisation array beams, method includes:Spatial polarization regulation and control are carried out to linearly polarized laser, obtain radial polarized light beam;The space correlation characteristic of radial polarized light beam is reduced, obtains the radial polarisation Xie Ermo light beams of space correlation characteristic Gaussian distributed;Using the relevance of two-dimensional comb function regulation and control radial polarisation Xie Ermo light beams, Gauss array association radial polarized light beam is obtained;Gauss array associates radial polarized light beam after thin lens focuses on, and radial polarisation array beams are obtained in focal position.Radial polarisation array beams caused by the present invention can greatly improve operating efficiency compared with single-mode beams, in application fields such as particle-capture, high density storages, have very high researching value.

Description

Produce the method and device of radial polarisation array beams
Technical field
The present invention relates to radial polarized light beam, particularly a kind of method and device for producing radial polarisation array beams.
Background technology
In recent years, a kind of spatial non-uniform light beam --- radial polarized light beam receives extensive concern.Radial polarisation Light beam has special polarization properties, relative to even polarization light field, such as linear polarization, elliptical polarization, circular polarization, radial polarisation light What polarization state was unevenly distributed, its electric field oscillation has perfect rotational symmetry characteristic, and light field center intensity is zero.In recent years The theory come and experimental studies have found that, radial polarized light beam, which compares general uniform light beam, has some new features, such as " tightly gathers The minimum light spot area of Jiao " radial polarized light beam is up to 0.16 λ2, it is smaller by nearly 50% than the linearly polarized light with the conditions of.In addition, also Very strong long-range salt free ligands axial electric field component and easily excitating surface plasmon etc. can be obtained.Radial polarisation light The production method of beam can be divided mainly into intracavitary and produce and two kinds be produced outside chamber:Intracavitary production method is to learn member by being placed in intracavitary Part, such as conscope, birefringence element and liquid crystal polarized selector, select by these elements or change the inclined of light beam Polarization state produces radial polarized light beam.Rule is produced outside chamber to be mainly superimposed by mode-interference or using some particular polarization patterns turn Element is changed, such as radial polarizer, LCD space light modulator, phase delay element, polarizationselective light fibre and sub-wave length grating Deng acquisition radial polarized light beam.Current research show radial polarized light beam particle-capture, super-resolution measurement, super-resolution into Picture, high density storage and material processing and other fields have important application prospect.
Based on partially coherent partial polarization general theory, light beam can use the rank cross spectrum density matrix of spatial frequency domain 2 × 2 Represent, consider the spatial coherence of light field, the radial polarized light beam of associate feature Gaussian distributed is suggested and tests generation (F.Wang,Y.Cai,Y.Dong,and O.Korotkova,Experimental generation of a radially polarized beam with controllable spatial coherence.Appl.Phys.Lett.100,051108 (2012)), research shows that the focus characteristics of radial polarisation light can be regulated and controled by the spatial coherence of light beam, produces empty The intensity distribution of the heart, flat-top and Gaussian, there is important application prospect in material heat treatment and particle-capture field.Research It has also been found that partially coherent radial polarized light beam compares linear polarization vector beam, it can effectively reduce atmospheric turbulance and optical signal is disturbed It is dynamic, there is important application in terms of free optic communication.
The associate feature of light beam can regulate and control the association of light beam under the conditions of the authenticity of beam configuration is met by design Characteristic carrys out Effective Regulation optical parameter characteristic.Radial polarisation array beams are compared with single-mode beams, at some such as high density storage, super The application fields such as resolution imaging, material heat treatment, particle-capture can greatly improve operating efficiency, have very high Practical Research Value.The generation of array beams can be directly obtained by laser array by beam shaping, or light beam is adjusted by beam splitter Intensity distribution is controlled to realize, but by regulating and controlling to the associate feature of light beam so that light beam realizes battle array after being transmitted by optical system The method of row light beam has no report always.
The content of the invention
It is an object of the invention to provide a kind of method and device for producing radial polarisation array beams.
The technical scheme for realizing the object of the invention is:A kind of method for producing radial polarisation array beams, including following step Suddenly:
Step 1, spatial polarization regulation and control are carried out to linearly polarized laser, obtain radial polarized light beam;
Step 2, the space correlation characteristic for reducing radial polarized light beam, obtain the footpath of space correlation characteristic Gaussian distributed To polarization Xie Ermo light beams;
Step 3, the relevance using two-dimensional comb function regulation and control radial polarisation Xie Ermo light beams, obtain the association of Gauss array Radial polarized light beam;
Step 4, Gauss array associate radial polarized light beam after thin lens focuses on, and radial polarisation is obtained in focal position Array beams.
A kind of device for producing radial polarisation array beams, including linear polarization He-Ne laser, radial polarisation converter, rotation Frosted glass plate, spatial light modulator, collimation lens, G amplitude filter plate, condenser lens and the laser beam analyzer turned;
Linearly polarized laser beam caused by linear polarization He-Ne laser makes linearly polarized laser beam by radial polarisation photoconverter Spatial radial polarization is converted to by the linear polarization of space uniform, the space phase of laser beam is reduced by the frosted glass plate of rotation afterwards Dryness, obtain the radial polarized light beam of coherence's Gaussian distributed;The association of spatial light modulator modulated radial light beam Characteristic, the association of Gauss array is made it have, collimated optical beam is directed at by collimation lens, and light beam is regulated and controled in source by gaussian filtering piece The waist radius of field, the radial polarized light beam with Gauss array associate feature finally is produced in source field, it is saturating by focusing on afterwards Mirror carries out light beam focusing, and is distributed in focal point with laser beam analyzer measurement distribution of light intensity.
Compared with prior art, its remarkable advantage is the present invention:(1) the radial polarisation array that the present invention obtains in focal point Light beam can be regulated and controled by initial parameter.Array size can be regulated and controled by initial parameter N, M;Hot spot spacing can pass through α regulates and controls;Spot intensity distribution can pass through the coherence length σ of source fieldgTo carry out being regulated to Gauss array distribution and hollow array Distribution, both light beams can manipulate two kinds of different particles in terms of optical beam manipulation particle:Refractive index is more than surrounding environment Particle and refractive index are less than the particle of surrounding environment, and the size of coherence's also controllable focal point stigma;(2) radial polarisation Array beams can greatly improve work compared with single-mode beams, in some such as particle-capture, high density storage application fields Efficiency, there is very high Practical Research to be worth;(3) present invention to the associate feature of radial polarized light beam by regulating and controlling so that light Beam realizes radial polarisation array beams, simple structure after being transmitted by optical system, and regulation and control parameter is enriched, and cost is compared to sharp Light device array, which closes beam, obvious reduction.
Brief description of the drawings
Fig. 1 is a kind of schematic device for producing radial polarisation array beams provided by the invention.
Light intensity and the polarization state distribution of radial polarized light beam are associated in Fig. 2 (a) for source field Gauss array, is source in Fig. 2 (b) Field intensity is distributed in the profile at y=0, and Fig. 2 (c) and Fig. 2 (d) are on light field any point and central point on y=0 sections One-dimensional degree of coherence distribution map.
Fig. 3 (a) and Fig. 3 (b) is respectively the intensity distribution that the coherence length of laser takes focal point array beams under 10mm and 1mm Two-dimensional silhouette figure.
Fig. 4 (a) is light beam intensity and polarization state distribution map, Fig. 4 at transmission range z=0.8f after lens focus (b) it is intensity and polarization state distribution map at transmission range z=0.95f, Fig. 4 (c) is intensity and polarization state at transmission range z=f Distribution map.
Embodiment
With reference to Fig. 1, a kind of method of generation radial polarisation array beams of the invention, comprise the following steps:
Step 1, spatial polarization regulation and control are carried out to linearly polarized laser, obtain radial polarized light beam;The electricity of radial polarized light beam Field vector mathematical modeling is expressed as x-polarisation TEM10With y-polarisation TEM01Coherent superposition:
Wherein r2=x2+y2, x, y are respectively abscissa and ordinate under cartesian coordinate, ex、eyRepresent orthogonal Electric field oscillation unit vector;
Step 2, the space correlation characteristic for reducing radial polarized light beam, obtain the footpath of space correlation characteristic Gaussian distributed To polarization Xie Ermo light beams;The space correlation characteristic of radial polarisation Xie Ermo light beams is
Step 3, the relevance using two-dimensional comb function regulation and control radial polarisation Xie Ermo light beams, obtain the association of Gauss array Radial polarized light beam;Specially:
Two-dimensional comb function is write using spatial light modulator, radial polarisation Xie Ermo light beams are modulated, obtain sky Between associate feature inverse Fourier transform, be expressed as:
xy) representation space frequency domain coordinate, τx、τyHorizontal stroke, the ordinate of Gauss array are represented respectively;δ represents dirac Function;
Gauss array association radial polarized light beam 2 × 2 rank cross-spectral density matrixes be:
The association of Gauss array is expressed as:
r1=(x1,y1)、r2=(x2,y2) it is 2 position coordinateses of light field;σ0For beam waist width;σgFor Gauss array Associate the coherence length of radial polarized light beam;A is dimensionless real number, for regulating and controlling lattice distance;N, M represent array size, nx、 nyThe respectively position of Gauss array;
Step 4, Gauss array associate radial polarized light beam after thin lens focuses on, and radial polarisation is obtained in focal position Array beams;
The abcd matrix that thin lens focuses on is expressed as:
F is focal distance of thin convex lens, z be inspection surface to the distance of thin lens, focal point z value is f;
2 × 2 rank cross spectrum density matrix of radial polarisation array beams, matrix element are expressed as:
Wherein, α represents x or y;Represent Wxy12, z) conjugation;ρ1=(ρ1x1y) and ρ2=(ρ2x, ρ2y) for any two points in receiving surface;
Wherein, k represents wave number.
As shown in figure 1, a kind of device for producing radial polarisation array beams, it is characterised in that swash including linear polarization He-Ne Light device 1, radial polarisation converter 2, the frosted glass plate 3 of rotation, spatial light modulator 4, collimation lens 5, G amplitude filter plate 6th, condenser lens 7 and laser beam analyzer 8;
Linearly polarized laser beam makes linearly polarized laser by radial polarisation photoconverter 2 caused by linear polarization He-Ne laser 1 Beam is converted to spatial radial polarization by the linear polarization of space uniform, reduces the sky of laser beam by the frosted glass plate 3 of rotation afterwards Between coherence, obtain the radial polarized light beam of coherence's Gaussian distributed;Computer 9 is write spatial light by comb function and adjusted Device 4 processed, the associate feature of modulated radial light beam make it have the association of Gauss array, direct light are directed at by collimation lens 5 Beam, and waist radius of the light beam in source field is regulated and controled by gaussian filtering piece 6, finally being produced in source field has the association of Gauss array special Property radial polarized light beam, afterwards by condenser lens 7 carry out light beam focusing, and focal point with laser beam analyzer 8 measure light Field intensity is distributed.
The distance of the condenser lens 7 and laser beam analyzer 8 is the focal length of condenser lens 7.
Below in conjunction with the accompanying drawings and embodiment the present invention is described further.
Embodiment
Referring to Fig. 1, a linearly polarized laser beam will use linearly polarized laser by radial polarisation photoconverter in the present embodiment Laser beam caused by device obtains radial polarized light beam by radial polarisation converter first, and the spatial coherence of laser beam is very high can It is considered what is be concerned with completely, then the electric field intensity mathematical modeling of radial polarized light beam is represented by x-polarisation TEM10With y-polarisation TEM01Coherent superposition:
Wherein r2=x2+y2, σ0For Beam waist radius, can be regulated and controled by G amplitude filter plate.
According to cross polarization general theory, the space correlation characteristic to radial polarisation light regulates and controls, and partially coherent is radially Light beam can be expressed as with 2 × 2 rank cross spectrum density matrix:
μ(r1,r2) describe the associate feature of light field.
Laser beam is after the frosted glass plate of rotation, and the coherence of light field can reduce, and Gaussian distributed, its relevant letter Several inverse Fourier transforms are represented by:
σgCoherence length is represented, is determined by rotating ground glass piece degree of roughness, υ representation space frequency domain coordinates.
Two-dimensional comb function is write using spatial light modulator, to being modulated by the light beam of frosted glass plate, obtains height The inverse Fourier transform of this array correlation function, is expressed as:
After frosted glass plate and spatial light modulator regulation and control light beam of the light beam by rotation, coherent function can finally represent For:
Meet in the present embodiment:Superposition for Gaussian function is nonnegativity, andWith the polarization side of light beam To unrelated, i.e.,Meet the authenticity of light beam, to arbitrary function fα(r) can meet:
Q represents the definition of light beam nonnegativity,And fβ(r2) represent respectively on the point of light field two r1、r2Arbitrary function,* Complex conjugate is represented, α, β are corresponding with the element of cross spectrum density matrix;
Need to ensure that caused array Gauss associates radial polarized light beam and meets beam condition in far field in the present embodiment.From By far field in space a bit(ρ is distance of the light source to light field,For unit direction vector at far field) spectral concentration Function S(ρ) is:
WhereinFor the four-dimensional welfare leaf transformation of source field, α=x, y,Represent that two dimension is empty Between frequency vector,Represent unit trivectorThe two-dimentional unit vector projected in the plane of source,Represent beDirection Angle, i.e., far field point of observation ρ direction and the angle of source plane normal are pointed to by the origin of source plane.It is remote in order to meet Beam condition, far-field intensity distribution are negligible, i.e. light in the scope in addition in the narrow angle on z directions The initial parameter of beam needs to meet condition:
Max (M, N) is x, the big value of y direction mode numbers.
Referring to Fig. 2, light intensity and the polarization state distribution of radial polarized light beam, Fig. 2 are associated in Fig. 2 (a) for source field Gauss array (b) profile at y=0 is distributed in for source field intensity in, Fig. 2 (c) and Fig. 2 (d) are any one on light field on y=0 sections The one-dimensional degree of coherence distribution map of point and central point, coherence length is respectively σg=10mm and σg=1mm.Other specification in embodiment It is chosen for:Source field waist width σ0=1mm;Wavelength X=632.8nm;The λ of α=1000 can be used to lattice distance;N, M are used for Regulate and control the size of array beams, N=M=1 obtains 3 × 3 arrays.
Gauss array association radial polarized light beam caused by the plane of source is transmitted by ABCD paraxial optics system, can be with Characterized with broad sense Collins integral equations:
Wherein ρ1=(ρ1x1y);ρ2=(ρ2x2y) for any two points in receiving surface.
When the ABCD systems of process are the lens focus shown in Fig. 1, abcd matrix is represented by:
F is focal distance of thin convex lens, z be inspection surface to the distance of thin lens, focal point z value is f.
By integral and calculating, 2 × 2 rank cross spectrum density matrix in the far field after ABCD optical systems are transmitted are obtained, Its each matrix element is represented by:
Wherein, α represents x or y;Represent Wxy12, z) conjugation;
Wherein, k represents wave number.
Radial polarisation array beams finally are obtained in focal point in the present embodiment, i.e. the intensity distribution of light beam shows as array Form, and the polarization properties of each stigma are radial polarisations, and the light of focal point can be obtained by cross spectrum density matrix It is distributed as by force:
Referring to Fig. 3 (a) and Fig. 3 (b), focal point array beams field strength two-dimensional silhouette figure under light source difference coherence length, just The optical field distribution of beginning is hollow, and the coherence length by regulating and controlling light beam will influence the intensity distribution of array beams, source field phase When dry length is larger, σ is taken asg=10mm, each point hot spot of array beams is hollow, and this array beams can be used to grasp The particle that refractive index is less than surrounding environment is controlled, source field coherence length is σgDuring=1mm, each point hot spot of array beams is high This distribution, this array beams can be used to manipulate the particle that refractive index is more than surrounding environment.The focal length f=of condenser lens 150mm, other specification are chosen consistent with Fig. 2.
It will consider to obtain the polarization properties of array beams in the present embodiment, the polarization state at any point can use polarization in light field Ellipse is described, and based on partially coherent partial polarization general theory, the light of focal point can be obtained by cross spectrum density matrix Three important parameters of field any point polarization ellipse, oval deflection are represented by:
Wherein, Re reals;
The major axis A of polarization ellipse+And short axle A-It can be expressed as by cross spectrum density matrix:
Referring to Fig. 4, by taking the hollow radial direction polarization arrays light beam described in Fig. 3 (a) as an example, the black line of light class describes light The distribution property of field polarization state.To illustrate intensity and polarization state distribution of the light beam after lens focus, Fig. 4 value is focusing The focal length f=150mm of lens, coherence length σg=10mm, other parameters are chosen consistent with Fig. 2.Pass through lens in Fig. 4 (a) Transmission range z=0.8f after focusing, Fig. 4 (b) transmission range are z=0.95f, and Fig. 4 (c) transmission ranges are z=f.
It can be seen that Gauss array associates radial polarized light beam during such as Fig. 1 optical systems are transmitted, the distribution of its polarization state It is not to obey all the time radially-arranged, light beam is during array beams are split into, the space polarization state and strong of a bit Degree distribution is influenceed by multiple pattern hot spots, is a stack result, but after light beam fully nonlinear water wave is array beams, each The polarization state of stigma is to obey radial polarisation, and the intensity distribution property of each stigma be it is consistent, it is final of the invention To radial polarisation array beams.

Claims (5)

  1. A kind of 1. method for producing radial polarisation array beams, it is characterised in that comprise the following steps:
    Step 1, spatial polarization regulation and control are carried out to linearly polarized laser, obtain radial polarized light beam;
    Step 2, the space correlation characteristic for reducing radial polarized light beam, the radial direction for obtaining space correlation characteristic Gaussian distributed are inclined Shake Xie Ermo light beams;
    Step 3, the relevance using two-dimensional comb function regulation and control radial polarisation Xie Ermo light beams, obtain the association of Gauss array radially Light beam, wherein Gauss array association radial polarized light beam 2 × 2 rank cross-spectral density matrixes be:
    <mrow> <mover> <mi>W</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow>
    The association of Gauss array is expressed as:
    <mrow> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mi>M</mi> </mrow> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>n</mi> <mi>x</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>N</mi> </mrow> <mi>N</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>M</mi> </mrow> <mi>M</mi> </munderover> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mi>i</mi> <mfrac> <mrow> <msub> <mi>&amp;pi;n</mi> <mi>x</mi> </msub> </mrow> <mi>a</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <mfrac> <mrow> <msub> <mi>&amp;pi;n</mi> <mi>y</mi> </msub> </mrow> <mi>a</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>.</mo> </mrow>
    In above formula, r1=(x1,y1)、r2=(x2,y2) it is 2 position coordinateses of light field;σ0For beam waist width;σgFor Gauss battle array The coherence length of row association radial polarized light beam;A is dimensionless real number, for regulating and controlling lattice distance;M represents the line number of array, N For the columns of display, nx、nyThe respectively position of Gauss array;
    Step 4, Gauss array associate radial polarized light beam after thin lens focuses on, and radial polarisation array is obtained in focal position Light beam.
  2. 2. the method according to claim 1 for producing radial polarisation array beams, it is characterised in that in step 1 radially partially The electric field intensity mathematical modeling of light beam of shaking is expressed as x-polarisation TEM10With y-polarisation TEM01Coherent superposition:
    <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>e</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>E</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>e</mi> <mi>y</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <mi>x</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mi>r</mi> <mn>2</mn> </msup> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <msub> <mi>e</mi> <mi>x</mi> </msub> <mo>+</mo> <mfrac> <mi>y</mi> <mrow> <mn>2</mn> <msub> <mi>&amp;sigma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mi>r</mi> <mn>2</mn> </msup> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <msub> <mi>e</mi> <mi>y</mi> </msub> <mo>&amp;rsqb;</mo> </mrow>
    Wherein r2=x2+y2, x, y are respectively abscissa and ordinate under cartesian coordinate, ex、eyRepresent orthogonal electric field Unit of vibration vector, Ex(x, y) and Ey(x, y) is respectively any point (x, y) perpendicular to two of direction of beam propagation z-axis Electric field point vector in mutually orthogonal direction.
  3. 3. the method according to claim 1 for producing radial polarisation array beams, it is characterised in that to radially in step 2 The space correlation characteristic of polarised light is regulated and controled, and the space correlation characteristic of radial polarisation Xie Ermo light beams is
    <mrow> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>.</mo> </mrow>
  4. 4. the method according to claim 1 for producing radial polarisation array beams, it is characterised in that using sky in step 3 Between optical modulator write two-dimensional comb function, radial polarisation Xie Ermo light beams are modulated, obtain the inverse of space correlation characteristic Fourier transformation, it is expressed as:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>&amp;mu;</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>&amp;upsi;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&amp;upsi;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msubsup> <mi>&amp;pi;&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mi>N</mi> <mo>&amp;times;</mo> <mi>M</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>n</mi> <mi>x</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>N</mi> </mrow> <mi>N</mi> </munderover> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mn>2</mn> <msup> <mi>&amp;pi;</mi> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;upsi;</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>n</mi> <mi>x</mi> </msub> <mrow> <mn>2</mn> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>M</mi> </mrow> <mi>M</mi> </munderover> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mn>2</mn> <msup> <mi>&amp;pi;</mi> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;upsi;</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>n</mi> <mi>y</mi> </msub> <mrow> <mn>2</mn> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
    xy) representation space frequency coordinate, τx、τyHorizontal stroke, the ordinate of Gauss array are represented respectively;δ represents Dirac function.
  5. 5. the method according to claim 1 for producing radial polarisation array beams, it is characterised in that thin lens in step 4 The abcd matrix of focusing is expressed as:
    <mrow> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mi>B</mi> </mtd> </mtr> <mtr> <mtd> <mi>C</mi> </mtd> <mtd> <mi>D</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>f</mi> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mi>z</mi> <mo>/</mo> <mi>f</mi> </mrow> </mtd> <mtd> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mi>f</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
    Wherein, f is focal distance of thin convex lens, z be inspection surface to the distance of thin lens, focal point z value is f;
    2 × 2 rank cross spectrum density matrix of radial polarisation array beams, matrix element are expressed as:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>W</mi> <mrow> <mi>&amp;alpha;</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&amp;rho;</mi> <mn>2</mn> </msub> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mi>x</mi> <mo>=</mo> <mo>-</mo> <mi>N</mi> </mrow> <mi>N</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mi>y</mi> <mo>=</mo> <mo>-</mo> <mi>M</mi> </mrow> <mi>M</mi> </munderover> <mfrac> <mrow> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>S</mi> <mn>0</mn> </msub> <msubsup> <mi>S</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mfrac> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>&amp;alpha;</mi> <mn>2</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>&amp;alpha;</mi> <mn>1</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>&amp;alpha;</mi> <mn>2</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>S</mi> <mn>1</mn> </msub> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>W</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&amp;rho;</mi> <mn>2</mn> </msub> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mi>x</mi> <mo>=</mo> <mo>-</mo> <mi>N</mi> </mrow> <mi>N</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mi>y</mi> <mo>=</mo> <mo>-</mo> <mi>M</mi> </mrow> <mi>M</mi> </munderover> <mfrac> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <msub> <mi>S</mi> <mn>0</mn> </msub> <msubsup> <mi>S</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>M</mi> <mn>2</mn> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>M</mi> <mn>1</mn> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>S</mi> <mn>1</mn> </msub> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>x</mi> <mn>2</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>&amp;rho;</mi> <mrow> <mi>y</mi> <mn>2</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    <mrow> <msub> <mi>W</mi> <mrow> <mi>y</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&amp;rho;</mi> <mn>2</mn> </msub> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>W</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&amp;rho;</mi> <mn>2</mn> </msub> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow>
    Wherein, α represents x or y;Represent Wxy12, z) conjugation;ρ1=(ρ1x1y) and ρ2=(ρ2x2y) For any two points in receiving surface;
    <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mi>N</mi> <mi>M</mi> </mrow> </mfrac> <mo>;</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>i</mi> <mi>A</mi> <mi>k</mi> </mrow> <mrow> <mn>2</mn> <mi>B</mi> </mrow> </mfrac> <mo>;</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>i</mi> <mi>A</mi> <mi>k</mi> </mrow> <mrow> <mn>2</mn> <mi>B</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
    <mrow> <msubsup> <mi>&amp;rho;</mi> <mi>&amp;alpha;</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>&amp;rho;</mi> <mi>&amp;alpha;</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>B&amp;pi;n</mi> <mi>&amp;alpha;</mi> </msub> </mrow> <mrow> <mi>k</mi> <mi>a</mi> </mrow> </mfrac> <mo>;</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>4</mn> <msub> <mi>M</mi> <mn>1</mn> </msub> <msub> <mi>M</mi> <mn>2</mn> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>4</mn> </msubsup> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>;</mo> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mi>A</mi> <mn>2</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> <msubsup> <mi>&amp;sigma;</mi> <mi>g</mi> <mn>2</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>B</mi> <mrow> <mn>2</mn> <msubsup> <mi>k&amp;sigma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
    Wherein, k represents wave number.
CN201610142131.2A 2016-03-13 2016-03-13 Produce the method and device of radial polarisation array beams Expired - Fee Related CN105589203B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610142131.2A CN105589203B (en) 2016-03-13 2016-03-13 Produce the method and device of radial polarisation array beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610142131.2A CN105589203B (en) 2016-03-13 2016-03-13 Produce the method and device of radial polarisation array beams

Publications (2)

Publication Number Publication Date
CN105589203A CN105589203A (en) 2016-05-18
CN105589203B true CN105589203B (en) 2018-04-03

Family

ID=55928901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610142131.2A Expired - Fee Related CN105589203B (en) 2016-03-13 2016-03-13 Produce the method and device of radial polarisation array beams

Country Status (1)

Country Link
CN (1) CN105589203B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803048A (en) * 2017-04-28 2018-11-13 南京理工大学 A kind of production method and device of tunable spontaneous fission array vortex beams
CN107146649B (en) * 2017-06-06 2019-04-12 东南大学 A kind of device and method manipulating low refractive index dielectric nanoparticle
CN110879467B (en) * 2018-09-05 2021-11-12 南京理工大学 Method for regulating and controlling longitudinal structure of light beam
CN110082924B (en) * 2018-12-19 2021-06-29 浙江理工大学 Circular polarized light generating device of vector light beam based on radial polarization change
CN111435194B (en) * 2019-01-15 2022-04-15 南京理工大学 Method for regulating and controlling three-dimensional space structure of light field
CN109709683B (en) * 2019-02-22 2021-01-19 济南大学 Device and method for generating space diffraction invariant square array vector light beam by using two-dimensional grating
CN113391457B (en) * 2021-05-13 2022-09-20 南京理工大学 High-quality robust partial coherent imaging method and device
CN113504642B (en) * 2021-06-09 2022-12-20 浙江工业大学 Method for constructing distribution of tightly focused light field with multiple hollows
CN115437057B (en) * 2022-08-24 2023-04-21 哈尔滨理工大学 Geometric phase element and light field space mode pi/2 conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460625A2 (en) * 1990-06-05 1991-12-11 Matsushita Electric Industrial Co., Ltd. Optical information processing apparatus and method using computer generated hologram
CN101178484A (en) * 2007-12-07 2008-05-14 南京大学 Generation device of random polarization distributing vector light beam
CN101794024A (en) * 2010-04-02 2010-08-04 上海理工大学 Device and method for generating column vector beams
CN102981277A (en) * 2012-12-12 2013-03-20 苏州大学 System and method for generating radial Bessel-Gaussian beam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599069B2 (en) * 2005-05-06 2009-10-06 The University Of Chicago Vector beam generator using a passively phase stable optical interferometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460625A2 (en) * 1990-06-05 1991-12-11 Matsushita Electric Industrial Co., Ltd. Optical information processing apparatus and method using computer generated hologram
CN101178484A (en) * 2007-12-07 2008-05-14 南京大学 Generation device of random polarization distributing vector light beam
CN101794024A (en) * 2010-04-02 2010-08-04 上海理工大学 Device and method for generating column vector beams
CN102981277A (en) * 2012-12-12 2013-03-20 苏州大学 System and method for generating radial Bessel-Gaussian beam

Also Published As

Publication number Publication date
CN105589203A (en) 2016-05-18

Similar Documents

Publication Publication Date Title
CN105589203B (en) Produce the method and device of radial polarisation array beams
Bai et al. Vortex beam: generation and detection of orbital angular momentum
Berry et al. Roadmap on superoscillations
CN105607275B (en) Generate the method and device of radial polarisation cosine gaussian schell model light beam
CN108490603A (en) The method for generating vector beam based on the super clever surface of transmissive medium
CN108803048A (en) A kind of production method and device of tunable spontaneous fission array vortex beams
Otte et al. Complex light fields enter a new dimension: holographic modulation of polarization in addition to amplitude and phase
Li et al. Experimental generation of partially coherent circular Airy beams
Iglesias et al. Polarization structuring for focal volume shaping in high-resolution microscopy
Yang et al. Subdiffraction focusing of total electric fields of terahertz wave
Wu et al. Shaping the intensity and degree of coherence of a partially coherent beam by a 4f optical system with an amplitude filter
US10782464B1 (en) Generating a lattice of optical spin-orbit beams
Sundaram et al. Tight focusing properties of phase modulated transversely polarized sinh Gaussian beam
Zhou et al. Properties of Airy-Gauss beams in the fractional fourier transform plane
Gao et al. Sidelobe suppression for coherent beam combining with laser beams placed along a Fermat spiral
Gao et al. Focus shaping of linearly polarized Lorentz beam with sine-azimuthal variation wavefront
Wang et al. Experimental and theoretical study of linearly polarized Lorentz–Gauss beams with heterogeneous distribution
Gao et al. Focal shift of cylindrical vector axisymmetric Bessel-modulated Gaussian beam with radial variance phase wavefront
Bouchal et al. Bessel beams in the focal region
CN113375790A (en) Rapid measurement method and system for cross spectral density function of partially coherent vector light field
Cao et al. Propagation of Bessel beam in a strongly nonlocal nonlinear media
Suresh et al. Polarization effect of cylindrical vector beam in high numerical aperture lens axicon systems
Allam An intriguing interpretation of Cosine beams
Kumar et al. Dynamic evolution of transverse energy flow in focused asymmetric optical vector-vortex beams
Galvez Complex light beams

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180403

Termination date: 20200313

CF01 Termination of patent right due to non-payment of annual fee