CN105577591B - Cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network - Google Patents

Cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network Download PDF

Info

Publication number
CN105577591B
CN105577591B CN201511000159.4A CN201511000159A CN105577591B CN 105577591 B CN105577591 B CN 105577591B CN 201511000159 A CN201511000159 A CN 201511000159A CN 105577591 B CN105577591 B CN 105577591B
Authority
CN
China
Prior art keywords
mrow
msub
micro
msup
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201511000159.4A
Other languages
Chinese (zh)
Other versions
CN105577591A (en
Inventor
韩圣千
黄磊
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC China Co Ltd
Beihang University
Original Assignee
NEC China Co Ltd
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC China Co Ltd, Beihang University filed Critical NEC China Co Ltd
Priority to CN201511000159.4A priority Critical patent/CN105577591B/en
Publication of CN105577591A publication Critical patent/CN105577591A/en
Application granted granted Critical
Publication of CN105577591B publication Critical patent/CN105577591B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本发明公开了一种异构网中基于全双工通信的跨层串行干扰删除方法,属于无线通信技术领域。所述方法包括全双工微基站信息获取、微基站验证串行干扰删除的可行性、微基站计算发射信号的加权值、微基站向微用户发送加权的训练信号、判断fSICIC的可行性并反馈调整信息和权重,微基站根据接收的调整信息和权重调整发射信号。本发明所提出的基于全双工的串行干扰删除技术只需要每个微基站独立完成,不需要宏基站的协作,可以在不降低宏用户性能的前提下,有效提高微用户的性能。与现有的fICIC技术相比,所提出的方法能够更加有效的消除强干扰;与现有半双工模式下的SIC技术相比,所提出的方法具有更广泛的适用场景。

The invention discloses a full-duplex communication-based cross-layer serial interference deletion method in a heterogeneous network, belonging to the technical field of wireless communication. The method includes obtaining full-duplex micro base station information, micro base station verifying the feasibility of serial interference cancellation, micro base station calculating the weighted value of transmitted signals, micro base station sending weighted training signals to micro users, judging the feasibility of fSICIC and giving feedback The adjustment information and weights are adjusted by the micro base station to transmit signals according to the received adjustment information and weights. The full-duplex-based serial interference cancellation technology proposed by the present invention only requires each micro base station to complete independently, without the cooperation of macro base stations, and can effectively improve the performance of micro users without reducing the performance of macro users. Compared with the existing fICIC technology, the proposed method can more effectively eliminate strong interference; compared with the existing SIC technology in half-duplex mode, the proposed method has a wider range of applicable scenarios.

Description

一种异构网中基于全双工通信的跨层串行干扰删除方法A Cross-Layer Serial Interference Cancellation Method Based on Full-duplex Communication in Heterogeneous Networks

技术领域technical field

本发明涉及一种异构网中基于全双工通信的跨层串行干扰删除技术,属于无线通信技术领域。The invention relates to a cross-layer serial interference deletion technology based on full-duplex communication in a heterogeneous network, and belongs to the technical field of wireless communication.

背景技术Background technique

异构网通过在传统的由宏基站(Macro base stations(BSs))构成的同构网络中部署不同类型的低功率小型基站,例如微基站(Micro BSs)、微微基站(Pico BSs)等,可以显著地提高蜂窝系统的容量和网络覆盖质量。为了表述方便,在下文中将低功率小型基站统称为微基站,其服务的用户称为微用户。与传统的同构网络相比,异构网中存在更加复杂的小区间干扰,特别是高功率宏基站对其覆盖范围内的微用户会产生很强的跨层干扰,严重限制了微用户的性能。因此,跨层干扰的有效抑制是异构网系统的核心问题之一(参见参考文献[1]:N.Bhushan,J.Li,D.Malladi,R.Gilmore,D.Brenner,A.Damnjanovic,R.T.Sukhavasi,C.Patel,and S.Geirhofer,“Network densification:the dominanttheme for wireless evolution into 5G,”IEEE Commun.Mag.,vol.52,no.2,pp.82–89,Feb.2014.)。By deploying different types of low-power small base stations, such as micro base stations (Micro BSs) and pico base stations (Pico BSs), in a traditional homogeneous network composed of macro base stations (BSs), the heterogeneous network can Significantly improve the capacity and network coverage quality of the cellular system. For the convenience of expression, the low-power small base stations are collectively referred to as micro base stations hereinafter, and the users served by them are referred to as micro users. Compared with the traditional homogeneous network, there is more complex inter-cell interference in the heterogeneous network, especially the high-power macro base station will generate strong cross-layer interference to the micro-users within its coverage, which seriously limits the performance. Therefore, the effective suppression of cross-layer interference is one of the core issues of the heterogeneous network system (see reference [1]: N.Bhushan, J.Li, D.Malladi, R.Gilmore, D.Brenner, A.Damnjanovic, R.T. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the dominant theme for wireless evolution into 5G,” IEEE Commun.Mag., vol.52, no.2, pp.82–89, Feb.2014.) .

针对异构网中的跨层干扰抑制问题,现有工作已经提出了一些解决方法。例如,长期演进系统(LTE R10)提出了一种增强小区间干扰抑制(eICIC,enhanced inter-cellinterference coordination)技术(参见参考文献[2]:B.Soret,H.Wang,K.I.Pedersen,and C.Rosa,“Multicell cooperation for LTE-advanced heterogeneous networkscenarios,”IEEE Wireless Commun.Mag.,vol.20,no.1,pp.27–34,Feb.2013.),可在时域和频域进行跨层干扰抑制。其中,时域eICIC技术是指宏基站在某些子帧中保持静默状态,从而产生近似空白的传输子帧(Almost blank subframe),微基站和微用户在这些没有干扰的子帧中进行数据传输。频域eICIC技术是指宏基站和微基站使用正交的频谱资源进行数据传输,从而达到回避跨层干扰的目的。eICIC是一种低复杂度且容易实施的干扰协调技术,但是由于宏基站和微基站均只能使用部分的时间或频谱资源,大大限制了宏用户和微用户的性能。除了时间和频率域上的eICIC技术,协同波束赋形可以被看作为一种空间域的eICIC技术(参见参考文献[3]:C.Yang,S.Han,X.Hou,and A.F.Molisch,“How do wedesign CoMP to achieve its promised potential?”IEEE Wireless Commun.Mag.,vol.20,no.1,pp.67–74,Feb.2013.),但这种技术的干扰抑制能力受限于宏基站的天线数。Aiming at the problem of cross-layer interference suppression in heterogeneous networks, existing work has proposed some solutions. For example, the long-term evolution system (LTE R10) proposed an enhanced inter-cell interference suppression (eICIC, enhanced inter-cellinterference coordination) technology (see reference [2]: B.Soret, H.Wang, K.I.Pedersen, and C. Rosa, "Multicell cooperation for LTE-advanced heterogeneous network scenarios," IEEE Wireless Commun.Mag., vol.20, no.1, pp.27–34, Feb.2013.), cross-layer possible in both time and frequency domains interference suppression. Among them, the time-domain eICIC technology means that the macro base station remains silent in some subframes, thereby generating almost blank transmission subframes (Almost blank subframes), and the micro base stations and micro users perform data transmission in these non-interfering subframes . The frequency domain eICIC technology means that the macro base station and the micro base station use orthogonal spectrum resources for data transmission, so as to avoid cross-layer interference. eICIC is a low-complexity and easy-to-implement interference coordination technology. However, since both macro base stations and micro base stations can only use part of the time or spectrum resources, the performance of macro users and micro users is greatly limited. In addition to eICIC techniques in the time and frequency domains, cooperative beamforming can be viewed as a space-domain eICIC technique (see reference [3]: C.Yang, S.Han, X.Hou, and A.F.Molisch, " How do wedesign CoMP to achieve its promised potential?” IEEE Wireless Commun.Mag.,vol.20,no.1,pp.67–74,Feb.2013.), but the interference suppression ability of this technology is limited by Acer The number of antennas at the station.

上述eICIC技术均是通过控制宏基站的传输方式,在时间、频率或空间域来回避对微用户产生干扰。与之不同,参考文献[4](S.Han,C.Yang,and P.Chen,“Full duplexassisted inter-cell interference cancellation in heterogeneous networks,”IEEETrans.Commun.,to appear.)提出了一种基于全双工通信的跨层干扰抑制技术(fICIC,full-duplex assisted ICIC)。fICIC的基本思想是将全双工技术应用于微基站,使微基站在向微用户发送有用信号的同时转发侦听到的来自宏基站的干扰信号。通过适当的设计两种信号的权重,fICIC技术能够使得微基站转发的干扰在到达微用户后,与微用户直接收到的干扰叠加相消,从而达到抑制跨层干扰的目的。但是考虑到微基站的发射功率限制,fICIC不能有效抑制较强的跨层干扰。The aforementioned eICIC technologies all avoid interference to micro users in the time, frequency or space domains by controlling the transmission mode of the macro base station. In contrast, reference [4] (S.Han, C.Yang, and P.Chen, "Full duplex assisted inter-cell interference cancellation in heterogeneous networks," IEEETrans.Commun., to appear.) proposed a method based on Full-duplex communication cross-layer interference suppression technology (fICIC, full-duplex assisted ICIC). The basic idea of fICIC is to apply the full-duplex technology to the micro base station, so that the micro base station forwards the intercepted interference signal from the macro base station while sending useful signals to the micro users. By properly designing the weights of the two signals, the fICIC technology can make the interference forwarded by the micro base station reach the micro user, superimpose and cancel the interference directly received by the micro user, thereby achieving the purpose of suppressing cross-layer interference. However, considering the transmission power limitation of the micro base station, fICIC cannot effectively suppress strong cross-layer interference.

基于eICIC技术和fICIC技术,微用户在进行数据解调时将接收到的来自宏基站的跨层干扰看成白高斯噪声。串行干扰删除(SIC,successive interference cancellation)是另一种常用的干扰抑制方法。基于SIC技术,微用户先从其接收信号中估计出跨层干扰信号,然后将估计得到的跨层干扰信号从接收信号中删除,进而在无干扰条件下求解期望信号。但是,由于SIC技术需要先求解干扰信号,因此在传统半双工系统中只能用于干扰用户数据率很低或跨层干扰很强等有限的场景。Based on eICIC technology and fICIC technology, micro users regard the cross-layer interference received from macro base stations as white Gaussian noise when demodulating data. Serial interference cancellation (SIC, successive interference cancellation) is another common interference suppression method. Based on the SIC technology, the micro-user first estimates the cross-layer interference signal from its received signal, and then deletes the estimated cross-layer interference signal from the received signal, and then solves the desired signal under interference-free conditions. However, because the SIC technology needs to solve the interference signal first, it can only be used in limited scenarios such as low data rate of the interfering user or strong cross-layer interference in the traditional half-duplex system.

发明内容Contents of the invention

本发明为了解决现有技术中存在的问题,提供一种异构网中基于全双工通信的跨层串行干扰删除方法,包括以下几个步骤:In order to solve the problems in the prior art, the present invention provides a method for deleting cross-layer serial interference based on full-duplex communication in a heterogeneous network, which includes the following steps:

第一步,全双工微基站信息获取;The first step is to obtain full-duplex micro base station information;

所述信息包括宏基站到微基站、宏基站到微用户、微基站到微用户的信道以及全双工微基站的自干扰信道、微基站全双工自干扰删除模块的处理时延、微基站和宏基站到微用户的信道传播时延差、以及干扰信号的调制编码方式;The information includes channels from the macro base station to the micro base station, from the macro base station to the micro user, from the micro base station to the micro user, and the self-interference channel of the full-duplex micro base station, the processing delay of the full-duplex self-interference deletion module of the micro base station, the micro base station The channel propagation delay difference from the macro base station to the micro user, and the modulation and coding method of the interference signal;

第二步,微基站验证串行干扰删除的可行性:In the second step, the femto base station verifies the feasibility of serial interference cancellation:

1)根据干扰信号的调制编码方式,微基站计算解调干扰信号所需的干信噪比,记为γM1) According to the modulation and coding mode of the interference signal, the micro base station calculates the interference signal-to-noise ratio required for demodulation of the interference signal, which is denoted as γ M ;

2)在微基站最大发射功率约束条件下,求用户端的最大干信噪比ISNR;2) Under the constraint condition of the maximum transmission power of the micro base station, find the maximum interference signal-to-noise ratio ISNR of the user terminal;

3)判断ISNR的最大值ISNRm和解调干扰信号所需的干信噪比γM的大小,若ISNRm≥γM,则,fSICIC技术可行,进入第三步;否则fSICIC技术不可行,应使用现有的eICIC或fICIC方法来抑制跨层干扰;3) Determine the maximum value of ISNR, ISNR m , and the size of the interference signal-to-noise ratio γ M required to demodulate the interference signal. If ISNR m ≥ γ M , then fSICIC technology is feasible, and enter the third step; otherwise, fSICIC technology is not feasible, Existing eICIC or fICIC methods should be used to suppress cross-layer interference;

第三步,微基站计算发射信号的加权值:In the third step, the micro base station calculates the weighted value of the transmitted signal:

1)微基站的发射信号xs是其接收到的信号ys和其发送给微用户的有用信号ss的加权和,表示为:1) The transmitted signal x s of the micro base station is the weighted sum of the received signal y s and the useful signal s s sent to the micro user, expressed as:

式中wI和wD分别为微基站接收信号和发送给微用户有用信号的权重,f是载波频率,t1是微基站中全双工自干扰删除模块的处理延时;where w I and w D are the weights of the signal received by the micro base station and the useful signal sent to the micro user, respectively, f is the carrier frequency, and t1 is the processing delay of the full-duplex self-interference deletion module in the micro base station;

2)权重的计算:2) Calculation of weight:

考虑微基站的发射功率约束以及求解干扰信号的ISNR约束,以微用户的信干噪比SINR最大化为准则,最优的权重wI和wD通过求解如下问题得到:Considering the transmission power constraint of the micro base station and the ISNR constraint of solving the interference signal, and taking the SINR maximization of the micro user as the criterion, the optimal weights w I and w D are obtained by solving the following problems:

式中Pout是微基站的发射功率,t2是微基站和宏基站到达微用户处的传播延时。where P out is the transmit power of the micro base station, t 2 is the propagation delay from micro base station and macro base station to micro user.

在以下两种情况下,把最优的权重wI和wD分别记为wI *和wD *,具有不同的取值,分别为:In the following two cases, the optimal weights w I and w D are recorded as w I * and w D * respectively, with different values, respectively:

A.当时,wI *的模值为|wI *|=0,wD *的模值为wD *的相位为0。A. When When , the modulus of w I * is |w I * |=0, and the modulus of w D * is The phase of w D * is 0.

B.当时,公式(4a)~(4c),转换为:B. When When , the formulas (4a)~(4c) are transformed into:

把(5c)代入到目标函数(5a)中,结果用表示,式中A(|wI|)是|wI|的二次多项式,B(|wI|)是|wI|的四次多项式,约束条件(5c)重新写为c≤|wI|≤d,式中c和d是两个常数,由式(5c)和(5b)得到;因此,公式(5a)~(5c)简化为:Substituting (5c) into the objective function (5a), the result is In the formula, A(|w I |) is the quadratic polynomial of |w I |, B(|w I |) is the quartic polynomial of |w I |, and the constraint condition (5c) is rewritten as c≤|w I |≤d, where c and d are two constants, obtained from formulas (5c) and (5b); therefore, formulas (5a)~(5c) are simplified as:

s.t.c≤|wI|≤d. (6b)stc≤|w I |≤d. (6b)

公式(6a)和(6b)采用二分法进行求解;二分法迭代收敛时对应的|wI|记为即公式(5a)~(5c)的最优解,即|wI *|;进而,由式(5c)得Pout,代入(4b)得到|wD *|;同时,wI *的相位为wD *的相位为0。Formulas (6a) and (6b) are solved by the dichotomy method; the corresponding |w I | when the dichotomy method iteratively converges is recorded as the optimal solution of the formulas (5a)~(5c), namely |w I * |; furthermore, Get P out from formula (5c), and substitute into (4b) to get |w D * |; at the same time, the phase of w I * is The phase of w D * is 0.

第四步,微基站向微用户发送加权的训练信号:In the fourth step, the micro base station sends a weighted training signal to the micro user:

微基站在两个时隙向微用户分别发送和wD *z,其中z是微基站和微用户均已知的原始训练信号,和wD *分别是两次发送的训练信号的权值;微用户根据接收到的加权干扰信号,估计出加权后的等效信道,即 The micro base station transmits to the micro user in two time slots respectively and w D * z, where z is the original training signal known to both the micro base station and the micro user, and w D * are the weights of the training signals sent twice; the micro-user estimates the weighted equivalent channel according to the received weighted interference signal, namely and

第五步,微基站向微用户发送信号:In the fifth step, the micro base station sends a signal to the micro user:

微基站将得到的权重wI *和wD *代入公式(3),构造出微基站的发射信号xs,并发送给微用户。The micro base station substitutes the obtained weights w I * and w D * into formula (3), constructs the transmission signal x s of the micro base station, and sends it to the micro user.

第六步,微用户判断fSICIC的可行性并反馈调整信息和权重:In the sixth step, the micro-user judges the feasibility of fSICIC and feeds back the adjustment information and weight:

微用户首先计算实际干信噪比,记为ISNR′,计算公式如下:Micro-users first calculate the actual interference signal-to-noise ratio, which is denoted as ISNR′, and the calculation formula is as follows:

式中yu为微用户的接收信号,E{·}表示计算均值。In the formula, y u is the received signal of the micro-user, and E{ } represents the calculated mean value.

然后,比较ISNR′与γM的大小:若ISNR′≥γM,即fSICIC可行,则微用户向微基站反馈二进制指示标量α=1;否则,fSICIC不可行,微用户向微基站反馈α=0和期望的有用信号的权值wD′,其中wD′的计算公式如下:Then, compare the size of ISNR′ and γ M : if ISNR′≥γ M , that is, fSICIC is feasible, then the micro-user feeds back the binary indicator scalar α=1 to the micro-base station; otherwise, fSICIC is not feasible, and the micro-user feeds back α= 0 and the weight w D ′ of the desired useful signal, where the calculation formula of w D ′ is as follows:

第七步,微基站根据接收的调整信息和权重调整发射信号:In the seventh step, the micro base station adjusts the transmission signal according to the received adjustment information and weight:

如果α=1,则微基站根据第三步计算的权重继续向微用户发送数据;否则,将第三步中计算得到的权重wD *替换为wD′,并回到第四步。If α=1, the micro base station continues to send data to the micro user according to the weight calculated in the third step; otherwise, replace the weight w D * calculated in the third step with w D ', and return to the fourth step.

本发明的优点在于:The advantages of the present invention are:

针对异构网中的跨层干扰抑制问题,已有的eICIC和协作波束赋形技术是通过限制宏基站在时间、频率或空间域的传输来回避对微用户的干扰,这导致宏用户和微用户均只能在部分的时间、频率或空间域进行数据传输,降低了它们的性能。本发明所提出的基于全双工的串行干扰删除技术只需要每个微基站独立完成,不需要宏基站的协作,可以在不降低宏用户性能的前提下,有效提高微用户的性能。与现有的fICIC技术相比,所提出的方法能够更加有效的消除强干扰;与现有半双工模式下的SIC技术相比,所提出的方法具有更广泛的适用场景。Aiming at the problem of cross-layer interference suppression in heterogeneous networks, existing eICIC and cooperative beamforming technologies avoid interference to micro users by limiting the transmission of macro base stations in the time, frequency or space domains, which leads to Users can only perform data transmission in part of the time, frequency or space domain, reducing their performance. The full-duplex-based serial interference cancellation technology proposed by the present invention only requires each micro base station to complete independently, without the cooperation of macro base stations, and can effectively improve the performance of micro users without reducing the performance of macro users. Compared with the existing fICIC technology, the proposed method can more effectively eliminate strong interference; compared with the existing SIC technology in half-duplex mode, the proposed method has a wider range of applicable scenarios.

附图说明Description of drawings

图1是本发明的方法流程图;Fig. 1 is method flowchart of the present invention;

图2是对fSICIC进行建模时使用的通用异构网网络拓扑物理模型;Figure 2 is a general heterogeneous network topology physical model used when modeling fSICIC;

图3是考虑边缘信噪比的影响时的性能仿真结果;Fig. 3 is the performance simulation result when considering the influence of edge signal-to-noise ratio;

图4是考虑距离的影响时的性能仿真结果;Fig. 4 is the performance simulation result when considering the influence of distance;

图5是考虑信道反馈比特的影响时的性能仿真结果。Fig. 5 is a performance simulation result considering the influence of channel feedback bits.

具体实施方式Detailed ways

下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.

本发明考虑图2所示的通用异构网网络拓扑物理模型,提出一种异构网中基于全双工通信的跨层串行干扰删除方法(fSICIC,full-duplex assisted successive inter-cell interference cancellation),如图1所示流程,包括以下几个步骤:The present invention considers the general heterogeneous network topology physical model shown in Figure 2, and proposes a full-duplex assisted successive inter-cell interference cancellation method (fSICIC, full-duplex assisted successive inter-cell interference cancellation) in a heterogeneous network based on full-duplex communication ), the process shown in Figure 1 includes the following steps:

第一步,全双工微基站信息获取:The first step, full-duplex micro base station information acquisition:

全双工微基站获取宏基站到微基站、宏基站到微用户、微基站到微用户的信道以及全双工微基站的自干扰信道、微基站全双工自干扰删除模块的处理时延、微基站和宏基站到微用户的信道传播时延差、以及干扰信号的调制编码方式。其中,宏基站到微基站的信道获取方式可以是微基站首先接收由宏基站广播的下行训练信号,然后采用现有的信道估计方法估计宏基站到微基站的信道信息;宏基站到微用户的信道获取方式可以是微用户首先接收由宏基站广播的下行训练信号,然后采用现有信道估计方法估计得到,之后对估计的信道进行量化并通过上行链路反馈至微基站;微基站到微用户的信道的获取方式可分为两种情况:对于时分双工系统,微基站首先接收由微用户发送的上行训练信号,然后估计得到微用户到微基站的上行信道,根据上下行信道的互易性,所估计得到的上行信道即为微基站到微用户的下行信道;对于频分双工系统,微用户首先接收由微基站发送的下行训练信号,然后估计得到微基站到微用户的下行信道,然后对估计的信道进行量化并通过上行链路反馈至微基站;全双工基站的自干扰信道可以通过微基站自己发送训练信号得到;微基站全双工自干扰删除模块的处理延时可以在微基站处测量得到;微基站和宏基站到微用户的信道传播时延差可以通过微基站和宏基站同时向微用户发送测试信号,然后微用户测量两个测试信号的到达时间差,并反馈给微基站;干扰信号的调制编码方式可以由宏基站通过基站间的回传链路告知微基站。第二步,微基站验证串行干扰删除的可行性:The full-duplex micro base station obtains the channels from the macro base station to the micro base station, from the macro base station to the micro user, from the micro base station to the micro user, as well as the self-interference channel of the full-duplex micro base station, the processing delay of the full-duplex self-interference deletion module of the micro base station, The channel propagation delay difference between the micro base station and the macro base station and the micro user, and the modulation and coding method of the interference signal. Among them, the channel acquisition method from the macro base station to the micro base station can be that the micro base station first receives the downlink training signal broadcast by the macro base station, and then uses the existing channel estimation method to estimate the channel information from the macro base station to the micro base station; The channel acquisition method can be that the micro user first receives the downlink training signal broadcast by the macro base station, and then estimates it using the existing channel estimation method, and then quantizes the estimated channel and feeds it back to the micro base station through the uplink; the micro base station to the micro user The channel acquisition methods can be divided into two cases: For the time division duplex system, the micro base station first receives the uplink training signal sent by the micro user, and then estimates the uplink channel from the micro user to the micro base station, according to the reciprocity of the uplink and downlink channels The estimated uplink channel is the downlink channel from the micro base station to the micro user; for the frequency division duplex system, the micro user first receives the downlink training signal sent by the micro base station, and then estimates the downlink channel from the micro base station to the micro user , and then quantize the estimated channel and feed it back to the micro base station through the uplink; the self-interference channel of the full-duplex base station can be obtained by sending training signals from the micro base station itself; the processing delay of the full-duplex self-interference deletion module of the micro base station can be Measured at the micro base station; the channel propagation delay difference between the micro base station and the macro base station and the micro user can send test signals to the micro user through the micro base station and the macro base station at the same time, and then the micro user measures the arrival time difference of the two test signals and feeds back For the micro base station; the modulation and coding mode of the interference signal can be notified by the macro base station to the micro base station through the backhaul link between the base stations. In the second step, the femto base station verifies the feasibility of serial interference cancellation:

1)根据干扰信号的调制编码方式,微基站按照现有方法计算解调干扰信号所需的干信噪比(Interference-to-signal-plus-noise ratio(ISNR)),记为γM1) According to the modulation and coding method of the interference signal, the micro base station calculates the Interference-to-signal-plus-noise ratio (ISNR) required to demodulate the interference signal according to the existing method, denoted as γ M .

2)在微基站最大发射功率约束条件下,求用户端的最大干信噪比ISNR。具体过程如下:微用户ISNR最大化问题可以建模为:2) Under the constraints of the maximum transmit power of the micro base station, find the maximum interference signal-to-noise ratio (ISNR) of the user end. The specific process is as follows: the micro-user ISNR maximization problem can be modeled as:

式中hms、hsu、hmu分别是宏基站到微基站、微基站到微用户、以及宏基站到微用户的信道,是微基站转发干扰信号的权重,是微基站的发射功率,Ps是微基站的最大发射功率,是微基站的自干扰信道的方差,是噪声功率的方差。where h ms , h su , h mu are the channels from the macro base station to the micro base station, from the micro base station to the micro user, and from the macro base station to the micro user, respectively, is the weight of the micro base station forwarding the interference signal, is the transmit power of the micro base station, P s is the maximum transmit power of the micro base station, is the variance of the self-interference channel of the micro base station, is the variance of the noise power.

通过求解优化问题公式(1a)、(1b)和(1c),可得ISNR的最大值为:By solving the optimization problem formulas (1a), (1b) and (1c), the maximum value of ISNR can be obtained as:

式中其中|wI +|是变量满足方程In the formula where |w I + | is the variable satisfy the equation

的一个定值,其数值解可采用二分法求得。A fixed value of , its numerical solution can be obtained by the dichotomy method.

3)判断ISNRm和γM的大小,若ISNRm≥γM,则,fSICIC技术可行,进入第三步;否则fSICIC技术不可行,应使用现有的eICIC或fICIC等方法来抑制跨层干扰。3) Judging the size of ISNR m and γ M , if ISNR m ≥ γ M , then fSICIC technology is feasible, and enter the third step; otherwise, fSICIC technology is not feasible, and existing eICIC or fICIC methods should be used to suppress cross-layer interference .

第三步,微基站计算发射信号的加权值:In the third step, the micro base station calculates the weighted value of the transmitted signal:

1)微基站的发射信号xs是其接收到的信号ys和其发送给微用户的有用信号ss的加权和,可以表示为:1) The transmitted signal x s of the micro base station is the weighted sum of the signal y s received by it and the useful signal s s sent to the micro user, which can be expressed as:

式中wI和wD分别为微基站接收信号和发送给微用户有用信号的权重,f是载波频率,t1是微基站中全双工自干扰删除模块的处理延时。where w I and w D are the weights of the signal received by the micro base station and the useful signal sent to the micro user, respectively, f is the carrier frequency, and t 1 is the processing delay of the full-duplex self-interference cancellation module in the micro base station.

2)权重的计算:2) Calculation of weight:

考虑微基站的发射功率约束以及求解干扰信号的ISNR约束,以微用户的信干噪比(Signal-to-interference-plus-noise ratio,SINR)最大化为准则,最优的权重wI和wD可通过求解如下问题得到:Considering the transmit power constraint of the micro base station and the ISNR constraint of solving the interference signal, the optimal weight w I and w D can be obtained by solving the following problem:

式中Pout是微基站的发射功率,t2是微基站和宏基站到达微用户处的传播延时。where P out is the transmit power of the micro base station, t 2 is the propagation delay from micro base station and macro base station to micro user.

在以下两种情况下,把最优的权重wI和wD分别记为wI *和wD *,具有不同的取值,分别为:In the following two cases, the optimal weights w I and w D are recorded as w I * and w D * respectively, with different values, respectively:

A.当时,wI *的模值为|wI *|=0,wD *的模值为wD *的相位为0;A. When When , the modulus of w I * is |w I * |=0, and the modulus of w D * is The phase of w D * is 0;

B.当时,优化问题公式(4a)~(4c),可以转换为:B. When When , the optimization problem formulas (4a)~(4c) can be transformed into:

把(5c)代入到目标函数(5a)中,结果用表示,式中A(|wI|)是|wI|的二次多项式,B(|wI|)是|wI|的四次多项式,约束条件(5c)可以重新写为c≤|wI|≤d,式中c和d是两个常数,可以由式(5c)和(5b)得到。因此,公式(5a)~(5c)可简化为:Substituting (5c) into the objective function (5a), the result is In the formula, A(|w I |) is a quadratic polynomial of |w I |, B(|w I |) is a quartic polynomial of |w I |, and the constraint (5c) can be rewritten as c≤| w I |≤d, where c and d are two constants, which can be obtained from formulas (5c) and (5b). Therefore, formulas (5a)~(5c) can be simplified as:

s.t.c≤|wI|≤d. (6b)stc≤|w I |≤d. (6b)

公式(6a)和(6b)可以采用二分法进行求解。具体步骤如下:Equations (6a) and (6b) can be solved using the dichotomy method. Specific steps are as follows:

a)取其中t是|wI|在其定义域内的任一值;a) take Pick where t is any value of |w I | in its domain;

b)给定求解如下一元四次方程:b) Given Solve the following unary quartic equation:

A(|wI|)=(1+λ)B(|wI|), (7)A(|w I |)=(1+λ)B(|w I |), (7)

得到|wI|的解。The solution of |w I | is obtained.

c)如果存在任何|wI|的解能够满足式(6b),则令λmin=λ,否则令λmax=λ。c) If there is any solution of |w I | that can satisfy formula (6b), then let λ min =λ, otherwise let λ max =λ.

d)重复步骤b)~c),直到满足精度求解要求。d) Repeat steps b) to c) until the precision solution requirements are met.

上述二分法迭代收敛时对应的|wI|记为即公式(5a)~(5c)的最优解,即|wI *|。进而,由式(5c)可得Pout,代入(4b)可以得到|wD *|。同时,wI *的相位为wD *的相位为0。The corresponding |w I | when the above dichotomy converges iteratively is recorded as the optimal solution of formulas (5a)~(5c), namely |w I * |. Furthermore, P out can be obtained from formula (5c), and |w D * | can be obtained by substituting it into (4b). Meanwhile, the phase of w I * is The phase of w D * is 0.

第四步,微基站向微用户发送加权的训练信号:In the fourth step, the micro base station sends a weighted training signal to the micro user:

微基站在两个时隙向微用户分别发送和wD *z,其中z是微基站和微用户均已知的原始训练信号,和wD *分别是两次发送的训练信号的权值。微用户根据接收到的加权干扰信号,可以估计出加权后的等效信道,即 The micro base station transmits to the micro user in two time slots respectively and w D * z, where z is the original training signal known to both the micro base station and the micro user, and w D * are the weights of the training signals sent twice, respectively. According to the weighted interference signal received by the micro-user, the weighted equivalent channel can be estimated, that is, and

第五步,微基站向微用户发送信号:In the fifth step, the micro base station sends a signal to the micro user:

微基站将得到的权重wI *和wD *代入公式(3),构造出微基站的发射信号xs,并发送给微用户。The micro base station substitutes the obtained weights w I * and w D * into formula (3), constructs the transmission signal x s of the micro base station, and sends it to the micro user.

第六步,微用户判断fSICIC的可行性并反馈调整信息和权重:In the sixth step, the micro-user judges the feasibility of fSICIC and feeds back the adjustment information and weight:

微用户首先计算实际干信噪比,记为ISNR′,计算公式如下:Micro-users first calculate the actual interference signal-to-noise ratio, which is denoted as ISNR′, and the calculation formula is as follows:

式中yu为微用户的接收信号,E{·}表示计算均值。In the formula, y u is the received signal of the micro-user, and E{ } represents the calculated mean value.

然后,比较ISNR′与γM的大小。若ISNR′≥γM,即fSICIC可行,则微用户向微基站反馈二进制指示标量α=1;否则,fSICIC不可行,微用户向微基站反馈α=0和期望的有用信号的权值wD′,其中wD′的计算公式如下:Then, ISNR' is compared with the size of γM . If ISNR′≥γ M , that is, fSICIC is feasible, then the micro-user feeds back the binary indicator scalar α=1 to the micro-base station; otherwise, fSICIC is not feasible, and the micro-user feeds back α=0 and the desired useful signal weight w D to the micro-base station ′, where the calculation formula of w D ′ is as follows:

第七步,微基站根据接收的调整信息和权重调整发射信号:In the seventh step, the micro base station adjusts the transmission signal according to the received adjustment information and weight:

如果α=1,则微基站根据第三步计算的权重继续向微用户发送数据;否则,将第三步中计算得到的权重wD *替换为wD′,并回到第四步。If α=1, the micro base station continues to send data to the micro user according to the weight calculated in the third step; otherwise, replace the weight w D * calculated in the third step with w D ', and return to the fourth step.

实施例Example

本发明提出了一种异构网中基于全双工通信的跨层串行干扰删除方法,其流程图如图1所示。实例仿真使用matlab仿真平台,对本方法的性能进行仿真分析。异构网物理模型如图2所示,宏基站位于宏小区的中央,微基站位于(ds,0)处,ds表示宏基站与微基站之间的距离,单位是m,S处UE位于(ds,r),r=40m,表示微基站与微用户之间的距离,宏小区半径rmc=500m。宏基站的发射功率Pm=46dBm,微基站的最大发射功率Ps=30dBm。来自宏基站的信道的路径损耗为128.1+37.6log10d,d表示宏基站与微基站或者宏基站与微用户之间的距离,单位是Km,来自微基站的信道的路径损耗为141.7+36.7log10d,d表示微基站与微用户之间的距离,单位是Km。此外,对于任何一个到微用户的信道还考虑一个20dB的穿透损耗。SNRedge表示宏小区边缘宏用户的平均接收信噪比,噪声方差计算公式为定义自干扰单位是dB,P1是宏基站的发射功率。此外,在仿真过程中设定中断概率为0.95,仿真过程中性能使用微用户接收信号的数据率log2(1+SINR)来衡量,单位为bps/Hz。The present invention proposes a cross-layer serial interference deletion method based on full-duplex communication in a heterogeneous network, the flow chart of which is shown in FIG. 1 . The example simulation uses the matlab simulation platform to simulate and analyze the performance of this method. The physical model of the heterogeneous network is shown in Figure 2. The macro base station is located in the center of the macro cell, and the micro base station is located at (d s , 0). d s represents the distance between the macro base station and the micro base station in m, and the UE at S Located at (d s , r), r=40m, which represents the distance between the micro base station and the micro user, and the macro cell radius r mc =500m. The transmit power of the macro base station P m =46dBm, and the maximum transmit power of the micro base station P s =30dBm. The path loss of the channel from the macro base station is 128.1+37.6log 10 d, d represents the distance between the macro base station and the micro base station or the macro base station and the micro user, the unit is Km, and the path loss of the channel from the micro base station is 141.7+36.7 log 10 d, d represents the distance between the micro base station and the micro user, and the unit is Km. In addition, a penetration loss of 20dB is considered for any channel to the micro-user. SNR edge represents the average received signal-to-noise ratio of macro users at the edge of the macro cell, and the formula for calculating the noise variance is Define self-interference The unit is dB, and P 1 is the transmit power of the macro base station. In addition, the outage probability is set to 0.95 in the simulation process, and the performance in the simulation process is measured by the data rate log 2 (1+SINR) of the signal received by the micro-user, and the unit is bps/Hz.

图3、图4和图5给出了仿真结果。图3中分别考虑了宏基站发射信号的数据率RM为1bps/Hz和2bps/Hz,SIRself为90dB和110dB时,fSICIC和HD-SIC的性能。图3中横轴表示边缘信噪比SNRedge的大小,纵轴表示微用户处的平均接收数据率。图4中横轴表示距离ds的大小,纵轴表示微用户处的平均接收数据率。图例中ICI-free表示没有ICI时的场景,其性能由公式得到,HD-nonSIC表示fICIC中微基站采用半双工模式时的场景,FD-hybrid表示fSICIC和fICIC混合使用,这种方式表示在每个信道、距离等条件下选取fSICIC和fICIC中性能较好的方法,同理HD-hybrid表示HD-SIC和HD-nonSIC混合使用。图5中分别考虑了在实际场景中,信道反馈分别为4、6和8比特时对性能的影响。可以看出当SIRself和SNRedge增大,RM减小时,fSICIC的性能会增加,当距离ds较小时,fSICIC的性能较好,且显著高于fICIC。当考虑不完美信道时,反馈比特越高性能也越好。Figure 3, Figure 4 and Figure 5 show the simulation results. In Fig. 3, the performances of fSICIC and HD-SIC are respectively considered when the data rate R M of the signal transmitted by the macro base station is 1bps/Hz and 2bps/Hz, and the SIR self is 90dB and 110dB. In Figure 3, the horizontal axis represents the size of the edge SNR edge , and the vertical axis represents the average received data rate at the micro-user. In Fig. 4, the horizontal axis represents the size of the distance d s , and the vertical axis represents the average received data rate at the micro-user. ICI-free in the legend indicates the scene without ICI, and its performance is determined by the formula Obtained, HD-nonSIC represents the scene when the micro base station in fICIC adopts half-duplex mode, and FD-hybrid represents the mixed use of fSICIC and fICIC. This method means that the performance of fSICIC and fICIC is better under the conditions of each channel and distance. In the same way, HD-hybrid means that HD-SIC and HD-nonSIC are used in combination. In Fig. 5, the influence on the performance when the channel feedback is respectively 4, 6 and 8 bits in actual scenarios is considered. It can be seen that when SIR self and SNR edge increase and RM decreases, the performance of fSICIC will increase. When the distance d s is small, the performance of fSICIC is better and significantly higher than fICIC. When considering imperfect channels, the higher the feedback bits, the better the performance.

Claims (3)

1. a kind of cross-layer serial interference delet method based on full-duplex communication in heterogeneous network, it is characterised in that:Including following several A step,
The first step, full duplex micro-base station acquisition of information;
Described information include macro base station to micro-base station, macro base station to micro- user, micro-base station to micro- user channel and full duplex The self-interference channel of micro-base station, processing delay, micro-base station and the macro base station of micro-base station full duplex self-interference removing module to micro- use The Channel propagation delay at family is poor and the modulation coding scheme of interference signal;
Second step, the feasibility that micro-base station verification serial interference is deleted:
1) according to the modulation coding scheme of interference signal, micro-base station calculates the dry signal-to-noise ratio needed for demodulation interference signal, is denoted as γM
2) under micro-base station maximum transmission power constraints, the maximum dry signal-to-noise ratio ISNR of user terminal is sought;
3) the maximum ISNR of ISNR is judgedmWith the dry signal-to-noise ratio γ needed for demodulation interference signalMSize, if ISNRm≥γM, Then, fSICIC technical feasibilities, into the 3rd step;Otherwise fSICIC technologies are infeasible, should use existing eICIC or fICIC side Method is disturbed to inhibit cross-layer;The fSICIC technologies refer to the cross-layer serial interference delet method based on full-duplex communication;Institute The eICIC methods stated refer to enhance inter-cell interference suppression technology;The fICIC methods refer to based on full-duplex communication across Layer interference mitigation technology;
3rd step, micro-base station calculate the weighted value of transmitting signal:
1) the transmitting signal x of micro-base stationsIt is received signal ysThe useful signal s of micro- user is sent to itsWeighting Be expressed as:
W in formulaIAnd wDRespectively micro-base station receives signal and is sent to the weight of micro- user's useful signal,F is Carrier frequency, t1It is the processing delay of full duplex self-interference removing module in micro-base station;
2) calculating of weight:
Consider the transmission power constraint of micro-base station and solve the ISNR constraints of interference signal, with the Signal to Interference plus Noise Ratio SINR of micro- user It maximizes as criterion, optimal weight wIAnd wDIt is obtained by solving following problem:
<mrow> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <msub> <mi>w</mi> <mi>I</mi> </msub> <mo>,</mo> <msub> <mi>w</mi> <mi>D</mi> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>w</mi> <mi>D</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mi>a</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <msub> <mi>w</mi> <mi>D</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mi>S</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mi>b</mi> <mo>)</mo> </mrow> </mrow>
P in formulaoutIt is the transmission power of micro-base station,t2It is that micro-base station and macro base station are reached at micro- user Propagation delay;hms、hsu、hmuIt is letter of the macro base station to micro-base station, micro-base station to micro- user and macro base station to micro- user respectively Road,It is the weight of micro-base station retransmitted jamming signal,It is the transmission power of micro-base station, PsIt is the emission maximum work(of micro-base station Rate,It is the variance of the self-interference channel of micro-base station,It is the variance of noise power;
In the following two cases, optimal weight wIAnd wDW is denoted as respectivelyI *And wD *, there is different values, be respectively:
A. whenWhen, wI *Modulus value be | wI *|=0, wD *Modulus value bewD *Phase Position is 0;
B. whenWhen, formula (4a)~(4c) is converted to:
<mrow> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <mo>|</mo> <mo>,</mo> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </munder> </mtd> <mtd> <mrow> <mi>S</mi> <mi>I</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>-</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mi>a</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <msub> <mi>&amp;gamma;</mi> <mi>M</mi> </msub> </mfrac> <mo>-</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mi>S</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mi>b</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <mo>|</mo> <mo>+</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mi>M</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> <msub> <mi>&amp;gamma;</mi> <mi>M</mi> </msub> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mi>M</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>.</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mi>c</mi> <mo>)</mo> </mrow> </mrow>
(5c) is updated in object function (5a), is as a result usedIt represents, A in formula (| wI|) be | wI| it is secondary multinomial Formula, B (| wI|) be | wI| quartic polynomial, constraints (5c) be re-written as c≤| wI|≤d, in formula c and d be two often Number, is obtained by formula (5c) and (5b);Therefore, formula (5a)~(5c) is reduced to:
<mrow> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <mo>|</mo> </mrow> </munder> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <mo>|</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mi>B</mi> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <mo>|</mo> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mi>a</mi> <mo>)</mo> </mrow> </mrow>
s.t.c≤|wI|≤d. (6b)
Formula (6a) and (6b) are solved using dichotomy;It is corresponding during dichotomy iteration convergence | wI| it is denoted as i.e. formula (5a) The optimal solution of~(5c), i.e., | wI *|;And then P is obtained by formula (5c)out, substitute into (4b) and obtain | wD *|;Meanwhile wI *Phase bewD *Phase be 0;
4th step, micro-base station send the training signal of weighting to micro- user:
Micro-base station is sent respectively in two time slots to micro- userAnd wD *Z, wherein z are micro-base stations and micro- with per family Known original training signal,And wD *It is the weights of the training signal sent twice respectively;Micro- user is according to connecing The weighted interference signal received estimates the equivalent channel after weighting, i.e.,With
5th step, micro-base station send signal to micro- user:
The weight w that micro-base station will obtainI *And wD *Formula (3) is substituted into, constructs the transmitting signal x of micro-base stations, and it is sent to micro- use Family;
6th step, micro- user judge the feasibility and feedback adjustment information and weight of fSICIC:
Micro- user calculates actual dry signal-to-noise ratio first, is denoted as ISNR ', calculation formula is as follows:
Y in formulauFor the reception signal of micro- user, E { } represents to calculate average;
Then, ISNR ' and γ are comparedMSize:If ISNR ' >=γM, i.e. fSICIC is feasible, then micro- user feeds back two to micro-base station System indicates scalar ce=1;Otherwise, fSICIC is infeasible, and micro- user feeds back the power of α=0 and desired useful signal to micro-base station Value wD', wherein wD' calculation formula it is as follows:
7th step, micro-base station adjust transmitting signal according to the adjustment information and weight of reception:
If α=1, micro-base station continues to send data to micro- user according to the weight that the 3rd step calculates;It otherwise, will be in the 3rd step The weight w being calculatedD *Replace with wD', and return to the 4th step.
2. the cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network according to claim 1, It is characterized in that:The solution procedure of the maximum dry signal-to-noise ratio ISNR of user terminal is as follows in second step (2),
Micro- user ISNR maximization problems is modeled as:
<mrow> <mtable> <mtr> <mtd> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mi>I</mi> </msub> <mo>|</mo> </mrow> </munder> </mtd> <mtd> <mrow> <mi>I</mi> <mi>S</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>+</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mi>I</mi> </msub> <mo>|</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mi>a</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mi>b</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>&amp;OverBar;</mo> </mover> <mi>I</mi> </msub> <mo>|</mo> <mo>&amp;le;</mo> <msqrt> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mi>c</mi> <mo>)</mo> </mrow> </mrow>
H in formulams、hsu、hmuIt is letter of the macro base station to micro-base station, micro-base station to micro- user and macro base station to micro- user respectively Road,It is the weight of micro-base station retransmitted jamming signal,It is the transmission power of micro-base station, PsIt is the emission maximum work(of micro-base station Rate,It is the variance of the self-interference channel of micro-base station,It is the variance of noise power;
By solving-optimizing problem formulations (1a), (1b) and (1c), the maximum for obtaining ISNR is:
<mrow> <msub> <mi>ISNR</mi> <mi>m</mi> </msub> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>+</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>I</mi> </msub> <mo>|</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <msup> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mo>*</mo> </msup> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formulaWherein | wI +| it is variable Meet equation
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>2</mn> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>I</mi> </msub> <mo>|</mo> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>I</mi> </msub> <mo>|</mo> <mo>+</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>m</mi> <mi>u</mi> </mrow> </msub> <mo>|</mo> <mo>)</mo> </mrow> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>s</mi> <mi>u</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>I</mi> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mfrac> <mrow> <mi>d</mi> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>I</mi> </msub> <mo>|</mo> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced>
A definite value, numerical solution acquired using dichotomy.
3. the cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network according to claim 1, It is characterized in that:Formula (6a) and (6b) are solved using dichotomy in 3rd step, are as follows:
A) takeIt takesWherein t is | wI| any value in its domain;
B) giveSolve following unary biquadratic equation:
A(|wI|)=(1+ λ) B (| wI|), (7)
Obtain | wI| solution;
C) if there is any | wI| solution disclosure satisfy that formula (6b), then make λmin=λ, otherwise makes λmax=λ;
D) step b)~c is repeated), solve requirement until meeting precision.
CN201511000159.4A 2015-12-28 2015-12-28 Cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network Expired - Fee Related CN105577591B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511000159.4A CN105577591B (en) 2015-12-28 2015-12-28 Cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511000159.4A CN105577591B (en) 2015-12-28 2015-12-28 Cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network

Publications (2)

Publication Number Publication Date
CN105577591A CN105577591A (en) 2016-05-11
CN105577591B true CN105577591B (en) 2018-05-18

Family

ID=55887263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511000159.4A Expired - Fee Related CN105577591B (en) 2015-12-28 2015-12-28 Cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network

Country Status (1)

Country Link
CN (1) CN105577591B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107484248B (en) * 2016-06-07 2020-12-08 华为技术有限公司 Data transmission method, macro base station and user equipment
CN111133690B (en) * 2017-12-08 2022-09-09 英特尔公司 Method, system and apparatus for reducing inter-station interference in full duplex communication protocol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130750A (en) * 2010-01-14 2011-07-20 华为技术有限公司 Signal transmission method and device
CN102820954A (en) * 2012-08-15 2012-12-12 北京工业大学 Method for reducing inter-cell interference of heterogeneous network
EP2637314A1 (en) * 2010-11-05 2013-09-11 ST-Ericsson Semiconductor (Beijing) Co., Ltd. Method and device for eliminating interference in mobile communication system
CN103354534A (en) * 2013-06-20 2013-10-16 东南大学 Asynchronous heterogeneous network microcell interference suppression method based on prefix
CN103929224A (en) * 2014-04-21 2014-07-16 北京邮电大学 Interference suppression method and device in cellular network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130750A (en) * 2010-01-14 2011-07-20 华为技术有限公司 Signal transmission method and device
EP2637314A1 (en) * 2010-11-05 2013-09-11 ST-Ericsson Semiconductor (Beijing) Co., Ltd. Method and device for eliminating interference in mobile communication system
CN102820954A (en) * 2012-08-15 2012-12-12 北京工业大学 Method for reducing inter-cell interference of heterogeneous network
CN103354534A (en) * 2013-06-20 2013-10-16 东南大学 Asynchronous heterogeneous network microcell interference suppression method based on prefix
CN103929224A (en) * 2014-04-21 2014-07-16 北京邮电大学 Interference suppression method and device in cellular network

Also Published As

Publication number Publication date
CN105577591A (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5778152B2 (en) Multipoint equalization framework for multipoint coordinated transmission
US8706026B2 (en) System and method for distributed power control in a communications system
US9456360B2 (en) Method and systems for decentralized interference management in a multi-antenna wireless communication system
CN112218360B (en) Method, device and system for wireless communication in a wireless communication system
Ramazanali et al. Survey of user association in 5G HetNets
CN103856947B (en) An Interference Coordination Method with Joint Channel Selection and Power Control
CN104868947A (en) Method of realizing beam forming and base station
CN104168574B (en) Uplink transmission method based on adaptable interference selection in mixed cellular system
Ding et al. Analysis on the SINR performance of dynamic TDD in homogeneous small cell networks
CN103812548B (en) Beam forming method considering channel Gaussian error and damage of transceiver
CN105577591B (en) Cross-layer serial interference delet method based on full-duplex communication in a kind of heterogeneous network
US10536194B2 (en) Apparatus and method for exchanging signaling information in comp
CN103428843B (en) Power coordinating method integrating effectiveness of near field users and effectiveness of distant filed users
WO2010101529A1 (en) A method of communication
CN104486268B (en) A kind of cross-channel gain estimation method
CN103763011A (en) Method for achieving interference alignment in LTE-A heterogeneous network
CN105898874A (en) Coordinated multipoint (CoMP) transmission-based distributed heterogeneous network resource distribution method and system
CN102045822B (en) Downlink power control method in wireless relaying system
Park et al. A new link adaptation method to mitigate SINR mismatch in ultra-dense small cell LTE networks
CN103595453B (en) Multi-cell time division multiplexing wireless system beam forming method
Latrach et al. Downlink interference cancellation strategy for shared-spectrum LTE HetNet
US20140205040A1 (en) System and Method for Digital Communications Using Channel Statistics
Prabakar et al. Dynamic Channel State Information based Relay Selection in Device-to-Device Communication
Terng et al. Performance analysis of coordinated multiPoint (CoMP) in long term evolution-advanced
CN103354534B (en) Based on the asynchronous heterogeneous network microcell interference suppression method of prefix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180518

Termination date: 20181228

CF01 Termination of patent right due to non-payment of annual fee