CN105574898A - Method and system for monitoring plant lodging situation based on image detection - Google Patents
Method and system for monitoring plant lodging situation based on image detection Download PDFInfo
- Publication number
- CN105574898A CN105574898A CN201510908183.1A CN201510908183A CN105574898A CN 105574898 A CN105574898 A CN 105574898A CN 201510908183 A CN201510908183 A CN 201510908183A CN 105574898 A CN105574898 A CN 105574898A
- Authority
- CN
- China
- Prior art keywords
- image
- lodging
- monitoring
- preset
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 40
- 238000001514 detection method Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004364 calculation method Methods 0.000 claims abstract description 43
- 238000012545 processing Methods 0.000 claims description 22
- 238000004380 ashing Methods 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000005094 computer simulation Methods 0.000 claims 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 241000196324 Embryophyta Species 0.000 description 17
- 241000209140 Triticum Species 0.000 description 7
- 235000021307 Triticum Nutrition 0.000 description 7
- 235000013339 cereals Nutrition 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
- G06T2207/10008—Still image; Photographic image from scanner, fax or copier
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
- G06T2207/30188—Vegetation; Agriculture
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开了一种基于图像检测的植株倒伏情况监测方法,包括以下步骤:S1、获取监测区域的植株的原始图像,并将原始图像转换成灰度图像;S2、预设高斯模糊函数,并选取多个松弛参数σn;S3、将灰度图像分别和每一个松弛参数σn对应的高斯模糊函数进行卷积预算,获得多个模糊图像gn;S4、预设分界阈值;S5、根据分界阈值对模糊图像gn进行二值化,获得多个二值化图像gbn;S6、将多个二值化图像gbn代入预设第一计算模型进行综合运算,获得二值化的倒伏图像R(x,y);S7、根据预设的第二计算模型和倒伏图像R(x,y)来计算倒伏率Rrite。本发明通过远程监控植株,避免了工作人员亲临其境的必要,有利于降低劳动强度,减少人工需要,可实现大范围植株监控。
The invention discloses a method for monitoring plant lodging based on image detection, comprising the following steps: S1, acquiring an original image of a plant in a monitoring area, and converting the original image into a grayscale image; S2, preset a Gaussian blur function, and Select multiple relaxation parameters σ n ; S3. Convolute the grayscale image with the Gaussian blur function corresponding to each relaxation parameter σ n to obtain multiple blurred images g n ; S4. Preset the boundary threshold; S5. According to The demarcation threshold performs binarization on the fuzzy image g n to obtain a plurality of binarized images gb n ; S6, substituting the plurality of binarized images gb n into the preset first calculation model for comprehensive calculation to obtain binarized lodging Image R(x,y); S7. Calculate the lodging rate R rite according to the preset second calculation model and the lodging image R(x,y). The present invention avoids the need for staff to visit the site in person by remotely monitoring the plants, is beneficial to reduce labor intensity and labor requirements, and can realize plant monitoring in a wide range.
Description
技术领域technical field
本发明涉及植株生长监控技术领域,尤其涉及一种基于图像检测的植株倒伏情况监测方法及系统。The invention relates to the technical field of plant growth monitoring, in particular to a method and system for monitoring plant lodging based on image detection.
背景技术Background technique
小麦倒伏是农业生产的常见灾害之一。小麦一旦发生倒伏,植株水分、养分的运转以及光合作用都会降低,还会诱发各种病虫害,严重影响籽粒灌浆过程,最终影响到小麦产量与籽粒品质的形成,严重倒伏时产量损失可达27%。此外由于倒伏不利于机械收获,人力收割成本的增加也会加重农田收益的损失。大面积、快速监测小麦倒伏状况是掌握灾情、及时防控、评估损失的关键,对于农业部门及时获取农田小麦生长信息具有重要价值。Wheat lodging is one of the common disasters in agricultural production. Once wheat lodging occurs, the water, nutrient operation and photosynthesis of the plant will be reduced, and various diseases and insect pests will be induced, which will seriously affect the grain filling process, and ultimately affect the formation of wheat yield and grain quality. In severe lodging, the yield loss can reach 27%. . In addition, because lodging is not conducive to mechanical harvesting, the increase in labor harvesting costs will also aggravate the loss of farmland income. Large-scale and rapid monitoring of wheat lodging is the key to mastering disasters, timely prevention and control, and assessing losses. It is of great value for the agricultural sector to obtain timely information on farmland wheat growth.
发明内容Contents of the invention
基于背景技术存在的技术问题,本发明提出了一种基于图像检测的植株倒伏情况监测方法及系统。Based on the technical problems existing in the background technology, the present invention proposes a method and system for monitoring plant lodging based on image detection.
本发明提出的一种基于图像检测的植株倒伏情况监测方法,包括以下步骤:A kind of plant lodging situation monitoring method based on image detection that the present invention proposes, comprises the following steps:
S1、获取监测区域的植株的原始图像,并将原始图像转换成灰度图像;S1. Obtain the original image of the plants in the monitoring area, and convert the original image into a grayscale image;
S2、预设高斯模糊函数,并选取多个松弛参数σn;S2. Preset a Gaussian blur function, and select multiple relaxation parameters σ n ;
S3、将灰度图像分别和每一个松弛参数σn对应的高斯模糊函数进行卷积预算,获得多个模糊图像gn;S3. Convolving the grayscale image with the Gaussian blur function corresponding to each relaxation parameter σ n to obtain a plurality of blurred images g n ;
S4、预设分界阈值;S4. Preset demarcation threshold;
S5、根据分界阈值对模糊图像gn进行二值化,获得多个二值化图像gbn;S5. Binarize the blurred image g n according to the demarcation threshold to obtain a plurality of binarized images gb n ;
S6、将多个二值化图像gbn代入预设第一计算模型进行综合运算,获得二值化的倒伏图像R(x,y);S6. Substituting a plurality of binarized images gb n into a preset first calculation model to perform comprehensive calculations to obtain a binarized lodging image R(x,y);
S7、根据预设的第二计算模型和倒伏图像R(x,y)来计算倒伏率Rrite。S7. Calculate the lodging rate R rite according to the preset second calculation model and the lodging image R(x,y).
优选地,步骤S2中,根据成像倍率的大小和实际图像选取松弛参数σn。Preferably, in step S2, the relaxation parameter σ n is selected according to the magnitude of the imaging magnification and the actual image.
优选地,步骤S2中,多个松弛参数σn满足以下关系:Preferably, in step S2, multiple relaxation parameters σn satisfy the following relationship:
σn=2σn-1=22σn-2=......=2nσ0,其中σ0为常数。σ n =2σ n-1 =2 2 σ n-2 =...=2 n σ 0 , where σ 0 is a constant.
优选地,其特征在于,σ0=1。Preferably, it is characterized in that σ 0 =1.
优选地,步骤S4中,分界阈值的数量为多个,并与多个模糊图像gn一一对应;步骤S5具体为:根据对应的分界阈值对模糊图像gn进行二值化,获得多个二值化图像gbn。Preferably, in step S4, the number of demarcation thresholds is multiple, and corresponds to a plurality of blurred images g n one by one; step S5 is specifically: binarize the blurred image g n according to the corresponding demarcation thresholds, and obtain multiple Binarize the image gb n .
优选地,步骤S6中,第一计算模型为:Preferably, in step S6, the first calculation model is:
优选地,步骤S7中,第二计算模型为:Preferably, in step S7, the second calculation model is:
一种基于图像检测的植株倒伏情况监测系统,包括:灰化处理模块、高斯模糊模块、二值化处理模块和倒伏计算模块;其中,A plant lodging monitoring system based on image detection, including: ash processing module, Gaussian blur module, binarization processing module and lodging calculation module; wherein,
灰化处理模块用于接收监测区域摄像装置发送来的原始图像,并将原始图像转换成灰度图像;The ashing processing module is used to receive the original image sent by the camera device in the monitoring area, and convert the original image into a grayscale image;
高斯模糊模块中预设有一系列的高斯函数,任意两个高斯函数的松弛参数σ不同;高斯模糊模块与灰化处理模块连接,其接收灰度图像,并将灰度图像分别和每一个松弛参数σn对应的高斯模糊函数进行卷积预算,获得多个模糊图像gn;A series of Gaussian functions are preset in the Gaussian blur module, and the relaxation parameters σ of any two Gaussian functions are different; the Gaussian blur module is connected to the ashing processing module, which receives the grayscale image and compares the grayscale image with each relaxation parameter The Gaussian blur function corresponding to σ n performs convolution budget to obtain multiple blurred images g n ;
二值化处理模块与高斯模糊模块连接,其内部预设有多个与模糊图像gn一一对应的分界阈值,并用于根据对应的分界阈值分别对模糊图像gn进行二值化处理,获得多个二值化图像gbn;The binarization processing module is connected with the Gaussian blur module, which is preset with a plurality of boundary thresholds corresponding to the blurred image g n one by one, and is used to perform binarization on the blurred image g n according to the corresponding boundary thresholds to obtain Multiple binarized images gb n ;
倒伏计算模块与二值化处理模块连接,其内部预设有第一计算模型和第二计算模型;倒伏计算模块将多个二值化结果gbn代入第一计算模型进行综合运算,获得二值化的倒伏图像R(x,y),然后根据第二计算模型和倒伏图像R(x,y)来计算倒伏率Rrite。The lodging calculation module is connected with the binarization processing module, and the first calculation model and the second calculation model are preset inside; the lodging calculation module substitutes a plurality of binarization results gb n into the first calculation model for comprehensive operation to obtain the binary value The lodging image R(x,y) is optimized, and then the lodging rate R rite is calculated according to the second calculation model and the lodging image R(x,y).
优选地,第一计算模型为:λn为预设常数。Preferably, the first calculation model is: λ n is a preset constant.
优选地,第二计算模型为:ky为比例系数。Preferably, the second calculation model is: k y is a proportionality factor.
本发明提供的基于图像检测的植株倒伏情况监测方法及系统,通过远程获取监测区域的植株图像作为原始图像,并对原始图像依次进行灰化处理、高斯模糊处理、二值化处理,然后根据二值化处理结果计算倒伏图像,并进一步计算倒伏率。本发明通过自动化的图像分析方式,可以形成一套有高通量的育种软件,对于提高信息获取的速度和准确度有极大的提高,有利于后续相关研究工作的开展。In the method and system for monitoring plant lodging based on image detection provided by the present invention, the plant image in the monitoring area is obtained remotely as the original image, and the original image is sequentially ashed, Gaussian blurred, and binarized, and then according to the two The lodging image is calculated from the valued processing results, and the lodging rate is further calculated. The present invention can form a set of high-throughput breeding software through an automated image analysis method, which greatly improves the speed and accuracy of information acquisition, and is conducive to the development of subsequent related research work.
且本发明通过远程监控植株,避免了工作人员亲临其境的必要,有利于降低劳动强度,减少人工需要,可实现大范围植株监控。Moreover, the present invention avoids the need for staff to visit the site in person by remotely monitoring the plants, which is beneficial to reduce labor intensity and labor requirements, and can realize plant monitoring in a wide range.
附图说明Description of drawings
图1为本发明提出的一种基于图像检测的植株倒伏情况监测方法的流程图;Fig. 1 is a flow chart of a plant lodging situation monitoring method based on image detection proposed by the present invention;
图2为本发明提出的一种基于图像检测的植株倒伏情况监测系统的结构图。Fig. 2 is a structural diagram of a plant lodging monitoring system based on image detection proposed by the present invention.
具体实施方式detailed description
参照图1,本发明提出的一种基于图像检测的植株倒伏情况监测方法,包括以下步骤:With reference to Fig. 1, a kind of plant lodging situation monitoring method based on image detection that the present invention proposes, comprises the following steps:
S1、获取监测区域的植株的原始图像,并将原始图像转换成灰度图像。S1. Acquire the original image of the plants in the monitoring area, and convert the original image into a grayscale image.
本实施方式中以监测小麦的生长情况为例。本实施方式提供的基于图像检测的植株倒伏情况监测方法是一种远程监控方法,不需要工作人员亲临其境,故而,远程获取小麦的原始图像是关键。原始图像的获得可通过在监测区域预设摄像装置来实现,摄像装置自动摄取原始图像,并发送到后续设备。In this embodiment, monitoring the growth of wheat is taken as an example. The method for monitoring plant lodging based on image detection provided in this embodiment is a remote monitoring method that does not require staff to be present in person. Therefore, remote acquisition of the original image of wheat is the key. The acquisition of the original image can be realized by presetting the camera device in the monitoring area, and the camera device automatically captures the original image and sends it to the subsequent equipment.
S2、预设高斯模糊函数,并选取多个松弛参数σn。S2. Preset a Gaussian blur function, and select multiple relaxation parameters σ n .
高斯函数是一种常用的图像处理函数,松弛参数σ决定了二维高斯函数的形状。本实施方式中,多个松弛参数σn的选取满足以下原则:Gaussian function Is a commonly used image processing function, the relaxation parameter σ determines the shape of the two-dimensional Gaussian function. In this embodiment, the selection of multiple relaxation parameters σn satisfies the following principles:
σn=2σn-1=22σn-2=......=2nσ0,其中σ0为常数。σ n =2σ n-1 =2 2 σ n-2 =...=2 n σ 0 , where σ 0 is a constant.
本实施方式中,首先根据成像倍率的大小和实际图像选取松弛参数σ0,然后根据σ0和以上公式依次获得σ1、σ2、σ3……σn-1、σn,并依次将σ1、σ2、σ3……σn-1、σn代入高斯函数中的σ,获得一系列的高斯函数。具体实施时,也可以选择σ0=1。In this embodiment, firstly, the relaxation parameter σ 0 is selected according to the imaging magnification and the actual image, and then σ 1 , σ 2 , σ 3 ... σ n-1 , σ n are sequentially obtained according to σ 0 and the above formula, and the σ 1 , σ 2 , σ 3 ... σ n-1 , σ n are substituted into σ in the Gaussian function to obtain a series of Gaussian functions. During specific implementation, σ 0 =1 may also be selected.
S3、将灰度图像分别和每一个松弛参数σn对应的高斯模糊函数进行卷积预算,获得多个模糊图像gn。S3. Convolving the grayscale image with the Gaussian blur function corresponding to each relaxation parameter σ n to obtain a plurality of blurred images g n .
本步骤中,分别应用上一步骤中获得一系列的高斯函数对灰度图像进行高斯模糊,即分别利用σ0、σ1、σ2、σ3……σn-1、σn对应的高斯函数对灰度图像进行高斯模糊,从而获得一系列的模糊图像g0、g1、g2、g3……gn-1、gn。In this step, a series of Gaussian functions obtained in the previous step are used to perform Gaussian blur on the grayscale image, that is, using the Gaussian functions corresponding to σ 0 , σ 1 , σ 2 , σ 3 ... σ n-1 , σ n The function performs Gaussian blurring on the grayscale image to obtain a series of blurred images g 0 , g 1 , g 2 , g 3 ... g n-1 , g n .
S4、预设分界阈值。本实施方式中,分界阈值的数量为多个,并与多个模糊图像gn一一对应。S4. Presetting the demarcation threshold. In this embodiment, there are multiple boundary thresholds, which correspond to multiple blurred images g n one by one.
S5、根据对应的分界阈值分别对模糊图像g0、g1、g2、g3……gn-1、gn进行二值化,获得多个二值化图像gb0、gb1、gb2、gb3……gbn-1、gbn。具体的,在进行二值化时,模糊图像中色值低于分界阈值的点色值全部转换为0,模糊图像中色值高于分界阈值的点色值全部转换为255。 S5 . Binarize the fuzzy images g 0 , g 1 , g 2 , g 3 . 2 , gb 3 ...gb n-1 , gb n . Specifically, when performing binarization, all point color values in the blurred image whose color values are lower than the boundary threshold are converted to 0, and point color values in the blurred image whose color values are higher than the boundary threshold are all converted to 255.
S6、将多个二值化结果gbn代入预设的第一计算模型进行综合运算,获得二值化的倒伏图像R(x,y)。S6. Substituting multiple binarized results gb n into the preset first calculation model to perform comprehensive calculations to obtain a binarized lodging image R(x, y).
第一计算模型为:The first calculation model is:
具体实施时,λn可以选择恒定常数,即λn=λn-1=λn-2=......=λ0;During specific implementation, λ n can be selected as a constant constant, that is, λ n =λ n-1 =λ n-2 =...=λ 0 ;
λn也可以按照公式:λn=ω1λn-1=ω2λn-2=......=ωnλ0进行取值,其中,ω1、ω2、ωn和λ0均为常数。λ n can also be valued according to the formula: λ n =ω 1 λ n-1 =ω 2 λ n-2 =...=ω n λ 0 , where ω 1 , ω 2 , ω n and λ 0 is a constant.
S7、根据预设的第二计算模型和倒伏图像R(x,y)来计算倒伏率Rrite。S7. Calculate the lodging rate R rite according to the preset second calculation model and the lodging image R(x,y).
第二计算模型为:The second calculation model is:
以下结合一种基于图像检测的植株倒伏情况监测系统对以上方法进行进一步解释。The above method will be further explained below in conjunction with an image detection-based plant lodging monitoring system.
参照图2,该基于图像检测的植株倒伏情况监测系统包括:灰化处理模块、高斯模糊模块、二值化处理模块和倒伏计算模块。Referring to Fig. 2, the system for monitoring plant lodging based on image detection includes: an ashing processing module, a Gaussian blur module, a binarization processing module and a lodging calculation module.
灰化处理模块用于接收监测区域摄像装置发送来的原始图像,并将原始图像转换成灰度图像。The ashing processing module is used to receive the original image sent by the camera device in the monitoring area, and convert the original image into a grayscale image.
高斯模糊模块中预设有一系列的高斯函数任意两个高斯函数的松弛参数σ不同,且松弛参数σ的选择满足以下公式:A series of Gaussian functions are preset in the Gaussian blur module The relaxation parameter σ of any two Gaussian functions is different, and the selection of the relaxation parameter σ satisfies the following formula:
σn=2σn-1=22σn-2=......=2nσ0,其中σ0为常数,并由成像倍率的大小和实际图像决定。σ n =2σ n-1 =2 2 σ n-2 =...=2 n σ 0 , where σ 0 is a constant and is determined by the imaging magnification and the actual image.
高斯模糊模块与灰化处理模块连接,其接收灰度图像,并将灰度图像分别和每一个松弛参数σn对应的高斯模糊函数进行卷积预算,获得多个模糊图像gn。The Gaussian blur module is connected with the graying processing module, which receives the grayscale image, and performs convolution budget on the grayscale image with the Gaussian blur function corresponding to each relaxation parameter σ n to obtain multiple blurred images g n .
二值化处理模块与高斯模糊模块连接,其内部预设有多个与模糊图像gn一一对应的分界阈值,并用于根据对应的分界阈值分别对模糊图像gn进行二值化处理,获得多个二值化图像gbn。The binarization processing module is connected with the Gaussian blur module, which is preset with a plurality of boundary thresholds corresponding to the blurred image g n one by one, and is used to perform binarization on the blurred image g n according to the corresponding boundary thresholds to obtain Multiple binarized images gb n .
倒伏计算模块中预设有第一计算模型和第二计算模型。The first calculation model and the second calculation model are preset in the lodging calculation module.
第一计算模型为:The first calculation model is:
第二计算模型为:The second calculation model is:
ky为比例系数。 k y is a proportionality factor.
倒伏计算模块与二值化处理模块连接,其将多个二值化结果gbn代入第一计算模型进行综合运算,获得二值化的倒伏图像R(x,y),然后根据第二计算模型和倒伏图像R(x,y)来计算倒伏率Rrite。The lodging calculation module is connected with the binarization processing module, which substitutes a plurality of binarization results gb n into the first calculation model for comprehensive operation to obtain a binarized lodging image R(x, y), and then according to the second calculation model and the lodging image R(x,y) to calculate the lodging rate R rite .
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, any person familiar with the technical field within the technical scope disclosed in the present invention, according to the technical solution of the present invention Any equivalent replacement or change of the inventive concepts thereof shall fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510908183.1A CN105574898A (en) | 2015-12-07 | 2015-12-07 | Method and system for monitoring plant lodging situation based on image detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510908183.1A CN105574898A (en) | 2015-12-07 | 2015-12-07 | Method and system for monitoring plant lodging situation based on image detection |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105574898A true CN105574898A (en) | 2016-05-11 |
Family
ID=55884985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510908183.1A Pending CN105574898A (en) | 2015-12-07 | 2015-12-07 | Method and system for monitoring plant lodging situation based on image detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105574898A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090304231A1 (en) * | 2008-06-09 | 2009-12-10 | Arcsoft, Inc. | Method of automatically detecting and tracking successive frames in a region of interesting by an electronic imaging device |
US20100080469A1 (en) * | 2008-10-01 | 2010-04-01 | Fuji Xerox Co., Ltd. | Novel descriptor for image corresponding point matching |
CN102254144A (en) * | 2011-07-12 | 2011-11-23 | 四川大学 | Robust method for extracting two-dimensional code area in image |
CN103020965A (en) * | 2012-11-29 | 2013-04-03 | 奇瑞汽车股份有限公司 | Foreground segmentation method based on significance detection |
CN103336966A (en) * | 2013-07-15 | 2013-10-02 | 山东奥泰机械有限公司 | Weed image identification method applied to intelligent agricultural machine |
-
2015
- 2015-12-07 CN CN201510908183.1A patent/CN105574898A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090304231A1 (en) * | 2008-06-09 | 2009-12-10 | Arcsoft, Inc. | Method of automatically detecting and tracking successive frames in a region of interesting by an electronic imaging device |
US20100080469A1 (en) * | 2008-10-01 | 2010-04-01 | Fuji Xerox Co., Ltd. | Novel descriptor for image corresponding point matching |
CN102254144A (en) * | 2011-07-12 | 2011-11-23 | 四川大学 | Robust method for extracting two-dimensional code area in image |
CN103020965A (en) * | 2012-11-29 | 2013-04-03 | 奇瑞汽车股份有限公司 | Foreground segmentation method based on significance detection |
CN103336966A (en) * | 2013-07-15 | 2013-10-02 | 山东奥泰机械有限公司 | Weed image identification method applied to intelligent agricultural machine |
Non-Patent Citations (1)
Title |
---|
大头的博客: "SIFT中高斯金字塔和DOG金字塔", 《HTTP://BLOG.SINA.COM.CN/S/BLOG_68F909C30100R0G1.HTML》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106971152B (en) | Method for detecting bird nest in power transmission line based on aerial images | |
JP6638121B1 (en) | Server device of crop growth stage determination system, growth stage determination method and program | |
Mundada et al. | Detection and classification of pests in greenhouse using image processing | |
Sannakki et al. | Leaf disease grading by machine vision and fuzzy logic | |
CN105574897A (en) | Crop growth situation monitoring Internet of Things system based on visual inspection | |
Kamath et al. | Classification of paddy crop and weeds using semantic segmentation | |
Mukherjee et al. | Damaged paddy leaf detection using image processing | |
De Luna et al. | Tomato fruit image dataset for deep transfer learning-based defect detection | |
CN111523457B (en) | Weed identification method and weed treatment equipment | |
Patidar et al. | Weed seedling detection using mask regional convolutional neural network | |
Yuan et al. | YOLOv5s-CBAM-DMLHead: A lightweight identification algorithm for weedy rice (Oryza sativa f. spontanea) based on improved YOLOv5 | |
CN116844042B (en) | A farmland extraction method based on collaborative edge detection and spatial attention mechanism | |
CN105913426B (en) | A kind of shallow lake purse seine area extracting method based on ZY-3 images | |
Hase et al. | Detection, categorization and suggestion to cure infected plants of tomato and grapes by using OpenCV framework for andriod environment | |
CN116934723A (en) | A rice pest detection method and system integrating deformable convolutional neural network | |
CN110298856B (en) | Non-contact type fish body length estimation method | |
CN114299375B (en) | Underwater group target detection method fusing YOLOv4 and deformable convolution | |
CN119251686A (en) | A method for evaluating the results of microplastic pollution control | |
CN118262239A (en) | Jasmine flower picking method based on deep learning | |
CN105574898A (en) | Method and system for monitoring plant lodging situation based on image detection | |
CN105261045B (en) | A digital method for rapid assessment of alfalfa disease and insect pest losses | |
CN115458151A (en) | Diagnostic method for cryptocaryon irritans disease of marine fishes based on image recognition technology | |
Manasa | Mobile Based Application For Tea Leaf Disease Detection | |
Ahmed | IoT and Deep Learning-Based Smart Farm Environment Optimization and Yield Prediction Platform | |
Ashqer et al. | A Structured Image Processing Operation Library to Automatically Isolate Weeds and Crops |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160511 |
|
RJ01 | Rejection of invention patent application after publication |