CN105550404A - Method for analyzing hydraulic loss of centrifugal pump based on entropy theory - Google Patents

Method for analyzing hydraulic loss of centrifugal pump based on entropy theory Download PDF

Info

Publication number
CN105550404A
CN105550404A CN201510890660.6A CN201510890660A CN105550404A CN 105550404 A CN105550404 A CN 105550404A CN 201510890660 A CN201510890660 A CN 201510890660A CN 105550404 A CN105550404 A CN 105550404A
Authority
CN
China
Prior art keywords
entropy
centrifugal pump
calculation
grid
calculation domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510890660.6A
Other languages
Chinese (zh)
Inventor
裴吉
尹庭赟
袁小露
袁寿其
骆寅
司乔瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201510890660.6A priority Critical patent/CN105550404A/en
Publication of CN105550404A publication Critical patent/CN105550404A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明涉及一种基于熵理论分析离心泵水力损失的方法,该方法包括如下步骤:步骤A)应用三维造型软件对离心泵的计算域进行造型;步骤B)将步骤A得到的计算域的造型导入分析软件中进行网格划分;步骤C)对步骤B中经网格划分的计算域进行定常不可压全流道流场粘性数值计算;步骤D)将步骤C数值计算的结果中的扬程和效率与离心泵设计工况下的扬程和效率进行比较,得到最优网格数的网格划分;步骤E)以步骤D得到的最优网格数的网格划分为基础,通过编写程序语言把熵产公式编到分析软件的后处理程序中,得到熵分析处理后的数据;步骤F)将步骤E中得到的熵分析数据导入到数据处理软件中进行绘图,从而得到相应的熵分析结果。

The invention relates to a method for analyzing the hydraulic loss of a centrifugal pump based on entropy theory. The method comprises the following steps: step A) modeling the calculation domain of the centrifugal pump by using three-dimensional modeling software; step B) modeling the calculation domain obtained in step A Import into the analysis software for grid division; step C) carry out numerical calculation of the viscosity of the steady incompressible flow field of the full flow channel on the calculation domain divided by the grid in step B; step D) calculate the lift and Efficiency is compared with the head and efficiency under the design conditions of the centrifugal pump, and the grid division of the optimal grid number is obtained; step E) is based on the grid division of the optimal grid number obtained in step D, by writing the programming language Edit the entropy production formula into the post-processing program of the analysis software to obtain the data after the entropy analysis process; step F) import the entropy analysis data obtained in the step E into the data processing software for drawing, thereby obtaining the corresponding entropy analysis results .

Description

一种基于熵理论分析离心泵水力损失的方法A Method for Analyzing Hydraulic Loss of Centrifugal Pump Based on Entropy Theory

技术领域technical field

本发明涉及流体机械内部流动损失机理相关的技术领域,尤其涉及到一种基于熵理论分析离心泵水力损失的方法。The invention relates to the technical field related to the internal flow loss mechanism of a fluid machine, in particular to a method for analyzing the hydraulic loss of a centrifugal pump based on the entropy theory.

背景技术Background technique

离心泵作为一种普通的旋转机械广泛应用于工业生产各个领域,因其耗能总量巨大,研究其能量特性并实现节能运行具有重要意义。文献调研表明对离心泵能量特性的研究主要从流体动力学角度分析,以试验测试及数值模拟方法为主。数值模拟在流场计算方面技术成熟,较试验测试能提供更详细的内部流动信息并得到广泛认可。As a common rotating machine, centrifugal pump is widely used in various fields of industrial production. Because of its huge energy consumption, it is of great significance to study its energy characteristics and realize energy-saving operation. The literature survey shows that the research on the energy characteristics of centrifugal pumps is mainly analyzed from the perspective of fluid dynamics, mainly based on experimental testing and numerical simulation methods. Numerical simulation is a mature technology in flow field calculation, which can provide more detailed internal flow information than experimental testing and has been widely recognized.

仅从流体动力的角度分析流体机械内水力损失发生的大小和位置不够直观,需要引入一种分析方法来对流体机械内水力损失发生情况进行更为直观的显现。启发于熵分析方法在流动传热设备中成功应用,本发明运用熵分析理论对流体机械内部水力损失进行分析。It is not intuitive to analyze the size and location of hydraulic loss in fluid machinery only from the perspective of fluid dynamics. It is necessary to introduce an analysis method to more intuitively display the occurrence of hydraulic loss in fluid machinery. Inspired by the successful application of the entropy analysis method in flow heat transfer equipment, the present invention uses the entropy analysis theory to analyze the hydraulic loss inside the fluid machine.

对于离心水泵,因工作介质的粘性及雷诺应力的存在使得运行过程中机械能不可逆的向内能转化,带来不可逆损失。从热力学第二定律的角度分析,该种能量损失是有用功向无用功能量形式的转换,因此局部熵产方法可用于机械能损失的测量并实现泵内损失的捕捉,熵产是状态量,对于单相不可压流动,单位质量的熵产率可给出其输运方程Spurk:For centrifugal water pumps, due to the viscosity of the working medium and the existence of Reynolds stress, the mechanical energy is irreversibly converted into internal energy during operation, resulting in irreversible losses. From the perspective of the second law of thermodynamics, this energy loss is the conversion of useful work to useless energy. Therefore, the local entropy production method can be used to measure the loss of mechanical energy and capture the loss in the pump. The entropy production is a state quantity. For a single For phase incompressible flow, the entropy yield per unit mass can be given by its transport equation Spurk:

ρρ (( ∂∂ sthe s ∂∂ tt ++ uu ∂∂ sthe s ∂∂ xx ++ vv ∂∂ sthe s ∂∂ ythe y ++ ww ∂∂ sthe s ∂∂ zz )) == dd ii vv (( qq ‾‾ TT )) ++ φφ TT ++ φφ θθ TT 22 -- -- -- (( 11 ))

式中:ρ—密度,[Kgm-3];—热流密度,[Wm2];φ—机械能粘性耗散,[Wm-3];In the formula: ρ—density, [Kgm -3 ]; —heat flux density, [Wm 2 ]; φ—viscous dissipation of mechanical energy, [Wm -3 ];

φΘ—熵产项,[WKm-3];u,v,w—x,y,z方向速度,[ms-1];S—面积,[m2];φ Θ —Entropy product item, [WKm -3 ]; u,v,w—speed in x,y,z direction, [ms -1 ]; S—area, [m 2 ];

x,y,z—x,y,z坐标,[m];T—温度,[K];x, y, z—x, y, z coordinates, [m]; T—temperature, [K];

公式(1)右边最后两项代表熵产输运过程中产生的机理,作为源项出现且总是正值;其中第一项是由于粘性耗散产生的熵产,而第二项描述的是有限温差下传热过程产生的熵产。单位质量熵产率,也叫比熵,在此公式中是唯一未知量,仅是温度和压力的函数。而单相不可压流动中的温度场和压力场由流动的基本方程组约束,即连续性方程、动量方程及能量方程。因此,计算熵产所需要的基本物理量可先通过传统数值模拟方法计算得到,在理论上将熵产作为数值模拟的后处理量来处理,即可避免熵产输运方程直接繁琐的计算而间接得到较为准确的熵产解。The last two terms on the right side of formula (1) represent the mechanism of entropy production and transportation, which appear as source terms and are always positive; the first term is the entropy production due to viscous dissipation, and the second term describes the Entropy production during heat transfer at a finite temperature difference. The entropy yield per unit mass, also called specific entropy, is the only unknown quantity in this formula, which is only a function of temperature and pressure. The temperature field and pressure field in single-phase incompressible flow are constrained by the basic equations of flow, namely continuity equation, momentum equation and energy equation. Therefore, the basic physical quantities required for the calculation of entropy production can be calculated first by traditional numerical simulation methods. A more accurate entropy production solution is obtained.

比熵既是状态量也是瞬时量,数值求解之前先通过类雷诺时均化过程对熵产输运方程进行时均化处理。熵产可分为两项:平均量部分与脉动量部分。Specific entropy is both a state quantity and an instantaneous quantity, and the entropy production and transport equations are time-averaged through a Reynolds-like time-average process before numerical solution. The entropy production can be divided into two parts: the average quantity part and the pulsating quantity part.

ρρ (( ∂∂ sthe s ‾‾ ∂∂ tt ++ uu ‾‾ ∂∂ sthe s ‾‾ ∂∂ tt ++ vv ‾‾ ∂∂ sthe s ‾‾ ∂∂ tt ++ ww ‾‾ ∂∂ sthe s ‾‾ ∂∂ tt )) == dd ii vv (( qq ‾‾ TT )) -- ‾‾ ρρ (( ∂∂ uu ′′ sthe s ′′ ‾‾ ∂∂ xx ++ ∂∂ vv ′′ sthe s ′′ ‾‾ ∂∂ ythe y ++ ∂∂ ww ′′ sthe s ′′ ‾‾ ∂∂ zz )) ++ φφ ‾‾ TT ++ φφ θθ ‾‾ TT 22 -- -- -- (( 22 ))

公式(2)中是粘性耗散而产生的时均化熵产,可分平均项与脉动项:In formula (2) is the time-averaged entropy produced by viscous dissipation, which can be divided into average term and pulsation term:

φφ ‾‾ TT == SS pp rr oo .. DD. ‾‾ ++ SS pp rr oo ,, DD. ′′ -- -- -- (( 33 ))

SS pp rr oo ,, DD. ‾‾ == μμ TT {{ 22 [[ (( ∂∂ uu ‾‾ ∂∂ xx )) 22 ++ (( ∂∂ vv ‾‾ ∂∂ ythe y )) 22 ++ (( ∂∂ ww ‾‾ ∂∂ zz )) 22 ]] ++ (( ∂∂ uu ‾‾ ∂∂ ythe y ++ ∂∂ vv ‾‾ ∂∂ xx )) 22 ++ (( ∂∂ uu ‾‾ ∂∂ zz ++ ∂∂ ww ‾‾ ∂∂ xx )) 22 ++ (( ∂∂ vv ‾‾ ∂∂ zz ++ ∂∂ ww ‾‾ ∂∂ ythe y )) 22 }} -- -- -- (( 44 ))

SS pp rr oo ,, DD. ′′ == μμ TT {{ 22 [[ (( ∂∂ uu ′′ ∂∂ xx )) 22 ‾‾ ++ (( ∂∂ vv ′′ ∂∂ ythe y )) 22 ‾‾ ++ (( ∂∂ ww ′′ ∂∂ zz )) 22 ‾‾ ]] ++ (( ∂∂ uu ′′ ∂∂ ythe y ++ ∂∂ vv ′′ ∂∂ xx )) 22 ‾‾ ++ (( ∂∂ uu ′′ ∂∂ zz ++ ∂∂ ww ′′ ∂∂ xx )) 22 ‾‾ ++ (( ∂∂ vv ′′ ∂∂ zz ++ ∂∂ ww ′′ ∂∂ ythe y )) 22 ‾‾ }} -- -- -- (( 55 ))

公式(2)中是有限温差驱动传热过程而产生的时均化熵产,可分平均项与脉动项:In formula (2) is the time-averaged entropy production generated by the heat transfer process driven by a finite temperature difference, and can be divided into an average term and a pulsation term:

φφ θθ ‾‾ TT 22 == SS pp rr oo ,, CC ‾‾ ++ SS pp rr oo ,, CC ′′ -- -- -- (( 66 ))

SS pp rr oo ,, CC ‾‾ == λλ TT ‾‾ 22 [[ (( ∂∂ TT ‾‾ ∂∂ xx )) 22 ++ (( ∂∂ TT ‾‾ ∂∂ ythe y )) 22 ++ (( ∂∂ TT ‾‾ ∂∂ zz )) 22 ]] -- -- -- (( 77 ))

SS pp rr oo ,, CC ′′ == λλ TT ‾‾ 22 [[ (( ∂∂ TT ′′ ∂∂ xx )) 22 ‾‾ ++ (( ∂∂ TT ′′ ∂∂ ythe y )) 22 ‾‾ ++ (( ∂∂ TT ′′ ∂∂ zz )) 22 ‾‾ ]] -- -- -- (( 88 ))

时均化处理结果出现了四种熵产形式,两项平均熵产项与两项脉动熵产项,统称为局部熵产率项。是直接耗散熵产,Spro,D'是湍流耗散熵产,是平均温度梯度对熵产的贡献,Spro,C'是脉动温度梯度对熵产的贡献。其中平均熵产项可以直接求解,而脉动熵产项却无法直接计算。Kock和Herwig研究认为脉动熵产可与湍流模型存在内在联系,与湍动能耗散率和温度梯度有关,可得:There are four forms of entropy production in time-averaged processing results, two average entropy production items and two pulse entropy production items, which are collectively called local entropy production rate items. is the direct dissipative entropy production, S pro,D' is the turbulent dissipative entropy production, is the contribution of the average temperature gradient to the entropy production, and S pro,C' is the contribution of the fluctuating temperature gradient to the entropy production. Among them, the average entropy product term can be solved directly, but the pulsating entropy product term cannot be directly calculated. According to Kock and Herwig's research, the pulsating entropy production can be intrinsically related to the turbulence model, and is related to the turbulent kinetic energy dissipation rate and temperature gradient. Related, available:

SS pp rr oo ,, DD. ′′ == ρρ ϵϵ TT ‾‾ -- -- -- (( 99 ))

SS pp rr oo ,, CC ′′ == αα tt αα SS pp rr oo ,, CC ‾‾ -- -- -- (( 1010 ))

Spro,D'—湍流熵产率,[Wm-3K-1];Spro,C'—脉动温度熵产率,[Wm-3K-1]S pro,D' — turbulent flow entropy yield, [Wm -3 K -1 ]; S pro,C' — pulsating temperature entropy yield, [Wm -3 K -1 ]

根据段璐的研究由平均温度梯度与脉动温度梯度产生的熵产可归结为一项:According to Duan Lu's research, the entropy produced by the average temperature gradient and the fluctuating temperature gradient can be attributed to one item:

SS pp rr oo ,, CC == λλ ee ff ff TT ‾‾ 22 [[ (( ∂∂ TT ‾‾ ∂∂ xx )) 22 ++ (( ∂∂ TT ‾‾ ∂∂ ythe y )) 22 ++ (( ∂∂ TT ‾‾ ∂∂ zz )) 22 ]] -- -- -- (( 1111 ))

其中,λeff=λ+λt Among them, λ eff =λ+λ t ,

综述可知,局部熵产项可以通过公式(4)、(9)、(11)计算得到,这样计算域内的总熵产率可以通过局部熵产率对计算域的体积积分得到:From the overview, the local entropy production term can be calculated by formulas (4), (9), and (11), so that the total entropy production rate in the calculation domain can be obtained by the volume integral of the local entropy production rate on the calculation domain:

ΔSΔS pp rr oo ,, DD. ‾‾ == ∫∫ VV SS pp rr oo ,, DD. ‾‾ dd VV -- -- -- (( 1212 ))

然而,Kock研究结果表明,四种形式的熵产率均存在较强的壁面效应,且时均项较为明显。传统数值模拟方法只能在远离壁面区域给出相对精确的解,越接近壁面的区域由于湍流边界层和热边界层的存在导致局部速度分布和温度分布急剧变化,致使熵产率计算出现峰值而出现偏离真实解的结果。所以壁面附近区域的熵产率计算需要给与特殊的关注,否则将出现不可接受的错误。张翔给出了壁面附近熵产计算的公式,如(15)所示,称为壁面熵产率,将壁面熵产率对壁面区域进行积分便可以得到壁面区域的总熵产率,因此公式(12)中的积分区域将是不包括壁面区域的计算核心区。However, Kock's research results show that the four forms of entropy yields all have strong wall effects, and the time-averaged term is more obvious. The traditional numerical simulation method can only give relatively accurate solutions in the area far away from the wall, and the closer to the wall area, due to the existence of turbulent boundary layer and thermal boundary layer, the local velocity distribution and temperature distribution change sharply, resulting in the peak value of the entropy yield calculation. results that deviate from the true solution. Therefore, the calculation of entropy yield in the region near the wall needs special attention, otherwise unacceptable errors will occur. Zhang Xiang gave the formula for calculating the entropy production near the wall, as shown in (15), it is called the wall entropy production rate, and the total entropy production rate of the wall area can be obtained by integrating the wall entropy production rate with the wall area, so the formula The integration region in (12) will be the computational core region excluding the wall region.

ΔSΔS pp rr oo ,, WW == ∫∫ sthe s ττ ww →&Right Arrow; ·&Center Dot; νν pp →&Right Arrow; TT ‾‾ dd SS -- -- -- (( 1515 ))

式中:ΔSpro,W—壁面熵产,[WK-1]In the formula: ΔS pro,W — wall entropy production, [WK -1 ]

因此,整个系统计算域内的总熵产可以计算得到,如公式(16);由熵产带来的不可逆损失表示为公式(17)。Therefore, the total entropy production in the calculation domain of the whole system can be calculated, such as formula (16); The loss is expressed as Equation (17).

ΔSΔS pp rr oo == ΔSΔS pp rr oo ,, DD. ‾‾ ++ ΔSΔS pp rr oo ,, DD. ′′ ++ ΔSΔS pp rr oo ,, CC ++ ΔSΔS pp rr oo ,, WW -- -- -- (( 1616 ))

II pp rr oo == ΣΣ ii II ii == ΣΣ ii (( TT rr ΔSΔS pp rr oo ,, ii )) ,, ii == DD. ‾‾ ,, DD. ′′ ,, CC ,, WW -- -- -- (( 1717 ))

式中:ΔSpro-体积积分熵产,[WK-1];-直接熵产,[WK-1];In the formula: ΔS pro -volume integral entropy production, [WK -1 ]; - direct entropy production, [WK -1 ];

ΔSpro,D′-湍流熵产,[WK-1];ΔSpro,C-温度熵产,[WK-1];ΔS pro, D′ - turbulence entropy production, [WK -1 ]; ΔS pro, C - temperature entropy production, [WK -1 ];

ΔSpro,W-壁面熵产,[WK-1];Ipro-损,[W];ΔS pro, W - wall entropy production, [WK -1 ]; I pro - Loss, [W];

Tr—参考温度,[K]; T r —reference temperature, [K];

发明内容Contents of the invention

本发明基将熵产理论引入离心泵的水力损失计算,该方法易于操作,且熵分析结果能很好的反映离心泵内部流场水力损失情况,为后续离心泵的结构设计能够提供好的参考。The present invention introduces the entropy production theory into the hydraulic loss calculation of the centrifugal pump. The method is easy to operate, and the entropy analysis result can well reflect the hydraulic loss of the internal flow field of the centrifugal pump, and can provide a good reference for the structural design of the subsequent centrifugal pump. .

一种基于熵理论分析离心泵水力损失的方法,包括如下步骤:A method for analyzing the hydraulic loss of a centrifugal pump based on entropy theory, comprising the following steps:

步骤A)对离心泵的计算域应用三维造型软件进行造型,该计算域共分四个部分:进口管、叶轮、蜗壳及出口管;Step A) Applying three-dimensional modeling software to modeling the calculation domain of the centrifugal pump, the calculation domain is divided into four parts: inlet pipe, impeller, volute and outlet pipe;

步骤B)将步骤A得到的计算域的造型导入ANSYS中进行网格划分:采用ANSYS中的ICEM对计算域中进口管和出口管进行结构化网格划分;使用Meshing对计算域中叶轮和蜗壳进行非结构化网格划分,然后对叶轮壁面的网格和蜗壳壁面的网格进行加密处理,该计算域的网格划分数不少于2组;Step B) Import the shape of the computational domain obtained in step A into ANSYS for mesh division: use ICEM in ANSYS to perform structured grid division on the inlet pipe and outlet pipe in the computational domain; use Meshing to mesh the impeller and worm in the computational domain The shell is divided into unstructured grids, and then the grids of the impeller wall and the volute wall are encrypted, and the number of grids in this calculation domain is not less than 2 groups;

步骤C)对步骤B中经网格划分的计算域进行定常不可压全流道流场粘性数值计算;Step C) performing a numerical calculation of the viscosity of the flow field of the steady incompressible full runner on the computational domain divided by the grid in step B;

步骤D)将步骤C数值计算的结果中的扬程和效率与离心泵设计工况下的扬程和效率进行比较,以扬程和效率变化不明显且网格量适中为评价标准,得到最优网格数的网格划分;Step D) Comparing the head and efficiency in the numerical calculation results of step C with the head and efficiency under the design condition of the centrifugal pump, taking the head and efficiency not changing significantly and the grid amount as the evaluation standard, the optimal grid is obtained Number of grid divisions;

步骤E)以步骤D得到的最优网格数的网格划分为基础,通过编写程序语言把公式16、17编到分析软件的后处理程序中,对计算域的内部流场进行熵分析处理,得到熵分析处理后的数据;Step E) Based on the grid division of the optimal number of grids obtained in step D, the formulas 16 and 17 are compiled into the post-processing program of the analysis software by writing a programming language, and the entropy analysis is performed on the internal flow field of the calculation domain , to obtain the data processed by entropy analysis;

ΔSΔS pp rr oo == ΔSΔS pp rr oo ,, DD. ‾‾ ++ ΔSΔS pp rr oo ,, DD. ′′ ++ ΔSΔS pp rr oo ,, CC ++ ΔSΔS pp rr oo ,, WW -- -- -- (( 1616 ))

II pp rr oo == ΣΣ ii II ii == ΣΣ ii (( TT rr ΔSΔS pp rr oo ,, ii )) -- -- -- (( 1717 ))

式中:ΔSpro-体积积分熵产,[WK-1];-直接熵产,[WK-1];In the formula: ΔS pro -volume integral entropy production, [WK -1 ]; - direct entropy production, [WK -1 ];

ΔSpro,D′-湍流熵产,[WK-1];ΔSpro,C-温度熵产,[WK-1];ΔS pro, D′ - turbulence entropy production, [WK -1 ]; ΔS pro, C - temperature entropy production, [WK -1 ];

ΔSpro,W-壁面熵产,[WK-1];Ipro-损,[W]; ΔSpro, W - wall entropy production, [WK -1 ]; I pro - Loss, [W];

Tr—参考温度,[K]; T r —reference temperature, [K];

步骤F)将步骤E中得到的熵分析数据导入到数据处理软件中进行绘图,从而得到相应的熵分析结果。Step F) Import the entropy analysis data obtained in step E into the data processing software for drawing, so as to obtain the corresponding entropy analysis results.

进一步的,步骤A中三维造型软件为Creo或Proe。Further, the 3D modeling software in step A is Creo or Proe.

进一步的,采用ANSYS中的Fluent对步骤C计算域进行定常不可压全流道流场粘性数值计算包括:对计算域选用雷诺应力湍流模型和标准壁面函数,采用MRF模型对进口管、叶轮、蜗壳及出口管进行耦合,根据SIMPLEC算法对计算域的流场的压力和速度进行耦合求解,对计算域添加能量方程,PRESTO!格式对能量方程的压力项进行离散;迎风格式对能量方程的对流项进行离散;二阶中心差分格式对能量方程其余各项进行离散;然后对进口管的进口给定速度边界条件,设定湍动能与水力直径;出口管的出口采用自由出流边界条件;固体壁面采用无滑移边界条件;进水管的出口与叶轮的进口,叶轮的出口和蜗壳的进口采用Interface,设定数值收敛残差值;最后进行运算。Further, using Fluent in ANSYS to calculate the viscosity of the steady incompressible full channel flow field in the calculation domain of step C includes: selecting the Reynolds stress turbulence model and the standard wall function for the calculation domain, and using the MRF model for the inlet pipe, impeller, and worm The shell and the outlet pipe are coupled, and the pressure and velocity of the flow field in the calculation domain are coupled and solved according to the SIMPLEC algorithm, and the energy equation is added to the calculation domain, PRESTO! The scheme discretizes the pressure term of the energy equation; the upwind scheme discretizes the convection term of the energy equation; the second-order central difference scheme discretizes the rest of the energy equation; Kinetic energy and hydraulic diameter; the outlet of the outlet pipe adopts the free flow boundary condition; the solid wall adopts the no-slip boundary condition; the outlet of the water inlet pipe and the inlet of the impeller, the outlet of the impeller and the inlet of the volute adopt Interface, and set the value convergence residual Difference; final operation.

进一步的,步骤B中,网格划分为120W,150W,177W,200W网格量。Further, in step B, the grid is divided into 120W, 150W, 177W, and 200W grid quantities.

进一步的,步骤D中,最优网格数的网格划分为177W。Further, in step D, the grid division of the optimal grid number is 177W.

进一步的,湍动能与水力直径分别设定为3%与150mm。Further, the turbulent kinetic energy and hydraulic diameter are set to 3% and 150mm, respectively.

进一步的,其特征数值收敛残差设定为1e-4。Further, the eigenvalue convergence residual is set to 1e-4.

本发明的有益效果:Beneficial effects of the present invention:

1.本发明将熵产理论引入离心泵的水力损失计算,该方法易于操作,且熵分析结果能很好的反映离心泵内部流场水力损失情况,为后续离心泵的结构设计能够提供参考。1. The present invention introduces the entropy production theory into the calculation of the hydraulic loss of the centrifugal pump. This method is easy to operate, and the entropy analysis results can well reflect the hydraulic loss of the internal flow field of the centrifugal pump, which can provide a reference for the subsequent structural design of the centrifugal pump.

2.对网格划分数不少于两组,可以在经过数值计算后,进行网格无关性分析,选取最优网格划分的网格数,进行后处理,最优网格数的网格划分为177W一方面符合扬程和效率及网格量适中,另一方面,节省后处理时间,提高效率。2. The number of grid divisions is not less than two groups. After numerical calculation, grid independence analysis can be performed, and the number of grids for optimal grid division can be selected for post-processing. The grid with the optimal number of grids Divided into 177W, on the one hand, it is in line with the head, efficiency and grid amount, on the other hand, it saves post-processing time and improves efficiency.

3.在本发明中,通过添加能量方程,将能量方程应用到离散处理中,从而为后续熵产方程的导入,熵产数据结果的分析提供了基础。3. In the present invention, by adding the energy equation, the energy equation is applied to the discrete processing, thereby providing a basis for the introduction of the subsequent entropy production equation and the analysis of the entropy production data results.

4.将熵产率项的计算作为一后处理模式,避开了复杂繁琐的熵的输运方程计算,带来了极大的简化。4. The calculation of the entropy yield term is used as a post-processing mode, which avoids the complicated and cumbersome calculation of the entropy transport equation and brings great simplification.

附图说明Description of drawings

图1为离心泵计算域示意图。Figure 1 is a schematic diagram of the computational domain of a centrifugal pump.

图2为离心泵网格划分图。Figure 2 is a grid division diagram of a centrifugal pump.

图3为离心泵各计算域的损失在总损失的比例图。Fig. 3 is a proportion diagram of the loss of each calculation domain of the centrifugal pump in the total loss.

图4为离心泵各工况下不同类型的熵产组成图。Figure 4 is a diagram of the composition of different types of entropy production under various working conditions of the centrifugal pump.

附图标记:1-进口管;2-叶轮;3-蜗壳;4-出口管。Reference signs: 1 - inlet pipe; 2 - impeller; 3 - volute; 4 - outlet pipe.

具体实施方式detailed description

下面结合附图对本发明做进一步的描述:The present invention will be further described below in conjunction with accompanying drawing:

步骤A)应用Creo三维造型软件对离心泵的计算域进行造型。如图1所示,计算域共分四个部分:进口管1、叶轮2、蜗壳3及出口管4;Step A) The computational domain of the centrifugal pump is modeled using Creo 3D modeling software. As shown in Figure 1, the calculation domain is divided into four parts: inlet pipe 1, impeller 2, volute 3 and outlet pipe 4;

步骤B)将步骤A得到的计算域导入ANSYS软件中进行网格划分,如图2所示,采用ANSYS中的ICEM对计算域中进口管1和出口管4进行结构化网格划分;使用Meshing对计算域中叶轮2和蜗壳3进行非结构化网格划分;同时为满足标准壁面函数对Y+的要求,对叶轮2壁面的网格和蜗壳3壁面的网格进行加密处理,网格划分为120W,150W,177W,200W网格量;Step B) Import the calculation domain obtained in step A into ANSYS software for meshing, as shown in Figure 2, use ICEM in ANSYS to perform structured grid division on the inlet pipe 1 and outlet pipe 4 in the calculation domain; use Meshing The impeller 2 and volute 3 in the computational domain are divided into unstructured grids; at the same time, in order to meet the requirements of the standard wall function on Y + , the grids on the wall of the impeller 2 and the grid of the volute 3 are encrypted. The grid is divided into 120W, 150W, 177W, and 200W grid volume;

步骤C)采用ANSYS中的Fluent对步骤C计算域进行定常不可压全流道流场粘性数值计算包括:对计算域选用雷诺应力湍流模型和标准壁面函数,采用MRF模型对进口管1、叶轮2、蜗壳3及出口管4进行耦合,根据SIMPLEC算法对计算域的流场的压力和速度进行耦合求解,对计算域添加能量方程,PRESTO!格式对能量方程的压力项进行离散;迎风格式对能量方程的对流项进行离散;二阶中心差分格式对能量方程其余各项进行离散;然后对进口管1的进口给定速度边界条件,湍动能与水力直径分别设定为3%与150mm;出口管4的出口采用自由出流边界条件;固体壁面采用无滑移边界条件;进水管1的出口与叶轮2的进口,叶轮2的出口和蜗壳4的进口采用Interface,数值收敛残差设定为1e-4,最后进行运算;Step C) Using Fluent in ANSYS to carry out the numerical calculation of the viscosity of the steady incompressible full-channel flow field in the calculation domain of step C includes: selecting the Reynolds stress turbulence model and the standard wall function for the calculation domain, and using the MRF model for the inlet pipe 1 and the impeller 2 , the volute 3 and the outlet pipe 4 are coupled, and the pressure and velocity of the flow field in the calculation domain are coupled and solved according to the SIMPLEC algorithm, and the energy equation is added to the calculation domain, PRESTO! The scheme discretizes the pressure term of the energy equation; the upwind scheme discretizes the convection term of the energy equation; the second-order central difference scheme discretizes the rest of the energy equation; and the hydraulic diameter are set to 3% and 150mm respectively; the outlet of outlet pipe 4 adopts the free flow boundary condition; the solid wall adopts no-slip boundary condition; the outlet of inlet pipe 1 and the inlet of impeller 2, the outlet of impeller 2 and the worm The import of shell 4 adopts Interface, and the numerical convergence residual is set to 1e-4, and finally the calculation is performed;

步骤D)将步骤C数值计算的结果中的扬程和效率与离心泵设计工况下的扬程和效率进行比较,以扬程和效率变化不明显且网格量适中为评价标准,得到最优网格数的网格划分为177W的网格量;Step D) Comparing the head and efficiency in the numerical calculation results of step C with the head and efficiency under the design condition of the centrifugal pump, taking the head and efficiency not changing significantly and the grid amount as the evaluation standard, the optimal grid is obtained The number of meshes is divided into 177W meshes;

步骤E)以步骤D得到的177W的网格量为基础,通过ANSYS中的UDF编写程序语言把公式16、17编到分析软件的后处理程序中,对计算域的内部流场进行熵分析处理,得到熵分析处理后的数据;Step E) Based on the grid quantity of 177W obtained in step D, program formulas 16 and 17 into the post-processing program of the analysis software through the UDF programming language in ANSYS, and perform entropy analysis on the internal flow field of the calculation domain , to obtain the data processed by entropy analysis;

ΔSΔS pp rr oo == ΔSΔS pp rr oo ,, DD. ‾‾ ++ ΔSΔS pp rr oo ,, DD. ′′ ++ ΔSΔS pp rr oo ,, CC ++ ΔSΔS pp rr oo ,, WW -- -- -- (( 1616 ))

II pp rr oo == ΣΣ ii II ii == ΣΣ ii (( TT rr ΔSΔS pp rr oo ,, ii )) -- -- -- (( 1717 ))

式中:ΔSpro-体积积分熵产,[WK-1];-直接熵产,[WK-1];In the formula: ΔS pro -volume integral entropy production, [WK -1 ]; - direct entropy production, [WK -1 ];

ΔSpro,D′-湍流熵产,[WK-1];ΔSpro,C-温度熵产,[WK-1];ΔS pro, D ′ - turbulence entropy production, [WK -1 ]; ΔS pro, C - temperature entropy production, [WK -1 ];

ΔSpro,W-壁面熵产,[WK-1];Ipro-损,[W];ΔS pro, W - wall entropy production, [WK -1 ]; I pro - Loss, [W];

Tr—参考温度,[K]; T r —reference temperature, [K];

步骤F)将步骤E中得到的熵分析数据导入到数据处理软件中进行绘图,可以得到在不同流量工况下,离心泵计算域各部分熵分析结果和离心泵内不同类型的熵产组成。Step F) Import the entropy analysis data obtained in step E into the data processing software for drawing, and the entropy analysis results of each part of the centrifugal pump calculation domain and the composition of different types of entropy production in the centrifugal pump can be obtained under different flow conditions.

图3表示不同流量工况下,进口管1、叶轮2、蜗壳3及出口管4各部件内熵产损失在泵总熵产损失中的比例关系。从图3可知不同流量工况下进口管1和出口管4内的熵产损失比例较小,而叶轮2和蜗壳3内的熵产损失比例较大,分别为30%与60%左右,说明叶轮2和蜗壳3是泵内不可逆损失发生的主要地方,设计时应多给予关注。随着流量的增加,进口管1和出口管4内熵产损失增加较慢,蜗壳3的熵产损失有所增加,而叶轮2区域的熵产损失呈现减小趋势。Fig. 3 shows the proportion relationship of the entropy production loss in the total entropy production loss of the pump in the inlet pipe 1, impeller 2, volute 3 and outlet pipe 4 under different flow conditions. It can be seen from Fig. 3 that under different flow conditions, the proportion of entropy production loss in the inlet pipe 1 and outlet pipe 4 is small, while the proportion of entropy production loss in the impeller 2 and volute 3 is relatively large, about 30% and 60%, respectively. It shows that impeller 2 and volute 3 are the main places where irreversible losses occur in the pump, and more attention should be given to them during design. With the increase of the flow rate, the entropy production loss in the inlet pipe 1 and the outlet pipe 4 increases slowly, the entropy production loss in the volute 3 increases, and the entropy production loss in the area of the impeller 2 shows a decreasing trend.

图4表示不同流量工况下,离心泵计算域内不同类型的熵产组成,由温度梯度产生的熵产比例较小而忽略。从图4中可以看出,直接耗散产生的熵产所占比例较小,在不同流量工况下只有0.54%~3.48%;湍流熵产与壁面粘性熵产所占比例较大,分别为47%~55%与44%~52%,因此离心泵运行时的不可逆水力损失的主要原因为湍流耗散与壁面粘性摩擦。设计流量200m3/h下,湍流熵产与壁面熵产所占比例分别为47.91%与48.61%;随着流量的增加,湍流熵产出现先较小后增加的变化趋势,而壁面熵产则一直缓慢增加,但在最大流量下出现的骤降。Figure 4 shows the composition of different types of entropy production in the calculation domain of the centrifugal pump under different flow conditions, and the proportion of entropy production produced by the temperature gradient is small and ignored. It can be seen from Figure 4 that the proportion of entropy produced by direct dissipation is relatively small, only 0.54% to 3.48% under different flow conditions; the proportion of entropy produced by turbulent flow and viscous wall is relatively large, respectively 47% to 55% and 44% to 52%, so the main causes of irreversible hydraulic loss during centrifugal pump operation are turbulent flow dissipation and wall viscous friction. At the design flow rate of 200m 3 /h, the proportions of turbulent entropy production and wall entropy production were 47.91% and 48.61% respectively; with the increase of flow rate, the turbulent entropy production first decreased and then increased, while the wall entropy production decreased. There has been a slow increase, but a sudden drop occurs at maximum flow.

注:具体实施模型为IS系列的离心泵,型号为IS150-125-250,其设计流量200m3/h,扬程20m,转速1450r/min,叶片数6,且设计工况下其水力效率可达92%。Note: The specific implementation model is the IS series centrifugal pump, the model is IS150-125-250, its design flow rate is 200m 3 /h, head is 20m, speed is 1450r/min, number of blades is 6, and its hydraulic efficiency can reach 92%.

所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。The described embodiment is a preferred implementation of the present invention, but the present invention is not limited to the above-mentioned implementation, without departing from the essence of the present invention, any obvious improvement, replacement or modification that those skilled in the art can make Modifications all belong to the protection scope of the present invention.

Claims (7)

1.一种基于熵理论分析离心泵水力损失的方法,其特征在于包括如下步骤:1. A method for analyzing centrifugal pump hydraulic loss based on entropy theory, is characterized in that comprising the steps: 步骤A)对离心泵的计算域应用三维造型软件进行造型,该计算域共分四个部分:进口管(1)、叶轮(2)、蜗壳(3)和出口管(4);Step A) Applying three-dimensional modeling software to modeling the calculation domain of the centrifugal pump, the calculation domain is divided into four parts: inlet pipe (1), impeller (2), volute (3) and outlet pipe (4); 步骤B)将步骤A得到的计算域的造型导入ANSYS中进行网格划分:采用ANSYS中的ICEM对进口管(1)和出口管(4)进行结构化网格划分;使用Meshing对计算域中叶轮(2)和蜗壳(3)进行非结构化网格划分,然后对叶轮(2)壁面的网格和蜗壳(3)壁面的网格进行加密处理,该计算域的网格划分数不少于2组;Step B) Import the shape of the calculation domain obtained in step A into ANSYS for meshing: Use ICEM in ANSYS to divide the inlet pipe (1) and outlet pipe (4) into a structured grid; use Meshing to mesh the calculation domain The impeller (2) and the volute (3) are divided into unstructured meshes, and then the grids on the wall of the impeller (2) and the wall of the volute (3) are encrypted. The number of meshes in this calculation domain is Not less than 2 groups; 步骤C)对步骤B中经网格划分的计算域进行定常不可压全流道流场粘性数值计算;Step C) performing a numerical calculation of the viscosity of the flow field of the steady incompressible full runner on the computational domain divided by the grid in step B; 步骤D)将步骤C数值计算的结果中的扬程和效率与离心泵设计工况下的扬程和效率进行比较,以扬程和效率变化不明显且网格量适中为评价标准,得到符合标准的网格数的网格划分;Step D) Compare the head and efficiency in the result of the numerical calculation in step C with the head and efficiency under the design condition of the centrifugal pump, take the head and efficiency as the evaluation standard with no obvious change and the mesh size is moderate, and obtain the network that meets the standard Mesh division of the number of grids; 步骤E)以步骤D得到的符合标准的网格数的网格划分为基础,通过编写程序语言把熵产公式编到分析软件的后处理程序中,对计算域的内部流场进行熵分析处理,得到熵分析处理后的数据;Step E) Based on the grid division of the standard number of grids obtained in step D, the entropy production formula is compiled into the post-processing program of the analysis software by writing a programming language, and the internal flow field of the calculation domain is analyzed and processed by entropy , to obtain the data processed by entropy analysis; ΔSΔS pp rr oo == ΔSΔS pp rr oo ,, DD. ‾‾ ++ ΔSΔS pp rr oo ,, DD. ′′ ++ ΔSΔS pp rr oo ,, CC ++ ΔSΔS pp rr oo ,, WW II pp rr oo == ΣΣ ii II ii == ΣΣ ii (( TT rr ΔSΔS pp rr oo ,, ii )) 式中:ΔSpro-体积积分熵产,[WK-1];-直接熵产,[WK-1];In the formula: ΔS pro -volume integral entropy production, [WK -1 ]; - direct entropy production, [WK -1 ]; ΔSpro,D′-湍流熵产,[WK-1];ΔSpro,C-温度熵产,[WK-1];ΔS pro, D′ - turbulence entropy production, [WK -1 ]; ΔS pro, C - temperature entropy production, [WK -1 ]; ΔSpro,W-壁面熵产,[WK-1];Ipro-损,[W];ΔS pro, W - wall entropy production, [WK -1 ]; I pro - Loss, [W]; Tr-参考温度,[K]; i = D ‾ , D ′ , C , W . T r - reference temperature, [K]; i = D. ‾ , D. ′ , C , W . 步骤F)将步骤E中得到的熵分析数据导入到数据处理软件中进行绘图,从而得到相应的熵分析结果。Step F) Import the entropy analysis data obtained in step E into the data processing software for drawing, so as to obtain the corresponding entropy analysis results. 2.根据权利要求1所述的一种基于熵理论分析离心泵水力损失的方法,其特征在于,步骤A中三维造型软件为Creo或Proe。2. a kind of method based on entropy theory analysis centrifugal pump hydraulic loss according to claim 1, is characterized in that, in step A, three-dimensional modeling software is Creo or Proe. 3.根据权利要求1所述的一种基于熵理论分析离心泵水力损失的方法,其特征在于,采用ANSYS中的Fluent对步骤C计算域进行定常不可压全流道流场粘性数值计算包括:对计算域选用雷诺应力湍流模型和标准壁面函数,采用MRF模型对进口管(1)、叶轮(2)、蜗壳(3)及出口管(4)进行耦合,根据SIMPLEC算法对计算域的流场的压力和速度进行耦合求解,对计算域添加能量方程,PRESTO!格式对能量方程的压力项进行离散;迎风格式对能量方程的对流项进行离散;二阶中心差分格式对能量方程其余各项进行离散;然后对进口管(1)的进口给定速度边界条件,设定湍动能与水力直径;出口管(4)的出口采用自由出流边界条件;固体壁面采用无滑移边界条件;进水管(1)的出口与叶轮(2)的进口,叶轮(2)的出口和蜗壳(4)的进口采用Interface边界条件,设定数值收敛残差值;最后进行运算。3. a kind of method based on entropy theory analysis centrifugal pump hydraulic loss according to claim 1, is characterized in that, adopts Fluent among the ANSYS to carry out the constant incompressible flow field viscosity numerical calculation of step C calculation domain and comprises: The Reynolds stress turbulence model and the standard wall function are selected for the calculation domain, the inlet pipe (1), the impeller (2), the volute (3) and the outlet pipe (4) are coupled by the MRF model, and the flow in the calculation domain is analyzed according to the SIMPLEC algorithm The pressure and velocity of the field are coupled and solved, and the energy equation is added to the calculation domain, PRESTO! The scheme discretizes the pressure term of the energy equation; the upwind scheme discretizes the convection term of the energy equation; the second-order central difference scheme discretizes the rest of the energy equation; Set the turbulent kinetic energy and hydraulic diameter; the outlet of the outlet pipe (4) adopts the free flow boundary condition; the solid wall adopts the no-slip boundary condition; the outlet of the inlet pipe (1) and the inlet of the impeller (2), the impeller (2) The outlet of the volute and the inlet of the volute (4) adopt the Interface boundary condition, set the numerical convergence residual value; finally perform the calculation. 4.根据权利要求1所述的一种基于熵理论分析离心泵水力损失的方法,其特征在于,步骤B中,网格划分为120W,150W,177W,200W网格量。4. A method for analyzing the hydraulic loss of a centrifugal pump based on entropy theory according to claim 1, wherein, in step B, the grid is divided into 120W, 150W, 177W, and 200W grid quantities. 5.根据权利要求1所述的一种基于熵理论分析离心泵水力损失的方法,其特征在于,步骤D中,得到的符合标准的网格数的网格划分为177W。5. A method for analyzing the hydraulic loss of a centrifugal pump based on entropy theory according to claim 1, characterized in that, in step D, the grid division of the obtained grid number meeting the standard is 177W. 6.根据权利要求3所述的一种基于熵理论分析离心泵水力损失的方法,其特征在于,湍动能与水力直径分别设定为3%与150mm。6. A method for analyzing the hydraulic loss of a centrifugal pump based on entropy theory according to claim 3, wherein the turbulent kinetic energy and hydraulic diameter are respectively set to 3% and 150mm. 7.根据权利要求3所述的一种基于熵理论分析离心泵水力损失的方法,其特征在于,数值收敛残差设定为1e-4。7. A method for analyzing the hydraulic loss of a centrifugal pump based on entropy theory according to claim 3, wherein the numerical convergence residual is set to 1e-4.
CN201510890660.6A 2015-12-07 2015-12-07 Method for analyzing hydraulic loss of centrifugal pump based on entropy theory Pending CN105550404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510890660.6A CN105550404A (en) 2015-12-07 2015-12-07 Method for analyzing hydraulic loss of centrifugal pump based on entropy theory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510890660.6A CN105550404A (en) 2015-12-07 2015-12-07 Method for analyzing hydraulic loss of centrifugal pump based on entropy theory

Publications (1)

Publication Number Publication Date
CN105550404A true CN105550404A (en) 2016-05-04

Family

ID=55829593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510890660.6A Pending CN105550404A (en) 2015-12-07 2015-12-07 Method for analyzing hydraulic loss of centrifugal pump based on entropy theory

Country Status (1)

Country Link
CN (1) CN105550404A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156426A (en) * 2016-07-05 2016-11-23 江苏大学 A kind of nuclear power pump annular pumping chamber Hydraulic Optimizing Design method producing analysis based on entropy
CN106202795A (en) * 2016-07-21 2016-12-07 浙江理工大学 Centrifugal pump impeller and the method for designing thereof of constraint is combined based on entropy product and blade loading
CN107590351A (en) * 2017-10-12 2018-01-16 温州大学 A Method for Analyzing and Predicting Head Characteristics of Centrifugal Pumps
CN110617238A (en) * 2019-09-26 2019-12-27 浙江理工大学 Optimization design method of centrifugal pump impeller
CN110887027A (en) * 2019-11-19 2020-03-17 中广核工程有限公司 Vertical steam generator thermal performance evaluation system and method
CN111125967A (en) * 2019-12-02 2020-05-08 昆明理工大学 A Calculation Method for Predicting Turbine Head Loss Based on Entropy Generation Rate
CN112594064A (en) * 2020-11-25 2021-04-02 北京航空航天大学 S2 flow field diagnosis method based on interstage measurement parameters of axial flow compressor
CN113673133A (en) * 2021-08-27 2021-11-19 西华大学 An Analysis Method of Energy Conversion of Centrifugal Pump Based on Energy Transport Theory

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558046A (en) * 2013-11-08 2014-02-05 上海市特种设备监督检验技术研究院 Heat exchanger energy efficiency evaluation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558046A (en) * 2013-11-08 2014-02-05 上海市特种设备监督检验技术研究院 Heat exchanger energy efficiency evaluation system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FABIAN KOCK 等: "Entropy production calculation for turbulent shear flows and their implementation in cfd codes", 《INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW》 *
张翔 等: "低比转数离心泵叶轮内能量转换特性", 《农业机械学报》 *
段璐 等: "熵产方法在旋风分离器内部能耗分析中的应用", 《化工学报》 *
陆美娟: "化工设备中有关流体旋转运动的分析", 《郑州工学院学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156426A (en) * 2016-07-05 2016-11-23 江苏大学 A kind of nuclear power pump annular pumping chamber Hydraulic Optimizing Design method producing analysis based on entropy
CN106156426B (en) * 2016-07-05 2019-05-31 江苏大学 A kind of nuclear power pump annular pumping chamber Hydraulic Optimizing Design method producing analysis based on entropy
CN106202795A (en) * 2016-07-21 2016-12-07 浙江理工大学 Centrifugal pump impeller and the method for designing thereof of constraint is combined based on entropy product and blade loading
CN107590351A (en) * 2017-10-12 2018-01-16 温州大学 A Method for Analyzing and Predicting Head Characteristics of Centrifugal Pumps
CN110617238A (en) * 2019-09-26 2019-12-27 浙江理工大学 Optimization design method of centrifugal pump impeller
CN110617238B (en) * 2019-09-26 2021-01-05 浙江理工大学 Optimization design method of centrifugal pump impeller
CN110887027A (en) * 2019-11-19 2020-03-17 中广核工程有限公司 Vertical steam generator thermal performance evaluation system and method
CN110887027B (en) * 2019-11-19 2021-12-03 中广核工程有限公司 A system and method for evaluating thermal performance of a vertical steam generator
CN111125967A (en) * 2019-12-02 2020-05-08 昆明理工大学 A Calculation Method for Predicting Turbine Head Loss Based on Entropy Generation Rate
CN112594064A (en) * 2020-11-25 2021-04-02 北京航空航天大学 S2 flow field diagnosis method based on interstage measurement parameters of axial flow compressor
CN112594064B (en) * 2020-11-25 2021-12-14 北京航空航天大学 S2 flow field diagnosis method based on interstage measurement parameters of axial flow compressor
CN113673133A (en) * 2021-08-27 2021-11-19 西华大学 An Analysis Method of Energy Conversion of Centrifugal Pump Based on Energy Transport Theory

Similar Documents

Publication Publication Date Title
CN105550404A (en) Method for analyzing hydraulic loss of centrifugal pump based on entropy theory
Shojaeefard et al. Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid
CN101956711B (en) Computational fluid dynamics (CFD)-based centrifugal pump multi-working condition hydraulic power optimization method
CN109753716B (en) Numerical calculation method and system for fluid excitation of nuclear/thermal power steam turbine units based on flow field simulation
Yang et al. Toward excellence in turbomachinery computational fluid dynamics: A hybrid structured-unstructured reynolds-averaged navier-stokes solver
CN102913464B (en) Method for predicting transient fluid-solid coupling characteristic of centrifugal pump rotor
CN107832260B (en) A Numerical Simulation Method for Heat Transfer Problems with Plate Impact Jet
Yang et al. A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows
CN104050334B (en) Rocket plume simulation method
CN107895069A (en) A kind of fluid structurecoupling Numerical Predicting Method based on composite structure
CN103077292A (en) Method for predicting hydraulic noise of centrifugal pump
Ghosh et al. Fluid-thermal topology optimization of gas turbine blade internal cooling ducts
CN112417773A (en) Multidisciplinary optimization design method, device and equipment for multistage axial flow expansion machine
Yang et al. An entropy efficiency model and its application to energy performance analysis of a multi-stage electric submersible pump
CN111985166A (en) Pipeline hydraulic transient simulation method and storage medium with implicit consideration of dynamic friction resistance
CN110175377B (en) Numerical forecasting method for hydrofoil cloud-shaped cavitation
CN107291969A (en) The body net coupling analysis method that a kind of Transformer Winding Temperature Rise is calculated
CN111695307B (en) Water hammer finite volume simulation method considering dynamic friction resistance explicitly
Rajani et al. On the reliability of eddy viscosity based turbulence models in predicting turbulent flow past a circular cylinder using URANS approach
CN102750414B (en) A kind of method verifying centrifugal pump mesh quality and computational accuracy relation
CN107273578B (en) A design method of internal flow channel of cooling plate based on streamline
Yang et al. Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows
CN107808021A (en) The drag computation method of fluid device based on CFD
Hu et al. Numerical simulation of unsteady turbulent flow through a Francis turbine
CN102930096A (en) Method and device for acquiring transient temperature of power electronic device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20190412