CN105547326B - Gyro and Magnetic Sensor combined calibrating method - Google Patents

Gyro and Magnetic Sensor combined calibrating method Download PDF

Info

Publication number
CN105547326B
CN105547326B CN201510901523.8A CN201510901523A CN105547326B CN 105547326 B CN105547326 B CN 105547326B CN 201510901523 A CN201510901523 A CN 201510901523A CN 105547326 B CN105547326 B CN 105547326B
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510901523.8A
Other languages
Chinese (zh)
Other versions
CN105547326A (en
Inventor
武元新
刘佩林
郁文贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201510901523.8A priority Critical patent/CN105547326B/en
Publication of CN105547326A publication Critical patent/CN105547326A/en
Application granted granted Critical
Publication of CN105547326B publication Critical patent/CN105547326B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Gyroscopes (AREA)

Abstract

A kind of gyro provided by the invention and Magnetic Sensor combined calibrating method, it is characterised in that comprise the following steps:Step 1, the correlation measurement model of Magnetic Sensor and gyro is obtained, includes calibrating parameters in the measurement model;Step 2, the determination value of the calibrating parameters is obtained using the constraint Nonlinear least squares fitting based on the calibrating parameters.Compared with prior art, beneficial effects of the present invention are as follows:1st, the misalignment that can have both demarcated between Magnetic Sensor and gyro, gyro zero bias can also be demarcated simultaneously;2nd, magnetic field is more stable during, and demarcation effect is better, and is not influenceed by any acceleration noise, therefore equipment remains stationary state is not needed in implementation process;3rd, it is registering with the posture of Inertial Measurement Unit (including gyro and accelerometer) available for Magnetic Sensor.

Description

Gyro and Magnetic Sensor combined calibrating method
Technical field
The present invention relates to sensor technical field, in particular to the combined calibrating side of a kind of gyro and Magnetic Sensor Method.
Background technology
Gyro and Magnetic Sensor (the latter also known as magnetometer, magnetometer) are frequently used for posture determination or scientific measurement field. The angular speed of gyro sensitive carrier, magnetometer sensitivity environmental magnetic field.When magnetometer is near ferromagnetic material, around magnetometer Magnetic field distorted, it is impossible to correct measurement goes out magnetic field intensity.Magnetic interference can be divided into two kinds of Hard Magnetic effect and soft magnetism effect.Firmly Magnetic effect is the additivity magnetic disturbance as caused by permanent magnet or electric current, and soft magnetism effect is induced by soft magnetic materials and produced, in background Soft magnetic materials in magnetic field, which can induce, produces the magnetic field of itself, and the intensity to background magnetic field and direction generation distortion.Except this Outside, because of manufacturing process imperfection, also there is constant multiplier, sensitive axes cross-couplings and biasing equal error in magnetometer, therefore, Before magnetometer, it is necessary to carry out calibration to above error.Demarcation mentioned here refers to demarcate inside magnetometer.
When magnetometer is when gyro is used together, it is necessary to carry out magnetometer extrinsic calibration, that is, need demarcate magnetometer with Coordinate system misalignment between gyro.Soft magnetism effect can not only cause the change of magnetometer inner parameter, also result in magnetometer Changed with the coordinate system misalignment of gyro.Therefore, before the use, it is necessary to carry out demarcation and magnetometer inside magnetometer Coordinate system misalignment demarcation between other sensors.Conventional magnetometer scaling method make use of the magnetic field intensity and magnetic of locality The unrelated such a fact of power instrument posture, advantage are not need external accessory, and shortcoming is can not to demarcate magnetometer and other The coordinate system misalignment of sensor.On the other hand, the zero offset error of inexpensive gyro (such as MEMS gyro) is larger, and makes every time Used time is all varied from, if not doing compensation directly uses gyro to measure value, will influence the coordinate system misalignment of magnetometer and gyro Footmark determines effect.
The content of the invention
For in the prior art the defects of, it is an object of the invention to provide it is a kind of solve above-mentioned technical problem gyro and magnetic Sensor combined calibrating method.
In order to solve the above technical problems, a kind of gyro provided by the invention and Magnetic Sensor combined calibrating method, including such as Lower step:
Step 1, the correlation measurement model of Magnetic Sensor and gyro is obtained, includes demarcation ginseng in the correlation measurement model Number;
Step 2, the calibrating parameters are obtained using the constraint Nonlinear least squares fitting based on the calibrating parameters It is determined that value.
Preferably, the calibrating parameters include coordinate system misalignment and gyro zero bias.
Preferably, the correlation measurement model is:
Wherein, mm(tk+1) represent+1 moment t of kthk+1When Magnetic Sensor coordinate system m under magnetic field vector, mm(tk) represent K-th of moment tkWhen Magnetic Sensor coordinate system m under magnetic field vector, k is positive integer, mm(t) represent that Magnetic Sensor is sat during moment t Magnetic field vector under mark system m,Magnetic Sensor and gyro coordinate system misalignment attitude matrix are represented,Represent top during moment t Spiral shell coordinate system b angular velocity vector, ε represent gyro zero bias vector;Vec () represents to play matrix according to the sequential concatenation of row Come;
mm(t) × represent by three-dimensional vector mm(t)=[mm(t)1 mm(t)2 mm(t)3]TThe multiplication cross matrix of composition, i.e.,Wherein mm(t)1Represent the magnetic under Magnetic Sensor coordinate system m during moment t Component in the X-direction of field vector;Wherein mm(t)2Represent the Y-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m On component;Wherein mm(t)3Represent the component in the Z-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m.
Preferably, the constraint Nonlinear least squares fitting is exported by the correlation measurement model:
Wherein, S3Represent four dimensional vectors that mould is 1;λ is Lagrange coefficient;Q=[q0 q1 q2 q3]TFor Magnetic Sensor With gyro coordinate system misalignment attitude matrixCorresponding quaternary number, q0,q1,q2,q3Quaternary number q four components are represented respectively;εm The gyro zero bias under Magnetic Sensor coordinate system are represented,
Vec (C (q)) represents to get up Matrix C (q) according to the sequential concatenation of row;
The coefficient matrix W of Magnetic Sensor and gyro coordinate system misalignment attitude matrixkFor:
The coefficient matrix M of gyro zero biaskFor:
mm(t) × represent by three-dimensional vector mm(t)=[mm(t)1 mm(t)2 mm(t)3]TThe multiplication cross matrix of composition, i.e.,Wherein mm(t)1Represent the magnetic under Magnetic Sensor coordinate system m during moment t Component in the X-direction of field vector;Wherein mm(t)2Represent the Y-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m On component;Wherein mm(t)3Represent the component in the Z-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m.
Preferably, Magnetic Sensor and gyro coordinate are obtained from the correlation measurement model using linear least square method It is the initial value of misalignment attitude matrixWith the initial value of gyro zero bias
Corresponding to being extracted from least square solutionWithWillOrthogonalization simultaneously utilizes attitude matrix and quaternary Several transformation relations obtains the initial value q of quaternary number(0), Lagrange coefficient initial value λ(0)It is set to zero.
Preferably, iterative calculation is until meet the condition of convergence:
Wherein, x(i+1)Represent parameter x to be estimated i+1 time iterative value, x(i)Represent parameter x to be estimated ith iteration value, J For Jacobian matrix derivative vector, H is Hessian matrix, and parameter x to be estimated is:
Wherein, the Jacobian matrix derivative vector J and the Hessian matrix H are:
Wherein,
Jλ=qTQ-1,
αk=Wkvec(C(q))+Mkεm-(mm(tk+1)-mm(tk)),
Compared with prior art, beneficial effects of the present invention are as follows:
1st, the misalignment that can have both demarcated between Magnetic Sensor and gyro, gyro zero bias can also be demarcated simultaneously;
2nd, magnetic field is more stable during, and demarcation effect is better, and is not influenceed by any acceleration noise, therefore implements During do not need equipment remains stationary state;
3rd, it is registering with the posture of Inertial Measurement Unit (including gyro and accelerometer) available for Magnetic Sensor.
Embodiment
With reference to specific embodiment, the present invention is described in detail.Following examples will be helpful to the technology of this area Personnel further understand the present invention, but the invention is not limited in any way.It should be pointed out that the ordinary skill to this area For personnel, without departing from the inventive concept of the premise, some changes and improvements can also be made.These belong to the present invention Protection domain.
In stabilizing magnetic field, the change of magnetic sensor measured value is entirely due to caused by the change of posture.It is based on This is true, and the invention provides the coordinate system misalignment between a kind of triaxial magnetometer and three axis accelerometer and the connection of gyro zero bias Close scaling method.Magnetometer is fixedly connected with gyro, fully the measurement of change posture and synchronous acquisition magnetometer and gyro.Magnetic force Instrument data can be used for inside magnetometer demarcating, and the data of magnetometer and gyro are provided commonly between the magnetometer and gyro of the present invention Coordinate system misalignment and gyro zero bias combined calibrating.Assume to have been realized in demarcating inside magnetometer below.
Gyro of the present invention includes with Magnetic Sensor combined calibrating method:Obtain the correlation measurement mould of Magnetic Sensor and gyro Type, the measurement model include the parameter such as coordinate system misalignment and gyro zero bias;Using the constraint based on the calibrating parameters Nonlinear least squares fitting obtains the calibrating parameters determination value.
Wherein, correlation measurement model is:
Wherein, mm(tk+1) represent+1 moment t of kthk+1When Magnetic Sensor coordinate system m under magnetic field vector, mm(tk) represent K-th of moment tkWhen Magnetic Sensor coordinate system m under magnetic field vector, k is positive integer, mm(t) represent that Magnetic Sensor is sat during moment t Magnetic field vector under mark system m,Magnetic Sensor and gyro coordinate system misalignment attitude matrix are represented,Represent top during moment t Spiral shell coordinate system b angular velocity vector, ε represent gyro zero bias vector;Vec () represents to play matrix according to the sequential concatenation of row Come;
mm(t) × represent by three-dimensional vector mm(t)=[mm(t)1 mm(t)2 mm(t)3]TThe multiplication cross matrix of composition, i.e.,Wherein mm(t)1Represent the magnetic under Magnetic Sensor coordinate system m during moment t Component in the X-direction of field vector;Wherein mm(t)2Represent the Y-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m On component;Wherein mm(t)3Represent the component in the Z-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m.
Preferably, constraint Nonlinear least squares fitting is exported by correlation measurement model:
Wherein, S3Represent four dimensional vectors that mould is 1;λ is Lagrange coefficient;Q=[q0 q1 q2 q3]TFor Magnetic Sensor With gyro coordinate system misalignment attitude matrixCorresponding quaternary number, q0,q1,q2,q3Expression quaternary number q four components respectively, four First number q is expressed as q0+q1i+q2j+q3K, wherein, imaginary unit i, j, k meet operation rule:i0=j0=k0=1, i2=j2= k2=-1;εmThe gyro zero bias under Magnetic Sensor coordinate system are represented,
Vec (C (q)) represents to get up Matrix C (q) according to the sequential concatenation of row;
The coefficient matrix W of Magnetic Sensor and gyro coordinate system misalignment attitude matrixkFor:
The coefficient matrix M of gyro zero biaskFor:
mm(t) × represent by three-dimensional vector mm(t)=[mm(t)1 mm(t)2 mm(t)3]TThe multiplication cross matrix of composition, i.e.,Wherein mm(t)1Represent the magnetic under Magnetic Sensor coordinate system m during moment t Component in the X-direction of field vector;Wherein mm(t)2Represent the Y-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m On component;Wherein mm(t)3Represent the component in the Z-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m.
Preferably, Magnetic Sensor is obtained from correlation measurement model using linear least square method to lose with gyro coordinate system The initial value of quasi- attitude matrixWith the initial value of gyro zero bias
Corresponding to being extracted from least square solutionWithWillOrthogonalization simultaneously utilizes attitude matrix and quaternary Several transformation relations obtains the initial value q of quaternary number(0), Lagrange coefficient initial value λ(0)It is set to zero.
Preferably, iterative calculation is until meet the condition of convergence:
Wherein, x(i+1)Represent parameter x to be estimated i+1 time iterative value, x(i)Represent parameter x to be estimated ith iteration value, J For Jacobian matrix derivative vector, H is Hessian matrix, and parameter x to be estimated is:
Wherein, Jacobian matrix derivative vector J and Hessian matrix H are:
Wherein,
Jλ=qTQ-1,
αk=Wkvec(C(q))+Mkεm-(mm(tk+1)-mm(tk)),
The specific embodiment of the present invention is described above.It is to be appreciated that the invention is not limited in above-mentioned Particular implementation, those skilled in the art can make a variety of changes or change within the scope of the claims, this not shadow Ring the substantive content of the present invention.In the case where not conflicting, the feature in embodiments herein and embodiment can any phase Mutually combination.

Claims (5)

1. a kind of gyro and Magnetic Sensor combined calibrating method, it is characterised in that comprise the following steps:
Step 1, the correlation measurement model of Magnetic Sensor and gyro is obtained, includes calibrating parameters in the correlation measurement model; The correlation measurement model is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mi>m</mi> <mi>m</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>m</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;times;</mo> <mo>)</mo> </mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>b</mi> </mrow> <mi>b</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <mi>&amp;epsiv;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>b</mi> </mrow> <mi>b</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;times;</mo> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;times;</mo> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>m</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>m</mi> </msubsup> <mi>&amp;epsiv;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, mm(tk+1) represent+1 moment t of kthk+1When Magnetic Sensor coordinate system m under magnetic field vector, mm(tk) represent kth Individual moment tkWhen Magnetic Sensor coordinate system m under magnetic field vector, k is positive integer, mm(t) Magnetic Sensor coordinate system during moment t is represented Magnetic field vector under m,Magnetic Sensor and gyro coordinate system misalignment attitude matrix are represented,Represent that gyro is sat during moment t Mark system b angular velocity vector, ε represent gyro zero bias vector;Vec () represents to get up matrix according to the sequential concatenation of row;
mm(t) × represent by three-dimensional vector mm(t)=[mm(t)1 mm(t)2 mm(t)3]TThe multiplication cross matrix of composition, i.e.,Wherein mm(t)1Represent the magnetic under Magnetic Sensor coordinate system m during moment t Component in the X-direction of field vector;Wherein mm(t)2Represent the Y-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m On component;Wherein mm(t)3Represent the component in the Z-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m;
Step 2, the determination of the calibrating parameters is obtained using the constraint Nonlinear least squares fitting based on the calibrating parameters Value.
2. gyro according to claim 1 and Magnetic Sensor combined calibrating method, it is characterised in that the calibrating parameters bag Include coordinate system misalignment and gyro zero bias.
3. gyro according to claim 1 and Magnetic Sensor combined calibrating method, it is characterised in that the constraint is non-linear Least-squares estimation is exported by the correlation measurement model:
<mrow> <munder> <mi>min</mi> <mrow> <mi>q</mi> <mo>&amp;Element;</mo> <msup> <mi>S</mi> <mn>3</mn> </msup> <mo>,</mo> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> </mrow> </munder> <mo>{</mo> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <mo>|</mo> <mo>|</mo> <msub> <mi>W</mi> <mi>k</mi> </msub> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mrow> <mo>(</mo> <mi>C</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>M</mi> <mi>k</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>-</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>}</mo> <mo>+</mo> <mi>&amp;lambda;</mi> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mi>T</mi> </msup> <mi>q</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, S3Represent four dimensional vectors that mould is 1;λ is Lagrange coefficient;Q=[q0 q1 q2 q3]TFor Magnetic Sensor and top Spiral shell coordinate system misalignment attitude matrixCorresponding quaternary number, q0,q1,q2,q3Quaternary number q four components are represented respectively;εmRepresent Gyro zero bias under Magnetic Sensor coordinate system,
<mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
Vec (C (q)) represents to get up Matrix C (q) according to the sequential concatenation of row;
The coefficient matrix W of Magnetic Sensor and gyro coordinate system misalignment attitude matrixkFor:
<mrow> <msub> <mi>W</mi> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>T</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;times;</mo> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>;</mo> </mrow>
The coefficient matrix M of gyro zero biaskFor:
<mrow> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&amp;times;</mo> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>;</mo> </mrow>
mm(t) × represent by three-dimensional vector mm(t)=[mm(t)1 mm(t)2 mm(t)3]TThe multiplication cross matrix of composition, i.e.,Wherein mm(t)1Represent the magnetic under Magnetic Sensor coordinate system m during moment t Component in the X-direction of field vector;Wherein mm(t)2Represent the Y-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m On component;Wherein mm(t)3Represent the component in the Z-direction of magnetic field vector during moment t under Magnetic Sensor coordinate system m.
4. gyro according to claim 3 and Magnetic Sensor combined calibrating method, it is characterised in that utilize a linear most young waiter in a wineshop or an inn Multiply the initial value that method obtains Magnetic Sensor and gyro coordinate system misalignment attitude matrix from the correlation measurement modelWith The initial value of gyro zero bias
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mrow> <mo>(</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>m</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>W</mi> <mi>k</mi> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>W</mi> <mi>k</mi> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>W</mi> <mi>k</mi> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>-</mo> <msup> <mi>m</mi> <mi>m</mi> </msup> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Corresponding to being extracted from least square solutionWithWillOrthogonalization simultaneously utilizes attitude matrix and quaternary number Transformation relation obtains the initial value q of quaternary number(0), Lagrange coefficient initial value λ(0)It is set to zero.
5. gyro according to claim 4 and Magnetic Sensor combined calibrating method, it is characterised in that iterative calculation is until full The sufficient condition of convergence:
<mrow> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>H</mi> <msub> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>J</mi> <msub> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>...</mn> <mo>;</mo> </mrow>
Wherein, x(i+1)Represent parameter x to be estimated i+1 time iterative value, x(i)Parameter x to be estimated ith iteration value is represented, J is refined Than matrix derivative vector, H is Hessian matrix, and parameter x to be estimated is:
<mrow> <mi>x</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>q</mi> <mi>T</mi> </msup> </mtd> <mtd> <msubsup> <mi>&amp;epsiv;</mi> <mi>m</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <mi>&amp;lambda;</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>;</mo> </mrow>
Wherein, the Jacobian matrix derivative vector J and the Hessian matrix H are:
<mrow> <mi>J</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>J</mi> <mi>q</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>J</mi> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> <mi>T</mi> </msubsup> </mtd> <mtd> <msub> <mi>J</mi> <mi>&amp;lambda;</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow>
<mrow> <mi>H</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>q</mi> <mi>q</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mrow> <msub> <mi>q&amp;epsiv;</mi> <mi>m</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mrow> <mi>q</mi> <mi>&amp;lambda;</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>H</mi> <mrow> <msub> <mi>q&amp;epsiv;</mi> <mi>m</mi> </msub> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <msub> <mi>H</mi> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>H</mi> <mrow> <mi>q</mi> <mi>&amp;lambda;</mi> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein,
<mrow> <msub> <mi>J</mi> <mi>q</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>&amp;lambda;</mi> <mi>q</mi> <mo>+</mo> <mn>2</mn> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <msup> <mo>&amp;part;</mo> <mi>T</mi> </msup> <mi>q</mi> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>J</mi> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> </msub> <mo>=</mo> <mn>2</mn> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <msubsup> <mi>M</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>,</mo> <msub> <mi>J</mi> <mi>&amp;lambda;</mi> </msub> <mo>=</mo> <msup> <mi>q</mi> <mi>T</mi> </msup> <mi>q</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>H</mi> <mrow> <mi>q</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>&amp;lambda;I</mi> <mn>4</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>2</mn> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <mo>{</mo> <msubsup> <mo>&amp;part;</mo> <mi>q</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>W</mi> <mi>k</mi> </msub> <msub> <mo>&amp;part;</mo> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>Q</mi> <mn>0</mn> <mi>T</mi> </msubsup> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>Q</mi> <mn>1</mn> <mi>T</mi> </msubsup> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>Q</mi> <mn>2</mn> <mi>T</mi> </msubsup> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>Q</mi> <mn>3</mn> <mi>T</mi> </msubsup> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>}</mo> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msub> <mi>H</mi> <mrow> <msub> <mi>q&amp;epsiv;</mi> <mi>m</mi> </msub> </mrow> </msub> <mo>=</mo> <mn>2</mn> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <msup> <mo>&amp;part;</mo> <mi>T</mi> </msup> <mi>q</mi> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <mi>H</mi> <mrow> <mi>q</mi> <mi>&amp;lambda;</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>q</mi> <mo>,</mo> <msub> <mi>H</mi> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>m</mi> </msub> </mrow> </msub> <mo>=</mo> <mn>2</mn> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <msubsup> <mi>M</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>M</mi> <mi>k</mi> </msub> </mrow>
αk=Wkvec(C(q))+Mkεm-(mm(tk+1)-mm(tk)),
<mrow> <msub> <mo>&amp;part;</mo> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow>
<mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>Q</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>Q</mi> <mn>3</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
CN201510901523.8A 2015-12-08 2015-12-08 Gyro and Magnetic Sensor combined calibrating method Active CN105547326B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510901523.8A CN105547326B (en) 2015-12-08 2015-12-08 Gyro and Magnetic Sensor combined calibrating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510901523.8A CN105547326B (en) 2015-12-08 2015-12-08 Gyro and Magnetic Sensor combined calibrating method

Publications (2)

Publication Number Publication Date
CN105547326A CN105547326A (en) 2016-05-04
CN105547326B true CN105547326B (en) 2018-04-06

Family

ID=55826680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510901523.8A Active CN105547326B (en) 2015-12-08 2015-12-08 Gyro and Magnetic Sensor combined calibrating method

Country Status (1)

Country Link
CN (1) CN105547326B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106197475B (en) * 2016-06-29 2019-06-21 上海交通大学 Gyro and Magnetic Sensor combined calibrating method based on Sequential filter
CN107037235B (en) * 2016-11-28 2023-08-01 东南大学 Soft measurement method and measurement device for brake slip quantity
CN107389092B (en) * 2017-06-27 2020-01-07 上海交通大学 Gyro calibration method based on assistance of magnetic sensor
EP4078092A4 (en) 2019-12-19 2024-04-17 Immersion Networks Inc Systems and methods for stabilizing magnetic field of inertial measurement unit
CN111982155B (en) * 2020-08-27 2022-08-12 北京爱笔科技有限公司 Calibration method and device of magnetic sensor, electronic equipment and computer storage medium
CN112945271B (en) * 2021-01-27 2022-12-06 苏州大学 Magnetometer information-assisted MEMS gyroscope calibration method and system
CN115839726B (en) * 2023-02-23 2023-04-28 湖南二零八先进科技有限公司 Method, system and medium for jointly calibrating magnetic sensor and angular velocity sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246024A (en) * 2008-03-26 2008-08-20 北京航空航天大学 Method for external field fast calibrating miniature multi-sensor combined navigation system
CN102865881A (en) * 2012-03-06 2013-01-09 武汉大学 Quick calibration method for inertial measurement unit
CN103221788A (en) * 2010-11-08 2013-07-24 阿尔派回放股份有限公司 Device and method of gyro sensor calibration
CN104501814A (en) * 2014-12-12 2015-04-08 浙江大学 Attitude and position estimation method based on vision and inertia information

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150019159A1 (en) * 2013-07-15 2015-01-15 Honeywell International Inc. System and method for magnetometer calibration and compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246024A (en) * 2008-03-26 2008-08-20 北京航空航天大学 Method for external field fast calibrating miniature multi-sensor combined navigation system
CN103221788A (en) * 2010-11-08 2013-07-24 阿尔派回放股份有限公司 Device and method of gyro sensor calibration
CN102865881A (en) * 2012-03-06 2013-01-09 武汉大学 Quick calibration method for inertial measurement unit
CN104501814A (en) * 2014-12-12 2015-04-08 浙江大学 Attitude and position estimation method based on vision and inertia information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Error Calibration of Magnetometer Using Nonlinear Integrated Filter Model With Inertial Sensors;Wonmo Koo etal.;《IEEE Transactions on Magnetics》;20090519;第45卷(第6期);第2740-2743页 *
惯性/地磁组合导航算法;蔡洪等;《中国惯性技术学报》;20090630;第17卷(第3期);第333-337页 *

Also Published As

Publication number Publication date
CN105547326A (en) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105547326B (en) Gyro and Magnetic Sensor combined calibrating method
EP3006896B1 (en) Three-axis digital compass
Wu et al. Dynamic magnetometer calibration and alignment to inertial sensors by Kalman filtering
CN104834021B (en) A kind of computational methods of geomagnetic sensor sensitivity
US10685083B2 (en) Apparatuses and methods for calibrating magnetometer attitude-independent parameters
CN105676302A (en) Magnetometer random noise error compensation method based on improved least square method
CN103299247A (en) Apparatuses and methods for dynamic tracking and compensation of magnetic near field
CN102778965B (en) 3d indicating device and method for compensating rotation of3d indicating device
CN107290801A (en) The step bearing calibration of strapdown three axis magnetometer error one based on functional-link direct type neutral net and the field mould difference of two squares
CN109521384A (en) A kind of vector magnetic compensation method based on atom magnetometer
CN106197475B (en) Gyro and Magnetic Sensor combined calibrating method based on Sequential filter
CN113156355A (en) Magnetic interference compensation method of superconducting full tensor magnetic gradient measuring device
CN107860382A (en) A kind of method for measuring posture using AHRS in the case of magnetic anomaly
CN107389092B (en) Gyro calibration method based on assistance of magnetic sensor
CN102654515B (en) Calibration algorithm for z sensitive shaft of three-shaft acceleration transducer
CN104765013A (en) Three-axis magnetic sensor calibration method
Chesneau Magneto-Inertial Dead-Reckoning in inhomogeneous field and indoor applications
Cui et al. Three-axis magnetometer calibration based on optimal ellipsoidal fitting under constraint condition for pedestrian positioning system using foot-mounted inertial sensor/magnetometer
Dorveaux et al. On-the-field calibration of an array of sensors
Hemanth et al. Calibration of 3-axis magnetometers
CN203337153U (en) Triaxial digital compass
Xiaojuan et al. Comparison of three kinds of compensation algorithms based on magnetic sensors
CN105258671A (en) Method for improving angle measuring precision of magnetic flux gate
Chu et al. Magnetic orientation system based on magnetometer, accelerometer and gyroscope
CN103954923B (en) Calibration method for three-shaft magnetic sensor with noise suppression function

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant