CN105543399A - 一种利用荧光检测微囊藻细胞dna损伤的方法 - Google Patents

一种利用荧光检测微囊藻细胞dna损伤的方法 Download PDF

Info

Publication number
CN105543399A
CN105543399A CN201610109195.2A CN201610109195A CN105543399A CN 105543399 A CN105543399 A CN 105543399A CN 201610109195 A CN201610109195 A CN 201610109195A CN 105543399 A CN105543399 A CN 105543399A
Authority
CN
China
Prior art keywords
sample
dna
volume
samples
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610109195.2A
Other languages
English (en)
Other versions
CN105543399B (zh
Inventor
吴振斌
鲁志营
刘碧云
何燕
贺锋
周巧红
徐栋
张甬元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hydrobiology of CAS
Original Assignee
Institute of Hydrobiology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hydrobiology of CAS filed Critical Institute of Hydrobiology of CAS
Priority to CN201610109195.2A priority Critical patent/CN105543399B/zh
Publication of CN105543399A publication Critical patent/CN105543399A/zh
Application granted granted Critical
Publication of CN105543399B publication Critical patent/CN105543399B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开一种利用荧光检测微囊藻细胞DNA损伤的方法,其步骤:(a)将待检测样品和对照样品均分别平均分成三小组;(b)去除细胞角质鞘:离心收集样品中藻细胞并重悬浮于SE缓冲液中洗涤;(c)细胞裂解:将细胞分别重悬浮于Lysis裂解液,加入蛋白酶K和十二烷基磺酸钠,使细胞裂解;(d)细胞DNA链解旋:改变pH,使T、P和B样品在不同条件下解旋;(e)染色:分别向以上T、P和B样品中加入Hoechest?33258染色;(f)荧光测定:离心后于荧光检测器中检测上清液的荧光强度;(g)结果计算:根据待测样品和对照样品中T、B和P样品的荧光来计算DNA链的断裂水平。本方法易于掌握,并且灵敏度高,DNA链上单个断裂位点即可检测到。

Description

一种利用荧光检测微囊藻细胞DNA损伤的方法
技术领域
本发明涉及环境检测与生态毒理评价技术领域,更具体涉及一种微囊藻细胞DNA损伤检测的方法,它适用于水体中有毒有害物质的生态安全评价及水环境中致癌致畸因子的早期监测预警。
背景技术
随着水体富营养化的加剧,蓝藻水华现象时常发生。蓝藻水华造成水质急剧恶化,鱼类大量死亡,生境退化。微囊藻作为水华的主要藻种之一,不仅增殖能力强,而且产生微囊藻毒素,导致家畜死亡,也可能引发人类肝脏癌变。DNA作为中心法则的核心,对细胞的分裂、代谢与调控起着决定性作用,DNA损伤作为一个灵敏而有代表性的生物标志物,广泛应用于生态毒理与安全评价中。针对不同控藻方法的微囊藻DNA损伤评估,不仅有助于蓝藻水华控制技术的开发;同时,微囊藻对环境中致癌致畸因子响应灵敏,通过对微囊藻DNA损伤的检测,可实现对水体环境中致癌致畸因子的早期监测预警。
目前还没有专门针对微囊藻细胞DNA损伤检测的方法。Singh等(“AsimpletechniqueforquantitationoflowlevelsofDNAdamageinindividualcells”.Singhetal.,ExperimentalCellResearch,卷:175期:1页:184-191,1988年3月15日)在前人方法的基础上,提出了单细胞凝胶电泳法测定细胞DNA损伤。该方法简便,灵敏,在医学和毒理学检测研究中有较多的应用。然而,该方法只能检测单链DNA损伤,并且操作主观性强,不同操作者实验结果偏差较大,因而限制了这一方法的广泛应用。最近,有一些学者提出了利用PCR扩增的方式来检测DNA链断裂的方法,如RAPD、rDNA和ARDRA(“Evidencesshowingultraviolet-Bradiation-induceddamageofDNAincyanobacteriaanditsdetectionbyPCRassay”.Kumar.,etal,BiochemicalandBiophysicalResearchCommunications,卷:318期:4页:1025-1030,2004年6月11日),以及通过实时荧光定量PCR(“DNAsupercoilingsuppressesreal-timePCR:anewapproachtothequantificationofmitochondrialDNAdamageandrepair”.Chenetal.,NucleicAcidsResearch,卷:35期:4页:1377-1388,2007年2月11日)的办法来定量DNA损伤的程度,这些方法在特定细胞DNA链断裂检测中显示了很高的特异性,但应用藻类DNA损伤中还有待进一步实验证实,并且该方法操作难度大,需要大型仪器如荧光定量PCR仪,测试费用高,难以普遍应用于环境检测。本方法是根据不同断裂水平的DNA链在碱性溶液中解旋速率不同,通过荧光染色对解旋后DNA链中双链部分进行定量来测定细胞DNA损伤。其原理为:DNA链断裂后,自由末端增多,双链DNA在适宜的碱性pH值下氢键断裂,双链DNA解链,自由末端越多,解旋速率越快。双链DNA荧光染料Hoechst33258能选择性的与双链DNA结合,而不与单链DNA结合,由此可以计算DNA单双链的比例,通过比较相同解旋时间后DNA单双链的比例,来计算DNA链断裂的水平。本方法不会受到染色体结构的影响,并且灵敏度高,可以检测到染色体上的单个断裂位点,因此非常适合测定浮游生物DNA链断裂。
发明内容
针对现有技术中存在的不足,本发明的目的是在于提供了一种利用荧光检测微囊藻细胞DNA损伤的方法,该方法的优点在于检测不需要大型仪器,对操作者分子生物学的专业知识要求不高,易于掌握,并且灵敏度高,DNA链上单个断裂位点即可检测到。
一种利用荧光检测微囊藻细胞DNA损伤的方法,其步骤是:
(a)分组设定:除待检测样品外设置正常生长的样品为对照组,待检测样品标记为t,对照样品标记为0,将待检测样品和对照样品分别平均分成三组,测试样品标记为Pt样品、Tt样品和Bt样品;对照样品分别标记为P0样品、T0样品和B0样品。在以下步骤(b)至(f)中,对测试样品和对照样品处理方式相同,因此,在以下步骤(b)至(f)的表述中,T样品包含Tt样品和T0样品,P样品包含Pt样品和P0样品,B样品包含Bt样品和B0样品;
(b)去除细胞角质鞘:1500×g离心15min收集T、P和B样品中藻细胞,将细胞重悬浮于1mLSE缓冲液(SE缓冲液的配制方法:50mMNaCl,50mMTris,5mMEDTA),调pH至8.0颠倒混匀洗涤2~5min;
(c)细胞裂解:1500×g离心15min,去上清,将细胞分别重悬浮于415V(V代表1至100微升之间的任意体积,下同)体积的Lysis裂解液(Lysis裂解液的配制方法:40mMEDTA,400mMNaCl,50mMTris-HCl,pH=9.0),分别加入50V体积的浓度为50mg/ml溶菌酶,上下颠倒样品管三次,37℃反应20min;然后加入10V体积浓度为5mg/ml的蛋白酶K和25V体积浓度为10%的十二烷基磺酸钠,上下颠倒样品管三次,50℃反应2h;
(d)细胞DNA链解旋:T样品加入1000V体积的超纯水,混匀;B样品加入500V体积的0.1MNaOH混匀,超声处理180s,20℃温浴30min,随后加入500V体积的0.1MHCl,混匀;P样品,加入500V体积的0.1MNaOH混匀,20℃温浴30min,随后加入500V体积的0.1MHCl,混匀;
(e)染色:分别向以上T、P和B样品中加入100V体积的60μMHoechest33258(溶解于0.1M磷酸缓冲液中,pH=7.6),混匀,25~30℃下10000rpm离心5min,整个过程避光;
(f)荧光测定:根据不同检测器分别取对应量T,P和B样品上清液,于荧光检测器中测荧光强度,T,P和B样品的荧光强度分别记为fP、fB,和fT
(g)结果计算:DNA链断裂指数SSF的计算,
首先,计算残留双链DNA百分比F,F=(fP-fB)/(fT-fB)×100%
然后,根据所计算出的F值计算DNA链断裂指数,计算公式为
SSF=-ln(Ft/F0)
其中,F0为对照组的F值,由对照组的P0样品、T0样品和B0样品的荧光强度f计算得到;Ft为处理组的F值,由处理组Pt样品、Tt样品和Bt样品的荧光计算强度f得到。
与现有技术相比,本发明方法的优点和有益效果如下:
(a)方法灵敏度高,DNA链上一个断裂位点即可检测到;
(b)操作简便,不需要荧光显微镜及荧光定量PCR仪等分子生物学大型仪器,常规加热设备、超声发生设备加上荧光检测设备即可完成测试;
(c)提高工作效率,单细胞凝胶电泳需要对每一个样品在荧光显微镜下单次拍照,耗时长,本方法通过96孔板可对大量样品进行高通量测定,测定一批样品可在4h内完成。
附图说明
图1为一种化感物质焦性没食子酸(PA)对铜绿微囊藻DNA链断裂的影响。
附图说明:铜绿微囊藻细胞在2mg/L焦性没食子酸(PA)暴露4、8和12h条件下,DNA链的断裂水平分别为0.08、0.14和0.17SSF(1SSF=16000个断裂位点)。随着暴露浓度的升高和暴露时间的延长,DNA链的断裂水平呈现明显的时间效应和剂量效应,在50mg/L暴露12h的时候到达0.968SSF,相当于DNA链上有15488个断裂位点。这个测试结果表明,化感物质焦性没食子酸即使在2mg/L这样的低浓度作用条件下也能明显引起铜绿微囊藻DNA链的断裂,在高浓度化感物质暴露下,DNA链的断裂水平非常之高。
具体实施方式
实施例1:不同浓度化感物质焦性没食子酸(PA)暴露下,铜绿微囊藻DNA链断裂测定。
一种利用荧光检测微囊藻细胞DNA损伤的方法,其步骤是:
1)在250mL的锥形瓶中加入100mLBG11培养基,灭菌,待培养基冷却后接种对数生长期的铜绿微囊藻细胞,保持起始接种密度1×106细胞/mL,第一天用1000lux光强下预培养1天,第二天用2000lux光强下预培养1天,然后分别加入化感物质焦性没食子酸,处理浓度设定为2、10、25和50mg/L,不加化感物质的设为对照组。2000lux下培养,分别在接种刚开始、开始4、8和12h取样。
2)化感物质焦性没食子酸处理设为测试组样品,未经化感物质处理的设为对照组。
3)测试组样品和对照组均分别平均分成三份,每份1.5mL。处理组分别标记为Pt样品、Tt样品和Bt样品;对照组分别标记为P0样品、T0样品和B0样品。每个样品均在1500×g,4℃下离心15min。在以下的操作中,处理组和对照组的处理方式相同,因此T样品包含Tt样品和T0样品,P样品包含Pt样品和P0样品,B样品包含Bt样品和B0样品。
4)1500×g离心15min收集T、P和B样品中藻细胞,将细胞重悬浮于1mLSE缓冲液(50mMNaCl,50mMTris,5mMEDTA,调pH至8.0)洗涤2~5min。
5)1500×g离心15min,去上清液。将细胞分别重悬浮于415μL的Lysis裂解液(40mMEDTA,400mMNaCl,50mMTris-HCl,pH9.0),随后分别立即加入50μL体积的溶菌酶(50mg/ml),轻轻上下颠倒样品管三次,37℃反应20min;然后均加入10μL体积的蛋白酶K(5mg/ml)和25μL体积的10%的十二烷基磺酸钠,50℃反应2h。
6)T样品加入1000μL体积的超纯水(电阻率18.2mΩ),轻轻混匀;B样品加入500μL体积的0.1MNaOH混匀,超声处理180s(输出功率30%,间隙开2s,间隙挺2s),20℃温浴30min,随后加入500μL体积的0.1MHCl,混匀;P样品,加入500μL体积的0.1MNaOH轻轻混匀,20℃温浴30min,随后加入500μL体积的0.1MHCl,轻轻混匀。整个操作过程中动作轻柔,避免剧烈摇动。
7)分别向以上T、P和B样品中加入100μL体积的60μMHoechest33258(溶解于0.1M的磷酸缓冲液中,pH=7.6),轻轻混匀,28℃下10000rpm离心5min,整个过程避光。
8)荧光测定:分别取200μL的T、P和B样品上清液,于酶标仪(SpectraMaxM5,MolecularDevice,US)下测荧光强度(激发/发射光波长设定:激发光350nm,发射光455nm),T、P和B样品的荧光强度分别记为fP、fB,和fT
9)结果计算:DNA链断裂指数(SSF)的计算
首先,计算残留双链DNA百分比F,F=(fP-fB)/(fT-fB)×100%
然后,根据所计算出的F值计算DNA链断裂指数,计算公式为
SSF=-ln(Ft/F0)
其中,F0为对照组的F值,Ft为处理组的F值。
通过上述方法分析得到在不同浓度焦性没食子酸(PA)暴露条件下,DNA链断裂水平随暴露时间与暴露浓度之间的关系(图1)。在2mg/LPA暴露4、8和12h条件下,DNA链的断裂水平分别为0.08、0.14和0.17SSF(1SSF=16000个断裂位点)。随着暴露浓度的升高和暴露时间的延长,DNA链的断裂水平呈现明显的时间效应和剂量效应,在50mg/L暴露12h的时候到达0.968SSF。在自然水体中,多酚类化感物质的浓度范围在0.52-7.66μg/L,由此推算多酚类化感物质在自然水体中可造成单个藻细胞0.33-4.9个位点的DNA链的断裂,从而间接证明了自然水体中水生植物可能通过化感效应引起浮游植物群落的基因毒性,为自然水体中水生植物与藻类化感现象提供了有利的证据。

Claims (1)

1.一种利用荧光检测微囊藻细胞DNA损伤的方法,其步骤是:
(a)分组设定:除待检测样品外设置正常生长的样品为对照组,待检测样品标记为t,对照样品标记为0,将待检测样品和对照样品分别平均分成三组,测试样品标记为Pt样品、Tt样品和Bt样品;对照样品分别标记为P0样品、T0样品和B0样品,在以下步骤(b)至(f)中,对测试样品和对照样品处理方式相同,在以下步骤(b)至(f)的表述中,T样品包含Tt样品和T0样品,P样品包含Pt样品和P0样品,B样品包含Bt样品和B0样品;
(b)去除细胞角质鞘:1500×g离心15min收集T、P和B样品中藻细胞,将细胞重悬浮于1mLSE缓冲液:SE缓冲液的配制方法:50mMNaCl,50mMTris,5mMEDTA,调pH至8.0颠倒混匀洗涤2~5min;
(c)细胞裂解:1500×g离心15min,去上清液,将细胞分别重悬浮于415V体积的Lysis裂解液:Lysis裂解液的配制方法:40mMEDTA,400mMNaCl,50mMTris-HCl,pH=9.0,分别加入50V体积的浓度为50mg/ml溶菌酶,上下颠倒样品管三次,37℃反应20min;然后加入10V体积浓度为5mg/ml的蛋白酶K和25V体积浓度为10%的十二烷基磺酸钠,上下颠倒样品管三次,50℃反应2h;
(d)细胞DNA链解旋:T样品加入1000V体积的超纯水,混匀;B样品加入500V体积的0.1MNaOH混匀,超声处理180s,20℃温浴30min,随后加入500V体积的0.1MHCl,混匀;P样品,加入500V体积的0.1MNaOH混匀,20℃温浴30min,随后加入500V体积的0.1MHCl,混匀;
(e)染色:分别向以上T、P和B样品中加入100V体积的60μMHoechest33258:溶解于0.1M磷酸缓冲液中,pH=7.6,混匀,25~30℃下10000rpm离心5min,整个过程避光;
(f)荧光测定:根据不同检测器分别取对应量T、P和B样品上清液,于荧光检测器中测荧光强度,T、P和B样品的荧光强度分别记为fP、fB和fT
(g)结果计算:DNA链断裂指数SSF的计算:
首先,计算残留双链DNA百分比F,F=(fP-fB)/(fT-fB)×100%
然后,根据所计算出的F值计算DNA链断裂指数,计算公式为
SSF=-ln(Ft/F0)
其中,F0为对照组的F值,由对照组的P0样品、T0样品和B0样品的荧光强度f计算得到;Ft为处理组的F值,由处理组Pt样品、Tt样品和Bt样品的荧光计算强度f得到。
CN201610109195.2A 2016-02-26 2016-02-26 一种利用荧光检测微囊藻细胞dna损伤的方法 Active CN105543399B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610109195.2A CN105543399B (zh) 2016-02-26 2016-02-26 一种利用荧光检测微囊藻细胞dna损伤的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610109195.2A CN105543399B (zh) 2016-02-26 2016-02-26 一种利用荧光检测微囊藻细胞dna损伤的方法

Publications (2)

Publication Number Publication Date
CN105543399A true CN105543399A (zh) 2016-05-04
CN105543399B CN105543399B (zh) 2019-07-16

Family

ID=55822956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610109195.2A Active CN105543399B (zh) 2016-02-26 2016-02-26 一种利用荧光检测微囊藻细胞dna损伤的方法

Country Status (1)

Country Link
CN (1) CN105543399B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101659997A (zh) * 2009-10-15 2010-03-03 青岛大学 一种区分单链和双链核苷酸的荧光检测方法
CN102146455A (zh) * 2011-01-25 2011-08-10 厦门大学 一种细胞dna损伤检测试剂盒及其检测方法
WO2012004619A1 (en) * 2010-07-07 2012-01-12 Diagon Kft. Procedure for the specific isolation of total dna content of bacterial germs and a kit for this purpose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101659997A (zh) * 2009-10-15 2010-03-03 青岛大学 一种区分单链和双链核苷酸的荧光检测方法
WO2012004619A1 (en) * 2010-07-07 2012-01-12 Diagon Kft. Procedure for the specific isolation of total dna content of bacterial germs and a kit for this purpose
CN102146455A (zh) * 2011-01-25 2011-08-10 厦门大学 一种细胞dna损伤检测试剂盒及其检测方法

Also Published As

Publication number Publication date
CN105543399B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
Li et al. Naked-eye detection of grapevine red-blotch viral infection using a plasmonic CRISPR Cas12a assay
Huang et al. Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device
Chen et al. Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection
Matzke et al. Mixture effects and predictability of combination effects of imidazolium based ionic liquids as well as imidazolium based ionic liquids and cadmium on terrestrial plants (Triticum aestivum) and limnic green algae (Scenedesmus vacuolatus)
Xu et al. A general RPA-CRISPR/Cas12a sensing platform for Brucella spp. detection in blood and milk samples
Lewe et al. Phospholipid fatty acid (PLFA) analysis as a tool to estimate absolute abundances from compositional 16S rRNA bacterial metabarcoding data
Zhang Current techniques for detecting and monitoring algal toxins and causative harmful algal blooms
Jia et al. Extended GR-5 DNAzyme-based Autonomous isothermal Cascade machine: An efficient and sensitive one-tube colorimetric platform for Pb2+ detection
Dabrowska et al. Assessment of viability of the nematode eggs (Ascaris, Toxocara, Trichuris) in sewage sludge with the use of LIVE/DEAD Bacterial Viability Kit
Gorokhova et al. A comparison of TO-PRO-1 iodide and 5-CFDA-AM staining methods for assessing viability of planktonic algae with epifluorescence microscopy
Yang et al. Development of a quantitative loop-mediated isothermal amplification assay for the rapid detection of novel goose parvovirus
Yildirim et al. Aptamer based E-coli detection in waste waters by portable optical biosensor system
Song et al. Electrokinetic detection and separation of living algae in a microfluidic chip: Implication for ship’s ballast water analysis
CN105543399A (zh) 一种利用荧光检测微囊藻细胞dna损伤的方法
Nakai et al. Genus-specific quantitative PCR of thraustochytrid protists
Tidwell et al. Flow cytometry as a tool for oilfield biocide efficacy testing and monitoring
Naranitus et al. Smartphone‐compatible, CRISPR‐based platforms for sensitive detection of acute hepatopancreatic necrosis disease in shrimp
CN104007096A (zh) 一种船舶压载水处理过程的分析装置及其分析方法
Xu et al. A DNAzyme-mediated target-initiated rolling circle amplification strategy based on a microchip platform for the detection of apurinic/apyrimidinic endonuclease 1 at the single-cell level
Tokieda et al. Research of corrosion monitoring of rebar in concrete with electrochemical impedance spectroscopy
Zhao et al. Application of the Ludox-QPS method for estimating ciliate diversity in soil and comparison with direct count and DNA fingerprinting
Wildauer et al. Chemical probing of RNA in living cells
Sharma et al. Application of multiplex PCR for the simultaneous detection of natural infection of theileriosis, babesiosis and trypanosomosis in cattle
CN103409518B (zh) 一种从土壤中快速检测香蕉枯萎病菌热带4号小种的方法
Li et al. Analysis of the inhibition of nucleic acid dyes on polymerase chain reaction by capillary electrophoresis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant