CN105539890A - Device and method for simulating space mechanical arm to capture ground three-dimensional space microgravity of target satellite - Google Patents

Device and method for simulating space mechanical arm to capture ground three-dimensional space microgravity of target satellite Download PDF

Info

Publication number
CN105539890A
CN105539890A CN201511027890.6A CN201511027890A CN105539890A CN 105539890 A CN105539890 A CN 105539890A CN 201511027890 A CN201511027890 A CN 201511027890A CN 105539890 A CN105539890 A CN 105539890A
Authority
CN
China
Prior art keywords
satellite body
body simulator
space
gravity
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201511027890.6A
Other languages
Chinese (zh)
Other versions
CN105539890B (en
Inventor
杨海涛
谢宗武
赵晓宇
张禹
金明河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201511027890.6A priority Critical patent/CN105539890B/en
Publication of CN105539890A publication Critical patent/CN105539890A/en
Application granted granted Critical
Publication of CN105539890B publication Critical patent/CN105539890B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G4/00Tools specially adapted for use in space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G4/00Tools specially adapted for use in space
    • B64G2004/005Robotic manipulator systems for use in space

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置与方法,本发明涉及地面三维空间微重力的装置与方法。本发明解决没有考虑空间机械臂在三维空间运动和操作过程中漂浮卫星基座的运动的问题。该装置包括两个工业机械臂;空间机械臂,手眼相机,捕获手爪和接口,服务和目标卫星本体模拟器以及六维力/力矩传感器组成;该方法是通过模拟目标卫星运动;确定目标卫星位置与姿态和空间机械臂各关节运动信息;计算服务卫星本体模拟器基座和工业机械臂运动信息;捕获接口在捕获手爪区域内捕获目标卫星本体模拟器;模拟实际目标卫星运动状态实现服务卫星本体模拟器的运动状态等步骤实现的。本发明应用于空间机械臂地面三维空间微重力模拟领域。

A device and method for simulating the microgravity of a three-dimensional ground space in which a space manipulator captures a target satellite. The invention relates to a device and a method for microgravity in a three-dimensional ground space. The invention solves the problem that the movement of the floating satellite base is not considered during the movement and operation of the space manipulator in three-dimensional space. The device includes two industrial manipulators; a space manipulator, a hand-eye camera, a capture gripper and an interface, a service and target satellite body simulator, and a six-dimensional force/torque sensor; the method is to simulate the movement of the target satellite; determine the target satellite Position and attitude and motion information of each joint of the space manipulator; calculation service satellite body simulator base and industrial manipulator motion information; capture interface captures the target satellite body simulator in the capture grip area; simulates the actual target satellite motion state to realize the service The motion state of the satellite body simulator and other steps are realized. The invention is applied to the field of three-dimensional space microgravity simulation on the ground of a space manipulator.

Description

一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置与方法A device and method for simulating the three-dimensional microgravity on the ground where a space manipulator captures a target satellite

技术领域technical field

本发明涉及地面三维空间微重力的装置与方法,特别涉及一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置与方法。The invention relates to a device and a method for ground three-dimensional space microgravity, in particular to a device and method for simulating the ground three-dimensional space microgravity in which a space manipulator captures a target satellite.

背景技术Background technique

由于空间机械臂在太空接近和捕获目标卫星操作时,其卫星基座通常是不受控的,处于自由漂浮状态。在太空中,空间机器人系统处于微重力环境,通常不考虑地球重力对其影响,因此,空间机器人系统满足动量守恒定律。当空间机械臂运动时,其漂浮卫星基座通常会产生相应的扰动。目前,空间机械臂的测试通常是在二维的气浮平台上进行的,其通常不考虑漂浮卫星基座的运动,只是空间机械臂在二维平面空间的运动和操作,其与空间机器人在太空中真实的三维空间运动和操作有着很大的不同,空间机器人在太空中几乎不重地球重力影响,因此,它的设计通常臂杆较长,具有较大的柔性,在地面上重力环境下无法直接进行三维空间的操作,因此,需要开发一套地面三维空间微重力模拟与验证系统来再现和验证空间机器人在真实的三维空间中捕获和维修目标卫星的操作,并对相关的控制算法和硬件进行测试。Since the space manipulator operates in space approaching and capturing target satellites, its satellite base is usually uncontrolled and in a free-floating state. In space, the space robot system is in a microgravity environment, and the influence of the earth's gravity is usually not considered. Therefore, the space robot system satisfies the law of conservation of momentum. When the space robotic arm moves, its floating satellite base usually produces corresponding disturbances. At present, the test of the space manipulator is usually carried out on a two-dimensional air-floating platform, which usually does not consider the movement of the base of the floating satellite, but only the movement and operation of the space manipulator in the two-dimensional plane space, which is different from that of the space robot. The real three-dimensional space movement and operation in space are very different. The space robot hardly bears the influence of the earth's gravity in space. Therefore, its design usually has a longer arm and greater flexibility. It is impossible to directly operate in three-dimensional space. Therefore, it is necessary to develop a ground three-dimensional space microgravity simulation and verification system to reproduce and verify the operation of space robots capturing and repairing target satellites in real three-dimensional space, and to control the relevant control algorithms and hardware for testing.

发明内容Contents of the invention

本发明是为了解决现有的技术没有考虑空间机械臂在三维空间运动和操作过程中漂浮卫星基座的运动的问题,而提供一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置与方法。The present invention aims to solve the problem that the existing technology does not consider the movement of the floating satellite base during the three-dimensional space movement and operation of the space manipulator, and provides a device for simulating the three-dimensional space microgravity on the ground where the space manipulator captures the target satellite with method.

本发明采取以下技术方案:The present invention takes the following technical solutions:

一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置具体包括工业机械臂A、工业机械臂T;空间机械臂,手眼相机,捕获手爪,捕获接口,服务卫星本体模拟器,目标卫星本体模拟器以及六维力/力矩传感器组成;A device for simulating the three-dimensional space microgravity on the ground where a space manipulator captures a target satellite specifically includes an industrial manipulator A and an industrial manipulator T; a space manipulator, a hand-eye camera, a capture gripper, a capture interface, a service satellite body simulator, and a target Composed of satellite body simulator and six-dimensional force/torque sensor;

所述的工业机械臂A末端与服务卫星本体模拟器相连,服务卫星本体模拟器通过连接法兰连接六维力/力矩传感器;六维力/力矩传感器通过连接法兰连接空间机械臂;空间机械臂通过螺栓与手眼相机相连接,手眼相机通过螺栓连接捕获手爪;The end of the industrial mechanical arm A is connected to the service satellite body simulator, and the service satellite body simulator is connected to the six-dimensional force/torque sensor through the connecting flange; the six-dimensional force/torque sensor is connected to the space manipulator through the connecting flange; the space machine The arm is bolted to the hand-eye camera, which captures the gripper through the bolted connection;

所述的工业机械臂T通过连接法兰连接六维力/力矩传感器,六维力/力矩传感器通过连接法兰连接目标卫星本体模拟器;目标卫星本体模拟器连接捕获接口;The industrial mechanical arm T is connected to the six-dimensional force/torque sensor through the connecting flange, and the six-dimensional force/torque sensor is connected to the target satellite body simulator through the connecting flange; the target satellite body simulator is connected to the capture interface;

其中,接捕获接口与捕获手爪相匹配。Wherein, the capture interface is matched with the capture gripper.

一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法具体包括以下步骤:A method for realizing microgravity in ground three-dimensional space that simulates a space manipulator capturing a target satellite specifically includes the following steps:

步骤一、模拟目标卫星的运动;利用运动学等效算法将目标卫星本体模拟器通过工业机械臂T模拟实际目标卫星运动状态;Step 1, simulating the motion of the target satellite; using the kinematics equivalent algorithm to simulate the actual target satellite motion state through the target satellite body simulator through the industrial mechanical arm T;

步骤二、通过手眼相机采集步骤一中目标卫星本体模拟器相对运动信息的视觉图像,根据视觉图像确定目标卫星本体模拟器的相对于手眼相机的位置与卫星本体模拟器的姿态;Step 2, collect the visual image of the relative motion information of the target satellite body simulator in step 1 by the hand-eye camera, determine the position of the target satellite body simulator relative to the hand-eye camera and the attitude of the satellite body simulator according to the visual image;

步骤三、将步骤二确定的相对位置和姿态传递给空间机械臂控制器,空间机械臂控制器通过相对位置和姿态信息确定空间机械臂末端运动信息;根据空间机械臂末端运动信息,确定空间机械臂各关节的运动信息;其中,空间机械臂各关节的运动信息包括空间机械臂的关节角加速度和空间机械臂的关节角速度下角标m为空间机械臂;其中,空间机械臂末端具体为空间机械臂与手眼相机的连接处;Step 3. Transfer the relative position and attitude determined in step 2 to the controller of the space manipulator. The controller of the space manipulator determines the motion information of the end of the space manipulator through the relative position and attitude information; The motion information of each joint of the arm; among them, the motion information of each joint of the space manipulator includes the joint angular acceleration of the space manipulator and the joint angular velocity of the space manipulator The subscript m is the space manipulator; the end of the space manipulator is specifically the connection between the space manipulator and the hand-eye camera;

步骤四、根据空间机械臂各关节的运动信息计算服务卫星本体模拟器基座的运动信息;Step 4. Calculating the motion information of the base of the service satellite body simulator according to the motion information of each joint of the space manipulator;

步骤五、根据服务卫星本体模拟器基座的运动信息,通过运动学等效算法计算工业机械臂A的末端运动信息;其中,工业机械臂A的末端为工业机械臂A与服务卫星本体模拟器的连接处;Step 5. According to the motion information of the service satellite body simulator base, calculate the end motion information of the industrial manipulator A through the kinematics equivalent algorithm; wherein, the end of the industrial manipulator A is the industrial manipulator A and the service satellite body simulator the junction;

步骤六、根据视觉图像确定目标卫星本体模拟器的相对于手眼相机的位置的姿态判断接捕获接口是否在捕获手爪所在的捕获区域内;若在捕获手爪所在的捕获区域内则进行步骤八;若不在,则重复步骤一至五;直至捕获接口在捕获手爪所在的捕获区域内为止;Step 6. Determine the attitude of the target satellite body simulator relative to the position of the hand-eye camera according to the visual image and judge whether the capture interface is in the capture area where the capture hand is located; if it is in the capture area where the capture hand is located, proceed to step 8 ; If not, repeat steps 1 to 5; until the capture interface is in the capture area where the capture gripper is located;

步骤七、利用空间机械臂的控制器控制捕获手爪捕获目标卫星本体模拟器;Step 7, use the controller of the space manipulator to control the capture claw to capture the target satellite body simulator;

步骤八、当捕获手爪捕获目标卫星本体模拟器后,目标卫星本体模拟器根据所受的接触力通过动力学算法来估计目标卫星本体模拟器运动状态;Step 8. After the capture claw captures the target satellite body simulator, the target satellite body simulator estimates the motion state of the target satellite body simulator through a dynamic algorithm according to the received contact force;

步骤九、根据步骤八估计的目标卫星本体模拟器运动状态,通过运动学等效的方法,模拟工业机械臂T受力后的实际目标卫星的运动状态;Step 9, according to the motion state of the target satellite body simulator estimated in step 8, simulate the motion state of the actual target satellite after the industrial mechanical arm T is stressed by means of kinematics equivalent;

步骤十、根据力矩传感器测量的捕获手爪与目标卫星本体模拟器之间接触对基座产生的外力和外力矩通过空间机械臂的动力学算法,计算出服务卫星本体模拟器的运动状态,通过运动学等效算法利用工业机械臂A的运动实现服务卫星本体模拟器的运动状态。Step 10. Calculate the motion state of the service satellite body simulator through the dynamics algorithm of the space manipulator according to the external force and moment generated by the contact between the capture gripper and the target satellite body simulator on the base measured by the torque sensor. The kinematics equivalent algorithm utilizes the motion of the industrial manipulator A to realize the motion state of the service satellite body simulator.

本发明有益效果:Beneficial effects of the present invention:

本发明涉及一种空间一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置与方法,属于空间机械臂技术领域。The invention relates to a space device and method for simulating the microgravity in the ground three-dimensional space where a space manipulator captures a target satellite, and belongs to the technical field of space manipulators.

在地面上三维空间微重力模拟与验证方法,用于进行空间机器人捕获运动目标卫星的三维空间模拟和再现的实验与测试。The three-dimensional space microgravity simulation and verification method on the ground is used for the experiment and test of the three-dimensional space simulation and reproduction of the space robot capturing the moving target satellite.

1、本发明可以真实再现在三维空间里空间机器人捕获运动目标卫星的整个过程;1. The present invention can truly reproduce the whole process of a space robot capturing a moving target satellite in a three-dimensional space;

2、本发明可以模拟目标卫星的自旋或翻滚运动;2. The present invention can simulate the spin or roll motion of the target satellite;

3、本发明可以模拟空间机器人运动过程中的漂浮卫星基座的扰动情况;3. The present invention can simulate the disturbance of the floating satellite base during the movement of the space robot;

4、本发明可以验证空间机器人的相关运动控制和算法的可靠性;4. The present invention can verify the reliability of the related motion control and algorithm of the space robot;

5、本发明可以验证空间机器人部分真实硬件的特性;5. The present invention can verify the characteristics of some real hardware of the space robot;

6、本发明该系统可以用于空间机械臂对运动目标捕获的接触或在轨更换ORU操作的任务验证如图7(a)~图11(f)。6. The system of the present invention can be used for the task verification of the contact of the space manipulator to capture the moving target or the operation of replacing the ORU on orbit, as shown in Fig. 7(a) to Fig. 11(f).

附图说明Description of drawings

图1为具体实施方式三提出的工业机器人末端的空间机械臂对六维力或力矩传感器的重力补偿原理示意图即;其中,Fig. 1 is a schematic diagram of the gravitational compensation principle of the space manipulator at the end of the industrial robot to the six-dimensional force or torque sensor proposed in the third embodiment; wherein,

图2为具体实施方式一提出的基于硬件在环的空间机器人地面三维微重力验证系统的硬件结构框图;其中,2是空间机械臂,3是手眼相机,4是捕获手爪,6是捕获接口,7是服务卫星本体模拟器,8是目标卫星本体模拟器,9是工业机器人A,10是工业机器人T,11是六维力/力矩传感器;Fig. 2 is a block diagram of the hardware structure of the space robot ground three-dimensional microgravity verification system based on hardware-in-the-loop proposed in the first embodiment; wherein, 2 is the space manipulator arm, 3 is the hand-eye camera, 4 is the capture hand claw, and 6 is the capture interface , 7 is a service satellite body simulator, 8 is a target satellite body simulator, 9 is an industrial robot A, 10 is an industrial robot T, and 11 is a six-dimensional force/torque sensor;

图3为具体实施方式一提出的基于硬件在环的空间机器人地面三维微重力验证系统的软件结构框图;其中,12是视觉处理计算机,13是空间机械臂控制器,16工业机器人A控制器,17工业机器人A关节控制器,22工业机器人T控制器,23工业机器人T关节控制器Fig. 3 is the software structural block diagram of the ground three-dimensional microgravity verification system of the space robot based on the hardware in the loop proposed by the specific embodiment; wherein, 12 is a vision processing computer, 13 is a space manipulator controller, 16 is an industrial robot A controller, 17 industrial robot A joint controller, 22 industrial robot T controller, 23 industrial robot T joint controller

图4为具体实施方式一提出的基于硬件在环的空间机器人捕获目标卫星的地面三维微重力验证系统实现原理框图;Fig. 4 is a schematic block diagram of a ground three-dimensional microgravity verification system based on a hardware-in-the-loop space robot capturing a target satellite proposed in Embodiment 1;

图5为具体实施方式三提出的目标卫星在空间微重力环境下的运动模拟和再现的实现框图;Fig. 5 is the implementation block diagram of the motion simulation and reproduction of the target satellite proposed in the third embodiment in the space microgravity environment;

图6为具体实施方式二提出的空间机器人在空间微重力环境下的运动模型再现的实现框图;Fig. 6 is the implementation block diagram of the motion model reproduction of the space robot proposed in the second embodiment in the space microgravity environment;

图7(a)为具体实施方式一提出的目标卫星本体模拟器相对于手眼相机在x方向的位置随时间变化的曲线,其中,横轴为时间纵轴为目标卫星本体模拟器相对于手眼相机在x方向的位置Fig. 7(a) is the curve of the position of the target satellite body simulator relative to the hand-eye camera in the x direction as a function of time according to the first embodiment, wherein the horizontal axis is time and the vertical axis is the target satellite body simulator relative to the hand-eye camera position in the x direction

图7(b)为具体实施方式一提出的目标卫星本体模拟器相对于手眼相机在y方向的位置随时间变化的曲线,其中,横轴为时间纵轴为目标卫星本体模拟器相对于手眼相机在y方向的位置Fig. 7(b) is the curve of the position of the target satellite body simulator relative to the hand-eye camera in the y direction as a function of time according to the proposed embodiment 1, wherein the horizontal axis is time and the vertical axis is the target satellite body simulator relative to the hand-eye camera position in the y direction

图7(c)为具体实施方式一提出的目标卫星本体模拟器相对于手眼相机在z方向的位置随时间变化的曲线此图名称,其中,横轴为时间纵轴为目标卫星本体模拟器相对于手眼相机在z方向的位置Figure 7(c) is the curve of the position of the target satellite body simulator relative to the hand-eye camera in the z direction as a function of time according to the specific embodiment 1. Based on the position of the hand-eye camera in the z direction

图7(d)为具体实施方式一提出的目标卫星本体模拟器相对于手眼相机绕z轴的姿态随时间变化的曲线此图名称,其中,横轴为时间纵轴为目标卫星本体模拟器相对于手眼相机绕z轴的姿态Figure 7(d) is the curve of the attitude of the target satellite body simulator relative to the hand-eye camera around the z-axis as a function of time according to the specific embodiment 1. The pose of the hand-eye camera around the z-axis

图7(e)为具体实施方式一提出的目标卫星本体模拟器相对于手眼相机绕y轴的姿态随时间变化的曲线此图名称,其中,横轴为时间纵轴为目标卫星本体模拟器相对于手眼相机绕y轴的姿态Fig. 7(e) is the curve of the attitude of the target satellite body simulator relative to the hand-eye camera around the y-axis as a function of time of the proposed embodiment 1. The name of this figure, wherein the horizontal axis is time and the vertical axis is the relative The pose of the hand-eye camera around the y-axis

图7(f)为具体实施方式一提出的目标卫星本体模拟器相对于手眼相机绕x轴的姿态随时间变化的曲线此图名称,其中,横轴为时间纵轴为目标卫星本体模拟器相对于手眼相机绕x轴的姿态Fig. 7(f) is the curve of the attitude of the target satellite body simulator relative to the hand-eye camera around the x-axis as a function of time of the proposed embodiment 1. The name of this figure, wherein the horizontal axis is time and the vertical axis is the relative The pose of the hand-eye camera around the x-axis

图8(a)为具体实施方式一提出的空间机械臂末端在其惯性坐标系下的x方向变化曲线图;Fig. 8(a) is a graph showing the x-direction change curve of the end of the space manipulator in its inertial coordinate system proposed in Embodiment 1;

图8(b)为具体实施方式一提出的空间机械臂末端在其惯性坐标系下的y方向变化曲线图;Fig. 8(b) is a curve diagram of the change in the y direction of the end of the space manipulator proposed in the first embodiment in its inertial coordinate system;

图8(c)为具体实施方式一提出的空间机械臂末端在其惯性坐标系下的z方向变化曲线图;Fig. 8(c) is a graph showing the z-direction change curve of the end of the space manipulator in its inertial coordinate system proposed in Embodiment 1;

图9(a)为具体实施方式一提出的空间机械臂末端在其惯性坐标系下的绕x轴姿态角变化曲线图;Fig. 9(a) is a curve diagram of the attitude angle change around the x-axis of the end of the space manipulator proposed in the first embodiment in its inertial coordinate system;

图9(b)为具体实施方式一提出的空间机械臂末端在其惯性坐标系下的绕y轴姿态角变化曲线图;Fig. 9(b) is a curve diagram of the attitude angle change around the y-axis of the end of the space manipulator proposed in the first embodiment in its inertial coordinate system;

图9(c)为具体实施方式一提出的空间机械臂末端在其惯性坐标系下的绕y轴姿态角变化曲线图;Fig. 9(c) is a curve diagram of the attitude angle change around the y-axis of the end of the space manipulator proposed in the first embodiment in its inertial coordinate system;

图10(a)为具体实施方式一提出的空间机械臂第一关节的期望关节角和实际关节角的变化曲线;Fig. 10(a) is the change curve of the expected joint angle and the actual joint angle of the first joint of the space manipulator proposed in the first embodiment;

图10(b)为具体实施方式一提出的空间机械臂第二关节的期望关节角和实际关节角的变化曲线;Fig. 10(b) is the change curve of the expected joint angle and the actual joint angle of the second joint of the space manipulator proposed in the first embodiment;

图10(c)为具体实施方式一提出的空间机械臂第三关节的期望关节角和实际关节角的变化曲线;Fig. 10(c) is the change curve of the expected joint angle and the actual joint angle of the third joint of the space manipulator proposed in the first embodiment;

图10(d)为具体实施方式一提出的空间机械臂第四关节的期望关节角和实际关节角的变化曲线;Fig. 10(d) is the change curve of the expected joint angle and the actual joint angle of the fourth joint of the space manipulator proposed in the first embodiment;

图10(e)为具体实施方式一提出的空间机械臂第五关节的期望关节角和实际关节角的变化曲线;Fig. 10(e) is the change curve of the expected joint angle and the actual joint angle of the fifth joint of the space manipulator proposed in Embodiment 1;

图10(f)为具体实施方式一提出的空间机械臂第六关节的期望关节角和实际关节角的变化曲线;Fig. 10(f) is the change curve of the expected joint angle and the actual joint angle of the sixth joint of the space manipulator proposed in the first embodiment;

图11(a)为具体实施方式一提出的空间机械臂的服务卫星模拟器基座位姿的x方向变化曲线示意图;Fig. 11(a) is a schematic diagram of the change curve in the x direction of the base posture of the service satellite simulator of the space manipulator proposed in the first embodiment;

图11(b)为具体实施方式一提出的空间机械臂的服务卫星模拟器基座位姿的y方向变化曲线示意图;Fig. 11(b) is a schematic diagram of the change curve in the y direction of the base posture of the service satellite simulator of the space manipulator proposed in the first embodiment;

图11(c)为具体实施方式一提出的空间机械臂的服务卫星模拟器基座位姿的z方向变化曲线示意图;Fig. 11(c) is a schematic diagram of the change curve in the z direction of the base posture of the service satellite simulator of the space manipulator proposed in the first embodiment;

图11(d)为具体实施方式一提出的空间机械臂的服务卫星模拟器基座位姿的x欧拉角变化曲线示意图;Fig. 11(d) is a schematic diagram of the change curve of the x-Euler angle of the base pose of the service satellite simulator of the space manipulator proposed in Embodiment 1;

图11(e)为具体实施方式一提出的空间机械臂的服务卫星模拟器基座位姿的y欧拉角变化曲线示意图;Fig. 11(e) is a schematic diagram of the change curve of the y Euler angle of the base pose of the service satellite simulator of the space manipulator proposed in the first embodiment;

图11(f)为具体实施方式一提出的空间机械臂的服务卫星模拟器基座位姿的z欧拉角变化曲线示意图。Fig. 11(f) is a schematic diagram of the change curve of the z Euler angle of the base pose of the service satellite simulator of the space manipulator proposed in the first embodiment.

具体实施方式detailed description

具体实施方式一:本实施方式的一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置具体包括工业机械臂A9、工业机械臂T10;空间机械臂2,手眼相机3,捕获手爪4,捕获接口6,服务卫星本体模拟器7,目标卫星本体模拟器8以及六维力/力矩传感器11组成如图2;Specific embodiment one: a kind of ground three-dimensional space microgravity device of simulating a space manipulator to capture target satellite in this embodiment specifically includes industrial manipulator A9, industrial manipulator T10; Space manipulator 2, hand-eye camera 3, capture hand claw 4. The capture interface 6, the service satellite body simulator 7, the target satellite body simulator 8 and the six-dimensional force/torque sensor 11 are composed as shown in Figure 2;

本实施方式效果:The effect of this implementation mode:

本实施方式涉及一种空间一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置与方法,属于空间机械臂技术领域。This embodiment relates to a space device and method for simulating the three-dimensional microgravity on the ground where a space manipulator captures a target satellite, and belongs to the technical field of space manipulators.

在地面上三维空间微重力模拟与验证方法,用于进行空间机器人捕获运动目标卫星的三维空间模拟和再现的实验与测试。The three-dimensional space microgravity simulation and verification method on the ground is used for the experiment and test of the three-dimensional space simulation and reproduction of the space robot capturing the moving target satellite.

1、本实施方式可以真实再现在三维空间里空间机器人捕获运动目标卫星的整个过程;1. This embodiment can truly reproduce the whole process of a space robot capturing a moving target satellite in a three-dimensional space;

2、本实施方式可以模拟目标卫星的自旋或翻滚运动;2. This embodiment can simulate the spin or roll motion of the target satellite;

3、本实施方式可以模拟空间机器人运动过程中的漂浮卫星基座的扰动情况;3. This embodiment can simulate the disturbance of the floating satellite base during the movement of the space robot;

4、本实施方式可以验证空间机器人的相关运动控制和算法的可靠性;4. This embodiment can verify the reliability of the related motion control and algorithm of the space robot;

5、本实施方式可以验证空间机器人部分真实硬件的特性;5. This embodiment can verify the characteristics of some real hardware of the space robot;

6、本实施方式该系统可以用于空间机械臂对运动目标捕获的接触或在轨更换ORU操作的任务验证如图7(a)~图11(f)。6. In this embodiment, the system can be used for the task verification of the contact of the space manipulator to the capture of the moving target or the operation of replacing the ORU on orbit, as shown in Fig. 7(a) to Fig. 11(f).

具体实施方式二:本实施方式与具体实施方式一不同的是:所述的工业机械臂A9末端与服务卫星本体模拟器7相连,服务卫星本体模拟器7通过连接法兰连接六维力/力矩传感器11;六维力/力矩传感器11通过连接法兰连接空间机械臂2;空间机械臂2通过螺栓与手眼相机3相连接,手眼相机3通过螺栓连接捕获手爪4;Embodiment 2: The difference between this embodiment and Embodiment 1 is that the end of the industrial mechanical arm A9 is connected to the service satellite body simulator 7, and the service satellite body simulator 7 is connected to the six-dimensional force/moment through the connecting flange. The sensor 11; the six-dimensional force/torque sensor 11 is connected to the space manipulator 2 through the connecting flange; the space manipulator 2 is connected to the hand-eye camera 3 through bolts, and the hand-eye camera 3 captures the gripper 4 through bolt connection;

所述的工业机械臂T10通过连接法兰连接六维力/力矩传感器1,六维力/力矩传感器11通过连接法兰连接目标卫星本体模拟器8;目标卫星本体模拟器8连接捕获接口6,The industrial mechanical arm T10 is connected to the six-dimensional force/torque sensor 1 through the connecting flange, and the six-dimensional force/torque sensor 11 is connected to the target satellite body simulator 8 through the connecting flange; the target satellite body simulator 8 is connected to the capture interface 6,

其中,接捕获接口6与捕获手爪4相匹配;所述的工业机械臂A9为ABB公司生产的型号为IRB6640-235;所述的工业机械臂T10为ABB公司的生产的型号IRB6640-235;Wherein, connect capture interface 6 and capture gripper 4 to match; Described industrial mechanical arm A9 is the model IRB6640-235 that ABB Company produces; Described industrial mechanical arm T10 is the model IRB6640-235 that ABB Company produces;

所述的空间机械臂2主要由关节和连杆组成,所述的关节由电机、谐波减速器、绝对位置传感器、关节力矩传感器以及关节控制器等组成;The space manipulator 2 is mainly composed of joints and connecting rods, and the joints are composed of motors, harmonic reducers, absolute position sensors, joint torque sensors, and joint controllers;

所述的六维力/力矩传感器11具体为ATI的Delta六轴力或力矩传感器。其它步骤及参数与具体实施方式一相同。The six-axis force/torque sensor 11 is specifically ATI's Delta six-axis force or moment sensor. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式三:本实施方式与具体实施方式一或二不同的是:一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法具体包括以下步骤:Specific embodiment three: the difference between this embodiment and specific embodiment one or two is: a kind of realization method of the ground three-dimensional space microgravity of simulating space manipulator capturing target satellite specifically comprises the following steps:

步骤一、模拟目标卫星的运动;利用运动学等效算法将目标卫星本体模拟器8通过工业机械臂T10模拟实际目标卫星运动状态;Step 1, simulating the motion of the target satellite; utilizing the kinematics equivalent algorithm to simulate the actual target satellite motion state through the target satellite body simulator 8 through the industrial mechanical arm T10;

步骤二、通过手眼相机3采集步骤一中目标卫星本体模拟器8相对运动信息的视觉图像,根据视觉图像确定目标卫星本体模拟器8的相对于手眼相机3的位置与卫星本体模拟器8的姿态;Step 2, collect the visual image of target satellite body simulator 8 relative motion information in step 1 by hand-eye camera 3, determine the attitude of target satellite body simulator 8 relative to the position of hand-eye camera 3 and satellite body simulator 8 according to the visual image ;

步骤三、将步骤二确定的相对位置和姿态传递给空间机械臂2控制器,空间机械臂2控制器通过相对位置和姿态信息确定空间机械臂2末端运动信息;根据空间机械臂2末端运动信息,确定空间机械臂2各关节的运动信息;其中,空间机械臂2各关节的运动信息包括空间机械臂的关节角加速度和空间机械臂的关节角速度下角标m为空间机械臂;其中,空间机械臂2末端具体为空间机械臂2与手眼相机3的连接处;空间机械臂包括第一杆件、第二杆件、第三杆件和第四杆件;Step 3. Transfer the relative position and attitude determined in step 2 to the space manipulator 2 controller, and the space manipulator 2 controller determines the motion information of the end of the space manipulator 2 through the relative position and attitude information; according to the motion information of the space manipulator 2 end , to determine the motion information of each joint of the space manipulator 2; wherein, the motion information of each joint of the space manipulator 2 includes the joint angular acceleration of the space manipulator and the joint angular velocity of the space manipulator The subscript m is the space manipulator; wherein, the end of the space manipulator 2 is specifically the connection between the space manipulator 2 and the hand-eye camera 3; the space manipulator includes a first bar, a second bar, a third bar and a fourth bar Lever;

步骤四、根据空间机械臂2各关节的运动信息计算服务卫星本体模拟器7基座的运动信息;Step 4, calculating the motion information of the base of the service satellite body simulator 7 according to the motion information of each joint of the space manipulator 2;

步骤五、根据服务卫星本体模拟器7基座的运动信息,通过运动学等效算法计算工业机械臂A9的末端运动信息;其中,工业机械臂A9的末端为工业机械臂A9与服务卫星本体模拟器7的连接处;Step 5. According to the motion information of the base of the service satellite body simulator 7, calculate the end motion information of the industrial manipulator A9 through the kinematics equivalent algorithm; wherein, the end of the industrial manipulator A9 is the simulation of the industrial manipulator A9 and the service satellite body The connection of device 7;

步骤六、根据视觉图像确定目标卫星本体模拟器8的相对于手眼相机3的位置的姿态判断接捕获接口6是否在捕获手爪4所在的捕获区域内;若在捕获手爪4所在的捕获区域内则进行步骤八;若不在,则重复步骤一至五;直至捕获接口6在捕获手爪4所在的捕获区域内为止;Step 6, determine the attitude of the target satellite body simulator 8 relative to the position of the hand-eye camera 3 according to the visual image and judge whether the capture interface 6 is in the capture area where the capture hand 4 is located; if it is in the capture area where the capture hand 4 is located If not, then repeat steps one to five; until the capture interface 6 is in the capture area where the capture gripper 4 is located;

步骤七、利用空间机械臂2的控制器控制捕获手爪4捕获目标卫星本体模拟器8;Step 7, using the controller of the space manipulator 2 to control the capture gripper 4 to capture the target satellite body simulator 8;

步骤八、当捕获手爪4捕获目标卫星本体模拟器8后,目标卫星本体模拟器8根据所受的接触力通过动力学算法来估计目标卫星本体模拟器8运动状态;Step 8, after capturing the target satellite body simulator 8 with the capture claw 4, the target satellite body simulator 8 estimates the motion state of the target satellite body simulator 8 by a dynamics algorithm according to the contact force received;

步骤九、根据步骤八估计的目标卫星本体模拟器8运动状态,通过运动学等效的方法,模拟工业机械臂T10受力后的实际目标卫星的运动状态;Step 9, according to the motion state of the target satellite body simulator 8 estimated in step 8, through a kinematics equivalent method, simulate the motion state of the actual target satellite after the industrial mechanical arm T10 is stressed;

步骤十、根据力矩传感器测量的捕获手爪4与目标卫星本体模拟器8之间接触对基座产生的外力和外力矩通过空间机械臂的动力学算法,计算出服务卫星本体模拟器7的运动状态,通过运动学等效算法利用工业机械臂A9的运动实现服务卫星本体模拟器7的运动状态如图3和图4。其它步骤及参数与具体实施方式一或二相同。Step 10. Calculate the motion of the service satellite body simulator 7 through the dynamics algorithm of the space manipulator according to the external force and moment generated by the contact between the capture gripper 4 and the target satellite body simulator 8 on the base as measured by the torque sensor The motion state of the service satellite body simulator 7 is realized by using the motion of the industrial manipulator A9 through the kinematics equivalent algorithm as shown in Fig. 3 and Fig. 4 . Other steps and parameters are the same as those in Embodiment 1 or Embodiment 2.

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中模拟目标卫星的运动;如图5利用运动学等效算法将目标卫星本体模拟器8通过工业机械臂T10模拟实际目标卫星运动状态具体过程为:Specific embodiment four: this embodiment is different from one of the specific embodiments one to three: the motion of the simulated target satellite in step one; as shown in Figure 5, the target satellite body simulator 8 is passed through the industrial mechanical arm T10 by using the kinematics equivalent algorithm The specific process of simulating the actual target satellite motion state is as follows:

(1)、将目标卫星本体模拟器8在惯性空间的运动信息转换到工业机械臂T10末端在基座标系下的运动信息;(1), converting the motion information of the target satellite body simulator 8 in the inertial space to the motion information of the industrial mechanical arm T10 end under the base frame;

(2)、通过工业机械臂T10的上位机中的逆运动学算法确定工业机械臂T10的关节运动信息;(2), determine the joint motion information of the industrial mechanical arm T10 through the inverse kinematics algorithm in the upper computer of the industrial mechanical arm T10;

(3)、通过工业机械臂T10的内部总线将关节运动信息传递给工业机械臂的关节控制器,关节控制器控制工业机械臂T10运动。其它步骤及参数与具体实施方式一至三之一相同。(3) The joint movement information is transmitted to the joint controller of the industrial robot arm through the internal bus of the industrial robot arm T10, and the joint controller controls the motion of the industrial robot arm T10. Other steps and parameters are the same as those in Embodiments 1 to 3.

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤三中根据空间机械臂2各关节的运动信息计算服务卫星本体模拟器7基座的运动信息;Embodiment 5: This embodiment is different from Embodiment 1 to Embodiment 4 in that: in step 3, the motion information of the base of the service satellite body simulator 7 is calculated according to the motion information of each joint of the space manipulator 2;

如图6空间机械臂2的服务卫星本体模拟器7的运动模拟主要是通过空间机械臂2的动力学算法计算得到服务卫星本体模拟器7的运动状态信息,根据服务卫星本体模拟器7的运动状态信息通过运动学等效算法得到工业机器人A9的运动状态信息;The motion simulation of the service satellite body simulator 7 of the space manipulator 2 as shown in Figure 6 is mainly to obtain the motion state information of the service satellite body simulator 7 through the dynamic algorithm calculation of the space manipulator 2, according to the motion of the service satellite body simulator 7 The state information obtains the motion state information of the industrial robot A9 through the kinematics equivalent algorithm;

(1)、根据拉格朗日方程求解得到服务卫星本体模拟器7、空间机械臂2、手眼相机3和捕获手爪4组成系统的动力学方程表示形式如下:(1), according to the solution of the Lagrangian equation, the dynamic equation expression of the system composed of the service satellite body simulator 7, the space manipulator 2, the hand-eye camera 3 and the capture gripper 4 is as follows:

Hh bb Hh bb mm Hh bb mm TT Hh mm xx ···· bb qq ···· mm ++ cc bb cc mm == Ff bb Ff mm ++ JJ bb TT JJ mm TT Ff ee xx -- -- -- (( 11 ))

式中,Hb为服务卫星本体模拟器7的惯性张量;Hm为空间机械臂2耦合的惯性张量;Hbm为服务卫星本体模拟器7基座和空间机械臂2耦合的惯性张量;为服务卫星本体模拟器7基座的运动加速度;cb为与服务卫星本体模拟器7基座运动相关的非线性力,cb包括服务卫星本体模拟器7运动相关的向心力和基座运动相关的哥氏力;cm为空间机械臂2运动相关的非线性力,cm包括空间机械臂2运动相关的向心力和空间机械臂2运动相关的哥氏力;cb、cm∈R6;Fb∈R6为作用于服务卫星本体模拟器7的力和力矩,Fm∈R6为空间机械臂2关节的驱动力矩;Jb为与服务卫星本体模拟器7运动相关的雅可比矩阵;Jm为与空间机械臂2运动相关的雅可比矩阵,当空间机械臂2末端与环境接触,即空间机械臂2末端受到外力和外力矩Fex∈R6In the formula, H b is the inertia tensor of the serving satellite body simulator 7; H m is the inertia tensor of the coupling of the space manipulator 2; H bm is the inertia tensor of the coupling of the service satellite body simulator 7 base and the space manipulator 2 quantity; is the motion acceleration of the base of the service satellite body simulator 7; c b is the nonlinear force related to the motion of the base of the service satellite body simulator 7, and c b includes the centripetal force related to the motion of the service satellite body simulator 7 and the motion of the base Coriolis force; c m is the nonlinear force related to the motion of the space manipulator 2, and c m includes the centripetal force related to the motion of the space manipulator 2 and the Coriolis force related to the motion of the space manipulator 2; c b , c m ∈ R 6 ; F b ∈ R 6 is the force and moment acting on the service satellite body simulator 7, F m ∈ R 6 is the driving moment of the space manipulator 2 joints; J b is the Jacobian related to the motion of the service satellite body simulator 7 Matrix; J m is the Jacobian matrix related to the movement of the space manipulator 2, when the end of the space manipulator 2 is in contact with the environment, that is, the end of the space manipulator 2 is subjected to external force and external moment F ex ∈ R 6 ;

(2)、根据(1)式推导出下面的公式:(2), deduce following formula according to (1) formula:

Hh bb xx ·· bb ++ Hh bb mm qq ·&Center Dot; mm == 00 -- -- -- (( 22 ))

xx ·&Center Dot; bb == [[ vv bb ,, ωω bb ]] TT == -- Hh bb -- 11 (( Hh bb mm qq ·&Center Dot; mm )) -- -- -- (( 33 ))

式中,分别代表服务卫星本体模拟器7基座的运动速度;vb代表服务卫星本体模拟器7基座运动的线速度;ωb分别代表服务卫星本体模拟器7基座运动的角速度。其它步骤及参数与具体实施方式一至四之一相同。In the formula, respectively represent the motion velocity of the base of the serving satellite simulator 7; v b represent the linear velocity of the base of the serving satellite simulator 7; ω b represent the angular velocity of the base of the serving satellite simulator 7 respectively. Other steps and parameters are the same as in one of the specific embodiments 1 to 4.

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤四中根据服务卫星本体模拟器7基座的运动信息,通过运动学等效算法计算工业机械臂A9的末端运动信息具体过程为:Specific embodiment six: the difference between this embodiment and one of specific embodiments one to five is: in step 4, according to the motion information of the base of the service satellite body simulator 7, the terminal motion of the industrial manipulator A9 is calculated by kinematics equivalent algorithm The specific process of information is:

(1)、将服务卫星本体模拟器在惯性空间的运动信息转换到工业机械臂A9末端在基座标系下的运动信息;(1), converting the motion information of the service satellite body simulator in the inertial space to the motion information of the end of the industrial mechanical arm A9 under the base frame;

(2)、通过工业机械臂A9的上位机中的逆运动学算法确定工业机械臂A9的关节运动信息;(2), determine the joint motion information of the industrial mechanical arm A9 through the inverse kinematics algorithm in the upper computer of the industrial mechanical arm A9;

(3)、通过工业机械臂A9的内部总线将关节运动信息传递给工业机械臂的关节控制器,关节控制器控制工业机械臂A9运动。其它步骤及参数与具体实施方式一至五之一相同。(3) The joint movement information is transmitted to the joint controller of the industrial robot arm through the internal bus of the industrial robot arm A9, and the joint controller controls the motion of the industrial robot arm A9. Other steps and parameters are the same as one of the specific embodiments 1 to 5.

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤八中当捕获手爪4捕获目标卫星本体模拟器8后,目标卫星本体模拟器8根据所受的接触力通过动力学算法来估计卫星本体模拟器8运动状态的具体过程:Specific embodiment seven: the difference between this embodiment and one of the specific embodiments one to six is that in step eight, after the capture hand claw 4 captures the target satellite body simulator 8, the target satellite body simulator 8 passes through the target satellite body simulator according to the received contact force. The specific process of estimating the motion state of the satellite body simulator 8 by dynamic algorithm:

步骤八一、计算目标卫星本体模拟器8对六维力/力矩传感器的重力补偿得到目标卫星本体模拟器8在六维力/力矩传感器坐标系下的重力和重力矩具体公式如下:Step 81, calculate the gravity compensation of the target satellite body simulator 8 to the six-dimensional force/torque sensor to obtain the gravity and gravity torque of the target satellite body simulator 8 in the six-dimensional force/torque sensor coordinate system. The specific formula is as follows:

Ff gg sthe s == RR GG SS ·&Center Dot; Ff gg -- -- -- (( 88 ))

TT gg sthe s == PP sthe s ×× (( RR GG SS ·· Ff gg )) -- -- -- (( 99 ))

式中,Fg代表目标卫星本体模拟器8在重力坐标系下的重力;代表目标卫星本体模拟器8的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Ps代表目标卫星本体模拟器8重心位置在六维力/力矩传感器坐标系下的位置矢量;Fgs代表目标卫星本体模拟器8在六维力/力矩传感器坐标系下的重力;Tgs分别代表目标卫星本体模拟器8在六维力/力矩传感器坐标系下重力矩;In the formula, F represents the gravity of the target satellite body simulator 8 under the gravity coordinate system; Represents the transformation matrix of the center of gravity of the target satellite body simulator 8 from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; P s represents the position vector of the center of gravity of the target satellite body simulator 8 in the six-dimensional force/torque sensor coordinate system F gs represents the gravity of the target satellite body simulator 8 in the six-dimensional force/torque sensor coordinate system; T gs represents the gravity moment of the target satellite body simulator 8 in the six-dimensional force/torque sensor coordinate system respectively;

步骤八二、通过六维力/力矩传感器测量的捕获手爪4与目标卫星本体模拟器8的接触力和接触力矩与目标卫星本体模拟器8在六维力/力矩传感器坐标系下的重力和重力矩差值计算ft和τt,具体公式如下:Step 82, the contact force and contact moment between the captured gripper 4 and the target satellite body simulator 8 measured by the six-dimensional force/torque sensor and the gravity and the contact moment of the target satellite body simulator 8 in the six-dimensional force/torque sensor coordinate system Calculate f t and τ t by the gravity moment difference, the specific formula is as follows:

ft=Fct-Fgs f t =F ct -F gs

τt=Tct-Tgs τ t =T ct -T gs

其中,Fct代表六维力/力矩传感器测量的捕获手爪4与目标卫星本体模拟器8的接触力;Tct代表六维力/力矩传感器测量的捕获手爪4与目标卫星本体模拟器8的接触力矩;ft代表作用在目标卫星本体模拟器8上的外力;τt代表作用在目标卫星本体模拟器8上的外力矩;Among them, F ct represents the contact force between the capture gripper 4 and the target satellite body simulator 8 measured by the six-dimensional force/torque sensor; T ct represents the contact force between the capture gripper 4 and the target satellite body simulator 8 measured by the six-dimensional force/torque sensor The contact torque of ; f t represents the external force acting on the target satellite body simulator 8; τ t represents the external force acting on the target satellite body simulator 8;

步骤八三、假设目标卫星本体模拟器8是一个单旋转刚体,在不考虑卫星轨道动力学的前提下,那么目标卫星本体模拟器8的动力学方程表示如下:Step 83, assuming that the target satellite body simulator 8 is a single rotating rigid body, under the premise of not considering the satellite orbital dynamics, the dynamic equation of the target satellite body simulator 8 is expressed as follows:

Mm tt vv ·· tt == ff tt -- -- -- 66

II tt ωω ·· tt ++ ωω tt ×× II tt ωω tt == ττ tt -- -- -- 77

式中,Mt代表目标卫星本体模拟器8的质量;代表目标卫星本体模拟器8的线加速度;ωt分别代表目标卫星本体模拟器8的角速度;It分别代表目标卫星本体模拟器8的惯量;代表目标卫星本体模拟器8的角加速度;In the formula, M t represents the quality of the target satellite body simulator 8; Represent the linear acceleration of the target satellite body simulator 8; ω t represent the angular velocity of the target satellite body simulator 8 respectively; I t represent the inertia of the target satellite body simulator 8 respectively; Represent the angular acceleration of target satellite body simulator 8;

基于忽略轨道动力学的假设,外力矩τt在物理接触之前是零,在接触操作期间是接触力矩。其它步骤及参数与具体实施方式一至六之一相同。Based on the assumption that orbital dynamics are neglected, the external moment τt is zero before physical contact and is the contact torque during the contact operation. Other steps and parameters are the same as one of the specific embodiments 1 to 6.

具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤十中根据力矩传感器测量的捕获手爪4与目标卫星本体模拟器8之间接触对基座产生的外力和外力矩通过空间机械臂的动力学算法,计算出服务卫星本体模拟器7的运动状态,通过运动学等效算法利用工业机械臂A9的运动实现服务卫星本体模拟器7的运动状态具体过程:Embodiment 8: The difference between this embodiment and one of Embodiments 1 to 7 is that in step 10, the external force and external force generated by the contact between the capturing hand 4 and the target satellite body simulator 8 measured by the torque sensor are generated on the base. The torque calculates the motion state of the service satellite body simulator 7 through the dynamic algorithm of the space manipulator, and uses the motion of the industrial manipulator A9 to realize the motion state of the service satellite body simulator 7 through the kinematics equivalent algorithm:

(1)、如图1为工业机械臂A9末端的空间机械臂对六维力/力矩传感器的重力补偿原理示意图;计算空间机械臂2对六维力/力矩传感器的重力补偿得到空间机械臂2在六维力/力矩传感器坐标系下的重力和重力矩具体公式如下:(1) As shown in Figure 1, it is a schematic diagram of the gravity compensation principle of the space manipulator at the end of the industrial manipulator A9 to the six-dimensional force/torque sensor; calculate the gravity compensation of the space manipulator 2 to the six-dimensional force/torque sensor to obtain the space manipulator 2 The specific formulas of gravity and gravity moment in the six-dimensional force/torque sensor coordinate system are as follows:

Ff ^^ gg sthe s == Ff gg sthe s 11 ++ Ff gg sthe s 22 ++ Ff gg sthe s 33 ++ Ff gg sthe s 44 == RR GG 11 SS ·· GG 11 ++ RR GG 22 SS ·· GG 22 ++ RR GG 33 SS ·· GG 33 ++ RR GG 44 SS ·· GG 44 .. TT ^^ gg sthe s == TT gg sthe s 11 ++ TT gg sthe s 22 ++ TT gg sthe s 33 ++ TT gg sthe s 44 == rr 11 ×× (( RR GG 11 SS ·· GG 11 )) ++ rr 22 ×× (( RR GG 22 SS ·· GG 22 )) ++ rr 33 ×× (( RR GG 33 SS ·&Center Dot; GG 33 )) ++ rr 44 ×× (( RR GG 44 SS ·&Center Dot; GG 44 ))

式中,G1代表空间机械臂2的第一杆件在重力坐标系下的重力;Fgs1代表空间机械臂2的第一杆件在六维力/力矩传感器坐标系下的重力;代表空间机械臂2的第一杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs1空间机械臂2代表空间机械臂2的第一杆件在六维力/力矩传感器坐标系下的重力矩;r1代表空间机械臂2的第一杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;代表空间机械臂2的整体在六维力/力矩传感器坐标系下的重力。In the formula, G 1 represents the gravity of the first member of the space manipulator 2 in the gravity coordinate system; F gs1 represents the gravity of the first member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system; Represents the transformation matrix of the center of gravity of the first member of space manipulator 2 from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; T gs1 space manipulator 2 represents the first member of space manipulator 2 in the six-dimensional force/torque The gravitational moment in the torque sensor coordinate system; r 1 represents the position vector of the center of gravity position of the first member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system; Represents the gravity of the space manipulator 2 as a whole in the six-dimensional force/torque sensor coordinate system.

G2代表空间机械臂2的第二杆件在重力坐标系下的重力;Fgs2代表空间机械臂2的第二杆件在六维力/力矩传感器坐标系下的重力;代表空间机械臂2的第二杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs2代表空间机械臂2的第二杆件在六维力/力矩传感器坐标系下的重力矩;r2代表空间机械臂2的第二杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;分别代表空间机械臂2的整体在六维力/力矩传感器坐标系下的重力矩。G 2 represents the gravity of the second member of the space manipulator 2 in the gravity coordinate system; F gs2 represents the gravity of the second member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system; Represents the transformation matrix of the center of gravity of the second member of the space manipulator 2 from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; T gs2 represents the second member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system The moment of gravity under ; r 2 represents the position vector of the center of gravity of the second member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system; respectively represent the gravity moment of the space manipulator 2 as a whole in the six-dimensional force/torque sensor coordinate system.

G3代表空间机械臂2的第三杆件在重力坐标系下的重力;Fgs3代表空间机械臂2的第三杆件在六维力/力矩传感器坐标系下的重力;代表空间机械臂2的第三杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs3分别代表空间机械臂2的第三杆件在六维力/力矩传感器坐标系下的重力矩;r3代表空间机械臂2的第三杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;G 3 represents the gravity of the third member of the space manipulator 2 in the gravity coordinate system; F gs3 represents the gravity of the third member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system; Represents the transformation matrix of the center of gravity of the third member of the space manipulator 2 from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; T gs3 represents the coordinates of the third member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system The moment of gravity under the system; r 3 represents the position vector of the center of gravity of the third member of the space manipulator 2 in the coordinate system of the six-dimensional force/torque sensor;

G4分别代表空间机械臂2的第四杆件在重力坐标系下的重力;Fgs4分别代表空间机械臂2的第四杆件在六维力/力矩传感器坐标系下的重力;分别代表空间机械臂2的第四杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs4分别代表空间机械臂2的第四杆件在六维力/力矩传感器坐标系下的重力矩;r4分别代表空间机械臂2的第四杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;G 4 respectively represent the gravity of the fourth member of the space manipulator 2 in the gravity coordinate system; F gs4 respectively represent the gravity of the fourth member of the space manipulator 2 in the six-dimensional force/torque sensor coordinate system; respectively represent the transformation matrix of the center of gravity of the fourth member of the space manipulator 2 from the coordinate system of the six-dimensional force/torque sensor to the gravity coordinate system; The moment of gravity under the coordinate system; r 4 respectively represent the position vector of the center of gravity position of the fourth member of the space manipulator 2 under the coordinate system of the six-dimensional force/torque sensor;

(2)、通过六维力/力矩传感器测量的服务卫星本体模拟器7受到的接触力和接触力矩与空间机械臂2在六维力/力矩传感器坐标系下的重力和重力矩差值计算fb和τb,具体公式如下:(2) Calculation of the difference between the contact force and contact moment of the service satellite body simulator 7 measured by the six-dimensional force/torque sensor and the gravity and gravity moment of the space manipulator 2 in the coordinate system of the six-dimensional force/torque sensor b and τ b , the specific formula is as follows:

fb=Fcb-Fgs f b =F cb -F gs

τb=Tcb-Tgs τ b =T cb -T gs

其中,Fcb代表六维力/力矩传感器测量的服务卫星本体模拟器7受到的接触力;Tcb代表六维力/力矩传感器测量的服务卫星本体模拟器7受到的接触力矩;Among them, Fcb represents the contact force of the service satellite body simulator 7 measured by the six-dimensional force/torque sensor; Tcb represents the contact torque of the service satellite body simulator 7 measured by the six-dimensional force/torque sensor;

(3)、假设服务卫星本体模拟器7是一个刚体,在不考虑卫星轨道动力学的前提下,那么服务卫星本体模拟器7的动力学方程表示如下:(3), assuming that the service satellite body simulator 7 is a rigid body, under the premise of not considering the orbital dynamics of the satellite, the dynamic equation of the service satellite body simulator 7 is expressed as follows:

Mm bb vv ·&Center Dot; bb == ff bb -- -- -- 44

II bb ωω ·· bb ++ ωω bb ×× II bb ωω bb == ττ bb -- -- -- 55

其中,Mb代表服务卫星本体模拟器7基座的质量;代表基座运动线加速度;fb代表基座所受的力;Ib代表服务卫星本体模拟器7基座的惯量;代表基座运动线角加速度;τb代表基座所受的力矩。 Wherein , M represents the quality of the base of the service satellite body simulator 7; Represents the linear acceleration of the base motion; f b represents the force on the base; I b represents the inertia of the base of the service satellite body simulator 7; Represents the linear angular acceleration of the base; τ b represents the torque on the base.

(4)根据服务卫星本体模拟器7基座的运动信息,通过运动学等效算法计算工业机械臂A9的末端运动信息具体过程为:(4) According to the motion information of the base of the service satellite body simulator 7, the specific process of calculating the terminal motion information of the industrial manipulator A9 through the kinematics equivalent algorithm is as follows:

1)将服务卫星本体模拟器在惯性空间的运动信息转换到工业机械臂A9末端在基座标系下的运动信息;1) Convert the motion information of the service satellite body simulator in the inertial space to the motion information of the end of the industrial mechanical arm A9 under the base frame;

2)通过工业机械臂A9的上位机中的逆运动学算法确定工业机械臂A9的关节运动信息;2) Determine the joint motion information of the industrial robotic arm A9 through the inverse kinematics algorithm in the upper computer of the industrial robotic arm A9;

3)通过工业机械臂A9的内部总线将关节运动信息传递给工业机械臂的关节控制器,关节控制器控制工业机械臂A9运动实现服务卫星本体模拟器7的运动状态。其它步骤及参数与具体实施方式一至七之一相同。3) The joint motion information is transmitted to the joint controller of the industrial manipulator through the internal bus of the industrial manipulator A9, and the joint controller controls the movement of the industrial manipulator A9 to realize the motion state of the service satellite body simulator 7. Other steps and parameters are the same as one of the specific embodiments 1 to 7.

Claims (7)

1.一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置,其特征在于,一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的装置具体包括工业机械臂A(9)、工业机械臂T(10);空间机械臂(2),手眼相机(3),捕获手爪(4),捕获接口(6),服务卫星本体模拟器(7),目标卫星本体模拟器(8)以及六维力/力矩传感器(11)组成;1. A device for simulating the ground three-dimensional space microgravity of a space manipulator capturing a target satellite, characterized in that a device for simulating a space manipulator capturing the ground three-dimensional space microgravity of a target satellite specifically includes an industrial manipulator A (9) , industrial manipulator T (10); space manipulator (2), hand-eye camera (3), capture gripper (4), capture interface (6), service satellite body simulator (7), target satellite body simulator ( 8) and a six-dimensional force/torque sensor (11); 所述的工业机械臂A(9)末端与服务卫星本体模拟器(7)相连,服务卫星本体模拟器(7)通过连接法兰连接六维力/力矩传感器(11);六维力/力矩传感器(11)通过连接法兰连接空间机械臂(2);空间机械臂(2)通过螺栓与手眼相机(3)相连接,手眼相机(3)通过螺栓连接捕获手爪(4);The end of the industrial mechanical arm A (9) is connected to the service satellite body simulator (7), and the service satellite body simulator (7) is connected to the six-dimensional force/torque sensor (11) through the connecting flange; the six-dimensional force/torque The sensor (11) is connected to the space manipulator (2) through a connecting flange; the space manipulator (2) is connected to the hand-eye camera (3) through bolts, and the hand-eye camera (3) captures the gripper (4) through bolt connection; 所述的工业机械臂T(10)通过连接法兰连接六维力/力矩传感器(11),六维力/力矩传感器(11)通过连接法兰连接目标卫星本体模拟器(8);目标卫星本体模拟器(8)连接捕获接口(6);Described industrial mechanical arm T (10) connects six-dimensional force/torque sensor (11) by connecting flange, and six-dimensional force/torque sensor (11) connects target satellite body simulator (8) by connecting flange; Target satellite The body simulator (8) is connected to the capture interface (6); 其中,接捕获接口(6)与捕获手爪(4)相匹配。Wherein, the catch interface (6) is matched with the catch claw (4). 2.一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法,其特征在于:一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法具体包括以下步骤:2. a method for realizing the microgravity of the ground three-dimensional space of a simulated space manipulator capturing the target satellite, characterized in that: a method for realizing the microgravity of the ground three-dimensional space of a simulated space manipulator capturing the target satellite specifically comprises the following steps: 步骤一、模拟目标卫星的运动;利用运动学等效算法将目标卫星本体模拟器(8)通过工业机械臂T(10)模拟实际目标卫星运动状态;Step 1, simulating the motion of the target satellite; using a kinematics equivalent algorithm to simulate the actual target satellite motion state by the target satellite body simulator (8) through the industrial mechanical arm T (10); 步骤二、通过手眼相机(3)采集步骤一中目标卫星本体模拟器(8)相对运动信息的视觉图像,根据视觉图像确定目标卫星本体模拟器(8)的相对于手眼相机(3)的位置与卫星本体模拟器(8)的姿态;Step 2, collect the visual image of target satellite body simulator (8) relative motion information in step 1 by hand-eye camera (3), determine the position relative to hand-eye camera (3) of target satellite body simulator (8) according to visual image and the attitude of the satellite body simulator (8); 步骤三、将步骤二确定的相对位置和姿态传递给空间机械臂(2)控制器,空间机械臂(2)控制器通过相对位置和姿态信息确定空间机械臂(2)末端运动信息;根据空间机械臂(2)末端运动信息,确定空间机械臂(2)各关节的运动信息;其中,空间机械臂(2)各关节的运动信息包括空间机械臂的关节角加速度和空间机械臂的关节角速度下角标m为空间机械臂;其中,空间机械臂(2)末端具体为空间机械臂(2)与手眼相机(3)的连接处;Step 3. The relative position and attitude determined in step 2 are transmitted to the space manipulator (2) controller, and the space manipulator (2) controller determines the end motion information of the space manipulator (2) through the relative position and attitude information; The motion information of the end of the manipulator (2) determines the motion information of each joint of the space manipulator (2); wherein, the motion information of each joint of the space manipulator (2) includes the joint angular acceleration of the space manipulator and the joint angular velocity of the space manipulator The subscript m is the space manipulator; wherein, the end of the space manipulator (2) is specifically the connection between the space manipulator (2) and the hand-eye camera (3); 步骤四、根据空间机械臂(2)各关节的运动信息计算服务卫星本体模拟器(7)基座的运动信息;Step 4, calculating the motion information of the base of the service satellite body simulator (7) according to the motion information of each joint of the space manipulator (2); 步骤五、根据服务卫星本体模拟器(7)基座的运动信息,通过运动学等效算法计算工业机械臂A(9)的末端运动信息;其中,工业机械臂A(9)的末端为工业机械臂A(9)与服务卫星本体模拟器(7)的连接处;Step 5, according to the motion information of the base of the service satellite body simulator (7), calculate the terminal motion information of the industrial manipulator A (9) through a kinematics equivalent algorithm; wherein, the end of the industrial manipulator A (9) is the industrial manipulator The junction of the robotic arm A (9) and the service satellite body simulator (7); 步骤六、根据视觉图像确定目标卫星本体模拟器(8)的相对于手眼相机(3)的位置的姿态判断接捕获接口(6)是否在捕获手爪(4)所在的捕获区域内;若在捕获手爪(4)所在的捕获区域内则进行步骤八;若不在,则重复步骤一至五;直至捕获接口(6)在捕获手爪(4)所在的捕获区域内为止;Step 6, determine whether the attitude of the target satellite body simulator (8) relative to the position of the hand-eye camera (3) according to the visual image judges whether the capture interface (6) is in the capture area where the capture hand claw (4) is located; Step 8 is performed in the capture area where the capture claw (4) is located; if not, repeat steps 1 to 5; until the capture interface (6) is in the capture area where the capture claw (4) is located; 步骤七、利用空间机械臂(2)的控制器控制捕获手爪(4)捕获目标卫星本体模拟器(8);Step 7, using the controller of the space manipulator (2) to control the capture hand claw (4) to capture the target satellite body simulator (8); 步骤八、当捕获手爪(4)捕获目标卫星本体模拟器(8)后,目标卫星本体模拟器(8)根据所受的接触力通过动力学算法来估计目标卫星本体模拟器(8)运动状态;Step 8, after the capture claw (4) captures the target satellite body simulator (8), the target satellite body simulator (8) estimates the motion of the target satellite body simulator (8) through a dynamics algorithm according to the received contact force state; 步骤九、根据步骤八估计的目标卫星本体模拟器(8)运动状态,通过运动学等效的方法,模拟工业机械臂T(10)受力后的实际目标卫星的运动状态;Step 9, according to the motion state of the target satellite body simulator (8) estimated in step 8, by kinematics equivalent method, simulate the motion state of the actual target satellite after the industrial mechanical arm T (10) is stressed; 步骤十、根据力矩传感器测量的捕获手爪(4)与目标卫星本体模拟器(8)之间接触对基座产生的外力和外力矩通过空间机械臂的动力学算法,计算出服务卫星本体模拟器(7)的运动状态,通过运动学等效算法利用工业机械臂A(9)的运动实现服务卫星本体模拟器(7)的运动状态。Step 10. According to the external force and moment generated by the contact between the capture gripper (4) and the target satellite body simulator (8) measured by the torque sensor on the base, use the dynamic algorithm of the space manipulator to calculate the service satellite body simulation The motion state of the robot (7) is realized by using the kinematics equivalent algorithm to realize the motion state of the service satellite body simulator (7) by using the motion of the industrial manipulator A (9). 3.根据权利要求2所述一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法,其特征在于:步骤一中利用运动学等效算法将目标卫星本体模拟器(8)通过工业机械臂T(10)模拟实际目标卫星运动状态具体过程为:3. according to the realization method of the ground three-dimensional space microgravity of a kind of simulated space mechanical arm capturing target satellite according to claim 2, it is characterized in that: utilize kinematics equivalent algorithm to pass target satellite body simulator (8) through in step 1 The specific process of the industrial manipulator T (10) simulating the motion state of the actual target satellite is as follows: 1)将目标卫星本体模拟器(8)在惯性空间的运动信息转换到工业机械臂T(10)末端在基座标系下的运动信息;1) converting the motion information of the target satellite body simulator (8) in the inertial space to the motion information of the end of the industrial manipulator T (10) under the base frame; 2)通过工业机械臂T(10)的上位机中的逆运动学算法确定工业机械臂T(10)的关节运动信息;2) Determine the joint motion information of the industrial robotic arm T (10) through the inverse kinematics algorithm in the host computer of the industrial robotic arm T (10); 3)通过工业机械臂T(10)的内部总线将关节运动信息传递给工业机械臂的关节控制器,关节控制器控制工业机械臂T(10)运动。3) The joint movement information is transmitted to the joint controller of the industrial robot arm through the internal bus of the industrial robot arm T (10), and the joint controller controls the motion of the industrial robot arm T (10). 4.根据权利要求3所述一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法,其特征在于:步骤三中根据空间机械臂(2)各关节的运动信息计算服务卫星本体模拟器(7)基座的运动信息;4. according to claim 3, a kind of simulation space manipulator captures the realization method of the ground three-dimensional space microgravity of target satellite, it is characterized in that: in step 3, according to the kinematic information calculation service satellite body of each joint of space manipulator arm (2) The motion information of simulator (7) base; (1)、根据拉格朗日方程求解得到服务卫星本体模拟器(7)、空间机械臂(2)、手眼相机(3)和捕获手爪(4)组成系统的动力学方程表示形式如下:(1) According to the Lagrangian equation, the dynamic equation expression of the system composed of the service satellite body simulator (7), the space manipulator (2), the hand-eye camera (3) and the capture hand gripper (4) is obtained as follows: Hh bb Hh bb mm Hh bb mm TT Hh mm xx ···· bb qq ···· mm ++ cc bb cc mm == Ff bb Ff mm ++ JJ bb TT JJ mm TT Ff ee xx -- -- -- (( 11 )) 式中,Hb为服务卫星本体模拟器(7)的惯性张量;Hm为空间机械臂(2)耦合的惯性张量;Hbm为服务卫星本体模拟器(7)基座和空间机械臂(2)耦合的惯性张量;为服务卫星本体模拟器(7)基座的运动加速度;cb为与服务卫星本体模拟器(7)基座运动相关的非线性力,cb包括服务卫星本体模拟器(7)运动相关的向心力和基座运动相关的哥氏力;cm为空间机械臂(2)运动相关的非线性力,cm包括空间机械臂(2)运动相关的向心力和空间机械臂(2)运动相关的哥氏力;cb、cm∈R6;Fb∈R6为作用于服务卫星本体模拟器(7)的力和力矩,Fm∈R6为空间机械臂(2)关节的驱动力矩;Jb为与服务卫星本体模拟器(7)运动相关的雅可比矩阵;Jm为与空间机械臂(2)运动相关的雅可比矩阵,空间机械臂(2)末端受到外力和外力矩Fex∈R6In the formula, H b is the inertia tensor of the service satellite body simulator (7); H m is the inertia tensor coupled with the space manipulator (2); H bm is the base of the service satellite body simulator (7) and the space mechanism Inertia tensor of arm (2) coupling; is the motion acceleration of the service satellite body simulator (7) base; c b is the nonlinear force related to the service satellite body simulator (7) base motion, and c b includes the service satellite body simulator (7) motion-related The centripetal force and the Coriolis force related to the motion of the base; c m is the nonlinear force related to the motion of the space manipulator (2), and c m includes the centripetal force related to the motion of the space manipulator (2) and the motion of the space manipulator (2) Coriolis force; c b , c m ∈ R 6 ; F b ∈ R 6 is the force and moment acting on the service satellite body simulator (7), F m ∈ R 6 is the driving moment of the joint of the space manipulator (2) ; J b is the Jacobian matrix related to the motion of the service satellite body simulator (7); J m is the Jacobian matrix related to the motion of the space manipulator (2), and the end of the space manipulator (2) is subjected to external force and external moment F ex ∈ R 6 ; (2)根据(1)式推导出下面的公式:(2) According to formula (1), the following formula is derived: Hh bb xx ·&Center Dot; bb ++ Hh bb mm qq ·· mm == 00 -- -- -- (( 22 )) xx ·· bb == [[ vv bb ,, ωω bb ]] TT == -- Hh bb -- 11 (( Hh bb mm qq ·· mm )) -- -- -- (( 33 )) 式中,分别代表服务卫星本体模拟器(7)基座的运动速度;vb代表服务卫星本体模拟器(7)基座运动的线速度;ωb分别代表服务卫星本体模拟器(7)基座运动的角速度。In the formula, Represent the velocity of motion of the base of the service satellite body simulator (7 ) respectively; v b represent the linear velocity of the base motion of the service satellite body simulator (7); angular velocity. 5.根据权利要求4所述一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法,其特征在于:步骤四中根据服务卫星本体模拟器(7)基座的运动信息,通过运动学等效算法计算工业机械臂A(9)的末端运动信息具体过程为:5. according to claim 4, a kind of simulation space manipulator captures the realization method of the ground three-dimensional space microgravity of target satellite, it is characterized in that: in step 4, according to the motion information of service satellite body simulator (7) pedestal, by The kinematics equivalent algorithm calculates the end motion information of the industrial robot arm A (9) and the specific process is as follows: 1)将服务卫星本体模拟器在惯性空间的运动信息转换到工业机械臂A(9)末端在基座标系下的运动信息;1) Convert the motion information of the service satellite body simulator in the inertial space to the motion information of the end of the industrial mechanical arm A (9) in the base frame; 2)通过工业机械臂A(9)的上位机中的逆运动学算法确定工业机械臂A(9)的关节运动信息;2) Determine the joint motion information of the industrial robotic arm A (9) through the inverse kinematics algorithm in the host computer of the industrial robotic arm A (9); 3)通过工业机械臂A(9)的内部总线将关节运动信息传递给工业机械臂的关节控制器,关节控制器控制工业机械臂A(9)运动。3) The joint motion information is transmitted to the joint controller of the industrial robot arm through the internal bus of the industrial robot arm A (9), and the joint controller controls the motion of the industrial robot arm A (9). 6.根据权利要求5所述一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法,其特征在于:步骤八中当捕获手爪(4)捕获目标卫星本体模拟器(8)后,目标卫星本体模拟器(8)根据所受的接触力通过动力学算法来估计卫星本体模拟器(8)运动状态的具体过程:6. according to claim 5, a kind of simulated space manipulator arm captures the realization method of the ground three-dimensional space microgravity of target satellite, it is characterized in that: in step 8, capture target satellite body simulator (8) when capturing claw (4) Finally, the target satellite body simulator (8) estimates the specific process of the satellite body simulator (8) motion state by a dynamics algorithm according to the contact force suffered: 步骤八一、计算目标卫星本体模拟器(8)对六维力/力矩传感器的重力补偿得到目标卫星本体模拟器(8)在六维力/力矩传感器坐标系下的重力和重力矩具体公式如下:Step 81. Calculate the gravity compensation of the target satellite body simulator (8) to the six-dimensional force/torque sensor to obtain the gravity and gravity of the target satellite body simulator (8) in the six-dimensional force/torque sensor coordinate system. The specific formula is as follows : Ff gg sthe s == RR GG SS ·· Ff gg -- -- -- (( 88 )) TT gg sthe s == PP sthe s ×× (( gg GG SS ·&Center Dot; Ff gg )) -- -- -- (( 99 )) 式中,Fg代表目标卫星本体模拟器(8)在重力坐标系下的重力;代表目标卫星本体模拟器(8)的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Ps代表目标卫星本体模拟器(8)重心位置在六维力/力矩传感器坐标系下的位置矢量;Fgs代表目标卫星本体模拟器(8)在六维力/力矩传感器坐标系下的重力;Tgs分别代表目标卫星本体模拟器(8)在六维力/力矩传感器坐标系下重力矩;In the formula, F represents the gravity of the target satellite body simulator (8) under the gravity coordinate system; Representing the transformation matrix of the center of gravity of the target satellite body simulator (8) from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; P s represents the position of the center of gravity of the target satellite body simulator (8) in the six-dimensional force/torque sensor coordinate system F gs represents the gravity of the target satellite body simulator (8) in the six-dimensional force/torque sensor coordinate system; T gs represents the target satellite body simulator (8) in the six-dimensional force/torque sensor coordinate system lower gravity moment; 步骤八二、通过六维力/力矩传感器测量的捕获手爪(4)与目标卫星本体模拟器(8)的接触力和接触力矩与目标卫星本体模拟器(8)在六维力/力矩传感器坐标系下的重力和重力矩差值计算ft和τt,具体公式如下:Step eighty-two, the contact force and contact moment between the captured gripper (4) and the target satellite body simulator (8) measured by the six-dimensional force/torque sensor and the target satellite body simulator (8) in the six-dimensional force/torque sensor The difference between gravity and gravity moment in the coordinate system is calculated as f t and τ t , and the specific formula is as follows: ft=Fct-Fgs f t =F ct -F gs τt=Tct-Tgs τ t =T ct -T gs 其中,Fct代表六维力/力矩传感器测量的捕获手爪(4)与目标卫星本体模拟器(8)的接触力;Tct代表六维力/力矩传感器测量的捕获手爪(4)与目标卫星本体模拟器(8)的接触力矩;ft代表作用在目标卫星本体模拟器(8)上的外力;τt代表作用在目标卫星本体模拟器(8)上的外力矩;Among them, F ct represents the contact force between the capture gripper (4) measured by the six-dimensional force/torque sensor and the target satellite body simulator (8); T ct represents the contact force between the capture gripper (4) and the target satellite body simulator (8) measured by the six-dimensional force/torque sensor. The contact torque of the target satellite body simulator (8); ft represents the external force acting on the target satellite body simulator (8); τ t represents the external moment acting on the target satellite body simulator (8); 步骤八三、假设目标卫星本体模拟器(8)是一个单旋转刚体,在不考虑卫星轨道动力学的前提下,那么目标卫星本体模拟器(8)的动力学方程表示如下:Step eighty three, assuming that the target satellite body simulator (8) is a single rotation rigid body, under the premise of not considering the satellite orbital dynamics, the dynamic equation of the target satellite body simulator (8) is expressed as follows: Mm tt vv ·&Center Dot; tt == ff tt -- -- -- (( 66 )) II tt ωω ·&Center Dot; tt ++ ωω tt ×× II tt ωω tt == ττ tt -- -- -- (( 77 )) 式中,Mt代表目标卫星本体模拟器(8)的质量;代表目标卫星本体模拟器(8)的线加速度;ωt分别代表目标卫星本体模拟器(8)的角速度;It分别代表目标卫星本体模拟器(8)的惯量;代表目标卫星本体模拟器(8)的角加速度。In the formula, M t represents the quality of the target satellite body simulator (8); Represent the linear acceleration of the target satellite body simulator (8); ω t represents the angular velocity of the target satellite body simulator (8) respectively; I t represents the inertia of the target satellite body simulator (8) respectively; Represents the angular acceleration of the target satellite body simulator (8). 7.根据权利要求6所述一种模拟空间机械臂捕获目标卫星的地面三维空间微重力的实现方法,其特征在于:步骤十中根据力矩传感器测量的捕获手爪(4)与目标卫星本体模拟器(8)之间接触对基座产生的外力和外力矩通过空间机械臂的动力学算法,计算出服务卫星本体模拟器(7)的运动状态,通过运动学等效算法利用工业机械臂A(9)的运动实现服务卫星本体模拟器(7)的运动状态具体过程:7. according to claim 6, a kind of simulated space manipulator captures the realization method of the ground three-dimensional space microgravity of target satellite, it is characterized in that: in the step ten, according to the capturing hand claw (4) measured by torque sensor and target satellite body simulation The external force and external moment generated by the contact between the device (8) and the base are calculated by the dynamic algorithm of the space manipulator, and the motion state of the service satellite body simulator (7) is calculated, and the industrial manipulator A is used by the kinematics equivalent algorithm. The motion of (9) realizes the specific process of the motion state of the service satellite body simulator (7): (1)计算空间机械臂(2)对六维力/力矩传感器的重力补偿得到空间机械臂(2)在六维力/力矩传感器坐标系下的重力和重力矩具体公式如下:(1) Calculate the gravity compensation of the space manipulator (2) to the six-dimensional force/torque sensor to obtain the gravity and gravity torque of the space manipulator (2) in the six-dimensional force/torque sensor coordinate system. The specific formula is as follows: Ff ^^ gg sthe s == Ff gg sthe s 11 ++ Ff gg sthe s 22 ++ Ff gg sthe s 33 ++ Ff gg sthe s 44 == RR GG 11 SS ·&Center Dot; GG 11 ++ RR GG 22 SS ·· GG 22 ++ RR GG 33 SS ·· GG 33 ++ RR GG 44 SS ·· GG 44 TT ^^ gg sthe s == TT gg sthe s 11 ++ TT gg sthe s 22 ++ TT gg sthe s 33 ++ TT gg sthe s 44 == rr 11 ×× (( RR GG 11 SS ·&Center Dot; GG 11 )) ++ rr 22 ×× (( RR GG 22 SS ·&Center Dot; GG 22 )) ++ rr 33 ×× (( RR GG 33 SS ·&Center Dot; GG 33 )) ++ rr 44 ×× (( RR GG 44 SS ·&Center Dot; GG 44 )) 式中,G1代表空间机械臂(2)的第一杆件在重力坐标系下的重力;Fgs1代表空间机械臂(2)的第一杆件在六维力/力矩传感器坐标系下的重力;代表空间机械臂(2)的第一杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs1空间机械臂(2)代表空间机械臂(2)的第一杆件在六维力/力矩传感器坐标系下的重力矩;r1代表空间机械臂(2)的第一杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;代表空间机械臂(2)的整体在六维力/力矩传感器坐标系下的重力;In the formula, G 1 represents the gravity of the first member of the space manipulator (2) in the gravity coordinate system; F gs1 represents the gravity of the first member of the space manipulator (2) in the six-dimensional force/torque sensor coordinate system gravity; Represents the transformation matrix of the center of gravity of the first member of the space manipulator (2) from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; T gs1 space manipulator (2) represents the first pole of the space manipulator (2) The moment of gravity of the part under the coordinate system of the six-dimensional force/torque sensor; r 1 represents the position vector of the center of gravity position of the first member of the space manipulator (2) under the coordinate system of the six-dimensional force/torque sensor; represents the overall gravity of the space manipulator (2) in the six-dimensional force/torque sensor coordinate system; G2代表空间机械臂(2)的第二杆件在重力坐标系下的重力;Fgs2代表空间机械臂(2)的第二杆件在六维力/力矩传感器坐标系下的重力;代表空间机械臂(2)的第二杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs2代表空间机械臂(2)的第二杆件在六维力/力矩传感器坐标系下的重力矩;r2代表空间机械臂(2)的第二杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;分别代表空间机械臂(2)的整体在六维力/力矩传感器坐标系下的重力矩;G 2 represents the gravity of the second member of the space manipulator (2) under the gravity coordinate system; F gs2 represents the gravity of the second member of the space manipulator (2) under the six-dimensional force/torque sensor coordinate system; Represents the transformation matrix of the center of gravity of the second member of the space manipulator (2) from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; T gs2 represents the second member of the space manipulator (2) in the six-dimensional force/torque The moment of gravity under the torque sensor coordinate system; r 2 represents the position vector of the second bar center of gravity position of the space manipulator (2) under the six-dimensional force/torque sensor coordinate system; respectively represent the gravity moment of the space manipulator (2) as a whole in the six-dimensional force/torque sensor coordinate system; G3代表空间机械臂(2)的第三杆件在重力坐标系下的重力;Fgs3代表空间机械臂(2)的第三杆件在六维力/力矩传感器坐标系下的重力;代表空间机械臂(2)的第三杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs3分别代表空间机械臂(2)的第三杆件在六维力/力矩传感器坐标系下的重力矩;r3代表空间机械臂(2)的第三杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;G 3 represents the gravity of the third member of the space manipulator (2) under the gravity coordinate system; F gs3 represents the gravity of the third member of the space manipulator (2) under the six-dimensional force/torque sensor coordinate system; Represents the transformation matrix of the center of gravity of the third member of the space manipulator (2) from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; The gravitational moment under the coordinate system of the /torque sensor; r 3 represents the position vector of the third rod center of gravity position of the space manipulator (2) under the six-dimensional force/torque sensor coordinate system; G4分别代表空间机械臂(2)的第四杆件在重力坐标系下的重力;Fgs4分别代表空间机械臂(2)的第四杆件在六维力/力矩传感器坐标系下的重力;分别代表空间机械臂(2)的第四杆件的重心从六维力/力矩传感器坐标系到重力坐标系的变换矩阵;Tgs4分别代表空间机械臂(2)的第四杆件在六维力/力矩传感器坐标系下的重力矩;r4分别代表空间机械臂(2)的第四杆件重心位置在六维力/力矩传感器坐标系下的位置矢量;G 4 respectively represent the gravity of the fourth member of the space manipulator (2) in the gravity coordinate system; F gs4 respectively represent the gravity of the fourth member of the space manipulator (2) in the six-dimensional force/torque sensor coordinate system ; respectively represent the transformation matrix of the center of gravity of the fourth member of the space manipulator (2) from the six-dimensional force/torque sensor coordinate system to the gravity coordinate system; The gravitational moment under the force/torque sensor coordinate system; r 4 represents the position vector of the fourth bar center of gravity position of the space manipulator (2) under the six-dimensional force/torque sensor coordinate system; (2)通过六维力/力矩传感器测量的服务卫星本体模拟器(7)受到的接触力和接触力矩与空间机械臂(2)在六维力/力矩传感器坐标系下的重力和重力矩差值计算fb和τb,具体公式如下:(2) The difference between the contact force and contact moment of the service satellite body simulator (7) measured by the six-dimensional force/torque sensor and the gravity and gravity moment of the space manipulator (2) in the coordinate system of the six-dimensional force/torque sensor Calculate the values of f b and τ b , the specific formula is as follows: fb=Fcb-Fgs f b =F cb -F gs τb=Tcb-Tgs τ b =T cb -T gs 其中,Fcb代表六维力/力矩传感器测量的服务卫星本体模拟器(7)受到的接触力;Tcb代表六维力/力矩传感器测量的服务卫星本体模拟器(7)受到的接触力矩;Wherein, Fcb represents the contact force that the service satellite body simulator (7) measured by the six-dimensional force/torque sensor is subjected to; Tcb represents the contact moment that the service satellite body simulator (7) measured by the six-dimensional force/torque sensor is subjected to; (3)、假设服务卫星本体模拟器(7)是一个刚体,在不考虑卫星轨道动力学的前提下,那么服务卫星本体模拟器(7)的动力学方程表示如下:(3), assuming that the service satellite body simulator (7) is a rigid body, under the premise of not considering the orbital dynamics of the satellite, the dynamic equation of the service satellite body simulator (7) is expressed as follows: Mm bb vv ·&Center Dot; bb == ff bb -- -- -- (( 44 )) II bb ωω ·· bb ++ ωω bb ×× II bb ωω bb == ττ bb -- -- -- (( 55 )) 其中,Mb代表服务卫星本体模拟器(7)基座的质量;代表基座运动线加速度;fb代表基座所受的力;Ib代表服务卫星本体模拟器(7)基座的惯量;代表基座运动线角加速度;τb代表基座所受的力矩;Wherein, M represents the quality of the service satellite body simulator ( 7) base; Represent base motion linear acceleration; f b represents the force suffered by base; I b represents the inertia of service satellite body simulator (7) base; Represents the linear angular acceleration of the base; τ b represents the moment on the base; (4)根据服务卫星本体模拟器(7)基座的运动信息,通过运动学等效算法计算工业机械臂A(9)的末端运动信息具体过程为:(4) According to the motion information of the base of the service satellite body simulator (7), the specific process of calculating the terminal motion information of the industrial manipulator A (9) through kinematics equivalent algorithm is as follows: 1)将服务卫星本体模拟器在惯性空间的运动信息转换到工业机械臂A(9)末端在基座标系下的运动信息;1) Convert the motion information of the service satellite body simulator in the inertial space to the motion information of the end of the industrial manipulator arm A (9) under the frame of the base; 2)通过工业机械臂A(9)的上位机中的逆运动学算法确定工业机械臂A(9)的关节运动信息;2) Determine the joint motion information of the industrial robotic arm A (9) through the inverse kinematics algorithm in the host computer of the industrial robotic arm A (9); 3)通过工业机械臂A(9)的内部总线将关节运动信息传递给工业机械臂的关节控制器,关节控制器控制工业机械臂A(9)运动实现服务卫星本体模拟器(7)的运动状态。3) Through the internal bus of the industrial manipulator A (9), the joint motion information is transmitted to the joint controller of the industrial manipulator, and the joint controller controls the movement of the industrial manipulator A (9) to realize the movement of the service satellite body simulator (7) state.
CN201511027890.6A 2015-12-30 2015-12-30 A kind of apparatus and method for the Three Dimensional Ground space microgravity for simulating space manipulator capture target satellite Active CN105539890B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511027890.6A CN105539890B (en) 2015-12-30 2015-12-30 A kind of apparatus and method for the Three Dimensional Ground space microgravity for simulating space manipulator capture target satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511027890.6A CN105539890B (en) 2015-12-30 2015-12-30 A kind of apparatus and method for the Three Dimensional Ground space microgravity for simulating space manipulator capture target satellite

Publications (2)

Publication Number Publication Date
CN105539890A true CN105539890A (en) 2016-05-04
CN105539890B CN105539890B (en) 2018-01-30

Family

ID=55819546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511027890.6A Active CN105539890B (en) 2015-12-30 2015-12-30 A kind of apparatus and method for the Three Dimensional Ground space microgravity for simulating space manipulator capture target satellite

Country Status (1)

Country Link
CN (1) CN105539890B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106275519A (en) * 2016-08-30 2017-01-04 电子科技大学 A kind of space under-deck cargoes bag pick-and-place manipulator
CN107244432A (en) * 2017-06-07 2017-10-13 北京航空航天大学 Free pedestal Spatial Cooperation task motion reappearance experimental system
CN108408089A (en) * 2018-03-15 2018-08-17 哈尔滨工业大学 It is arrested for spatial spin target and the ground physical simulating experimental of racemization
CN108614571A (en) * 2018-04-28 2018-10-02 上海微小卫星工程中心 A satellite attitude control test method based on optical sensor
CN108621202A (en) * 2018-05-15 2018-10-09 清华大学深圳研究生院 Multi-arm robot for space cooperates with accurate operation experimental system on land
CN108956003A (en) * 2018-07-17 2018-12-07 杭州崧智智能科技有限公司 A kind of method, apparatus and terminal device of real-time calibration 6 DOF sensor attitude
CN109250157A (en) * 2018-07-25 2019-01-22 西北工业大学 It is a kind of based on the tentative space non-cooperative target catching method touched with racemization
CN109500836A (en) * 2018-11-15 2019-03-22 上海宇航系统工程研究所 Space inert satellite manipulates comprehensive test system
CN109606753A (en) * 2018-11-11 2019-04-12 上海宇航系统工程研究所 A kind of control method of Dual-arm space robot collaboration capture target
CN109606754A (en) * 2018-11-15 2019-04-12 上海宇航系统工程研究所 The ground simulation system of the spacecraft of configuration space mechanical arm
CN109733649A (en) * 2018-12-11 2019-05-10 上海航天控制技术研究所 The non-fully connection constraints state ground simulation method of spatial group zoarium spacecraft
CN111268183A (en) * 2020-03-01 2020-06-12 中国科学院微小卫星创新研究院 Spaceborne space manipulator
CN111872938A (en) * 2020-07-30 2020-11-03 清华大学 Spatial three-dimensional large-scale kinematics simulation system and method
CN113247318A (en) * 2021-06-28 2021-08-13 哈尔滨工业大学 Non-cooperative target rolling motion spin-up simulation system and method
CN113291495A (en) * 2021-06-25 2021-08-24 安徽应流集团霍山铸造有限公司 Space manipulator based on flexible belt winding and unwinding and rigid-flexible switching mechanism
CN114721296A (en) * 2022-05-18 2022-07-08 伸瑞科技(北京)有限公司 Space non-cooperative target capture and manipulation and combination control test device and method
CN114910207A (en) * 2022-05-18 2022-08-16 伸瑞科技(北京)有限公司 Space control complex coupling dynamic characteristic measuring device and measuring method
CN116374220A (en) * 2023-04-06 2023-07-04 中科睿格(烟台)技术服务有限责任公司 Modularized bionic space operation robot and control system
EP4225539A4 (en) * 2020-10-11 2024-10-02 MacDonald, Dettwiler and Associates Inc. SYSTEMS AND METHODS FOR DESIGNING, TESTING AND VALIDATING A ROBOTIC SYSTEM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205551A (en) * 2004-01-23 2005-08-04 Mitsubishi Heavy Ind Ltd Satellite, manipulator device and satellite control method
US7240879B1 (en) * 2005-05-06 2007-07-10 United States of America as represented by the Administration of the National Aeronautics and Space Administration Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics
CN102294690A (en) * 2011-05-12 2011-12-28 哈尔滨工业大学 Large-tolerance docking acquisition device focused on space large mechanical arm and rendezvous and docking
CN103926845A (en) * 2014-04-17 2014-07-16 哈尔滨工业大学 Ground-based simulation system for space robot visual servo to capture moving target and simulation method
CN103970032A (en) * 2014-05-16 2014-08-06 中国人民解放军装备学院 Satellite platform and mechanical arm cooperation simulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205551A (en) * 2004-01-23 2005-08-04 Mitsubishi Heavy Ind Ltd Satellite, manipulator device and satellite control method
US7240879B1 (en) * 2005-05-06 2007-07-10 United States of America as represented by the Administration of the National Aeronautics and Space Administration Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics
CN102294690A (en) * 2011-05-12 2011-12-28 哈尔滨工业大学 Large-tolerance docking acquisition device focused on space large mechanical arm and rendezvous and docking
CN103926845A (en) * 2014-04-17 2014-07-16 哈尔滨工业大学 Ground-based simulation system for space robot visual servo to capture moving target and simulation method
CN103970032A (en) * 2014-05-16 2014-08-06 中国人民解放军装备学院 Satellite platform and mechanical arm cooperation simulator

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106275519B (en) * 2016-08-30 2018-09-25 电子科技大学 Package pick-and-place manipulator in a kind of space cabins
CN106275519A (en) * 2016-08-30 2017-01-04 电子科技大学 A kind of space under-deck cargoes bag pick-and-place manipulator
CN107244432B (en) * 2017-06-07 2019-05-07 北京航空航天大学 Motion Reproduction Experiment System for Free Pedestal Space Cooperative Mission
CN107244432A (en) * 2017-06-07 2017-10-13 北京航空航天大学 Free pedestal Spatial Cooperation task motion reappearance experimental system
CN108408089A (en) * 2018-03-15 2018-08-17 哈尔滨工业大学 It is arrested for spatial spin target and the ground physical simulating experimental of racemization
CN108408089B (en) * 2018-03-15 2021-11-23 哈尔滨工业大学 Ground physical simulation test method aiming at space spinning target capture and racemization
CN108614571A (en) * 2018-04-28 2018-10-02 上海微小卫星工程中心 A satellite attitude control test method based on optical sensor
CN108614571B (en) * 2018-04-28 2021-03-02 上海微小卫星工程中心 Satellite attitude control test method based on optical sensor
CN108621202A (en) * 2018-05-15 2018-10-09 清华大学深圳研究生院 Multi-arm robot for space cooperates with accurate operation experimental system on land
CN108956003A (en) * 2018-07-17 2018-12-07 杭州崧智智能科技有限公司 A kind of method, apparatus and terminal device of real-time calibration 6 DOF sensor attitude
CN109250157A (en) * 2018-07-25 2019-01-22 西北工业大学 It is a kind of based on the tentative space non-cooperative target catching method touched with racemization
CN109606753B (en) * 2018-11-11 2022-03-29 上海宇航系统工程研究所 Control method for cooperatively capturing target by space double-arm robot
CN109606753A (en) * 2018-11-11 2019-04-12 上海宇航系统工程研究所 A kind of control method of Dual-arm space robot collaboration capture target
CN109606754A (en) * 2018-11-15 2019-04-12 上海宇航系统工程研究所 The ground simulation system of the spacecraft of configuration space mechanical arm
CN109500836A (en) * 2018-11-15 2019-03-22 上海宇航系统工程研究所 Space inert satellite manipulates comprehensive test system
CN109733649A (en) * 2018-12-11 2019-05-10 上海航天控制技术研究所 The non-fully connection constraints state ground simulation method of spatial group zoarium spacecraft
CN109733649B (en) * 2018-12-11 2022-02-22 上海航天控制技术研究所 Non-complete connection constraint state ground simulation method for space combination spacecraft
CN111268183A (en) * 2020-03-01 2020-06-12 中国科学院微小卫星创新研究院 Spaceborne space manipulator
CN111872938A (en) * 2020-07-30 2020-11-03 清华大学 Spatial three-dimensional large-scale kinematics simulation system and method
CN111872938B (en) * 2020-07-30 2022-01-25 清华大学 Spatial three-dimensional large-scale kinematics simulation system and method
EP4225539A4 (en) * 2020-10-11 2024-10-02 MacDonald, Dettwiler and Associates Inc. SYSTEMS AND METHODS FOR DESIGNING, TESTING AND VALIDATING A ROBOTIC SYSTEM
CN113291495A (en) * 2021-06-25 2021-08-24 安徽应流集团霍山铸造有限公司 Space manipulator based on flexible belt winding and unwinding and rigid-flexible switching mechanism
CN113247318A (en) * 2021-06-28 2021-08-13 哈尔滨工业大学 Non-cooperative target rolling motion spin-up simulation system and method
CN113247318B (en) * 2021-06-28 2022-05-31 哈尔滨工业大学 Non-cooperative target rolling motion spin-up simulation system and method
CN114721296A (en) * 2022-05-18 2022-07-08 伸瑞科技(北京)有限公司 Space non-cooperative target capture and manipulation and combination control test device and method
CN114910207A (en) * 2022-05-18 2022-08-16 伸瑞科技(北京)有限公司 Space control complex coupling dynamic characteristic measuring device and measuring method
CN114910207B (en) * 2022-05-18 2024-06-11 伸瑞科技(北京)有限公司 Space control complex coupling dynamics characteristic measuring device and measuring method
CN116374220A (en) * 2023-04-06 2023-07-04 中科睿格(烟台)技术服务有限责任公司 Modularized bionic space operation robot and control system

Also Published As

Publication number Publication date
CN105539890B (en) 2018-01-30

Similar Documents

Publication Publication Date Title
CN105539890B (en) A kind of apparatus and method for the Three Dimensional Ground space microgravity for simulating space manipulator capture target satellite
CN103926845B (en) The ground simulation system of robot for space visual servo capture movement target and analogy method
CN102778886B (en) Planar simulation and verification platform for four-degree-of-freedom robot arm control system
Guo et al. Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator
CN103955207B (en) A kind of three-pawl type space end executor fault tolerance of catching under microgravity environment tests system and method
Dallej et al. Towards vision-based control of cable-driven parallel robots
CN106864776B (en) A kind of method and system of the capture target satellite based on butt joint ring
CN104570731A (en) Uncalibrated human-computer interaction control system and method based on Kinect
CN110744541A (en) Vision-guided underwater mechanical arm control method
CN107169196A (en) Dynamic modeling method of the robot for space from end effector to pedestal
CN109500814B (en) Full-dimensional ground physical verification system and method for space manipulator with variable load conditions
CN107505846A (en) A kind of anti-interference attitude harmony of Space Manipulator System verifies device and control method
Xu et al. Autonomous path planning and experiment study of free-floating space robot for target capturing
CN105382843A (en) Coordination control method for mechanical arm and operation platform in final stage of grabbing
CN108153957A (en) Space manipulator kinetics simulation analysis method, system and storage medium
Takahashi et al. Hybrid simulation of a dual-arm space robot colliding with a floating object
CN107696033A (en) A kind of space manipulator track Rolling Planning method of view-based access control model measurement
Xu et al. Autonomous target capturing of free-floating space robot: Theory and experiments
CN111872938B (en) Spatial three-dimensional large-scale kinematics simulation system and method
Zhang Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms
CN117007348A (en) Full-state air floatation ground test system for space manipulator
CN114955020B (en) A method and system for safely capturing on-orbit targets based on heterogeneous multi-flexible arm space robots
CN110434854B (en) Redundant manipulator visual servo control method and device based on data driving
Su et al. Trajectory coordination for a cooperative multi-manipulator system and dynamic simulation error analysis
Pan et al. Dynamics modeling of spraying robot using Lagrangian method with co-simulation analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant