CN105528620B - 一种联合鲁棒主成分特征学习与视觉分类方法及系统 - Google Patents
一种联合鲁棒主成分特征学习与视觉分类方法及系统 Download PDFInfo
- Publication number
- CN105528620B CN105528620B CN201510918300.2A CN201510918300A CN105528620B CN 105528620 B CN105528620 B CN 105528620B CN 201510918300 A CN201510918300 A CN 201510918300A CN 105528620 B CN105528620 B CN 105528620B
- Authority
- CN
- China
- Prior art keywords
- sample
- principal component
- sparse
- training
- rank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000000007 visual effect Effects 0.000 title claims abstract description 24
- 239000011159 matrix material Substances 0.000 claims abstract description 88
- 238000012360 testing method Methods 0.000 claims abstract description 24
- 238000000605 extraction Methods 0.000 claims abstract description 22
- 238000012937 correction Methods 0.000 claims abstract description 7
- 238000012549 training Methods 0.000 claims description 108
- 238000007781 pre-processing Methods 0.000 claims description 11
- 238000013507 mapping Methods 0.000 claims description 10
- 238000000513 principal component analysis Methods 0.000 description 13
- 238000004422 calculation algorithm Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 6
- 238000005457 optimization Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510918300.2A CN105528620B (zh) | 2015-12-11 | 2015-12-11 | 一种联合鲁棒主成分特征学习与视觉分类方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510918300.2A CN105528620B (zh) | 2015-12-11 | 2015-12-11 | 一种联合鲁棒主成分特征学习与视觉分类方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105528620A CN105528620A (zh) | 2016-04-27 |
CN105528620B true CN105528620B (zh) | 2019-12-06 |
Family
ID=55770834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510918300.2A Active CN105528620B (zh) | 2015-12-11 | 2015-12-11 | 一种联合鲁棒主成分特征学习与视觉分类方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105528620B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106093074B (zh) * | 2016-06-16 | 2020-01-07 | 广东工业大学 | 一种基于鲁棒主成分分析的ic元件焊点检测方法 |
US20180089587A1 (en) | 2016-09-26 | 2018-03-29 | Google Inc. | Systems and Methods for Communication Efficient Distributed Mean Estimation |
CN107239448B (zh) * | 2017-06-07 | 2019-03-22 | 长沙学院 | 一种解释性主成分分析方法 |
CN107436597B (zh) * | 2017-07-17 | 2019-10-18 | 华南理工大学 | 一种基于稀疏过滤和逻辑回归的化工过程故障检测方法 |
CN109460788B (zh) * | 2018-10-29 | 2020-12-08 | 西安电子科技大学 | 基于低秩-稀疏信息组合网络的高光谱图像分类方法 |
CN109558882B (zh) * | 2018-11-30 | 2023-05-05 | 苏州大学 | 基于鲁棒局部低秩稀疏cnn特征的图像分类方法及装置 |
CN117456284B (zh) * | 2023-12-21 | 2024-05-10 | 中电科新型智慧城市研究院有限公司 | 图像分类方法、装置、设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504412A (zh) * | 2014-11-28 | 2015-04-08 | 苏州大学 | 一种手写体笔划特征提取和识别方法及系统 |
CN104778479A (zh) * | 2015-04-23 | 2015-07-15 | 苏州大学 | 一种基于稀疏编码提取子的图像分类方法及系统 |
CN104794489A (zh) * | 2015-04-23 | 2015-07-22 | 苏州大学 | 一种基于深度标签预测的诱导式图像分类方法及系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9031331B2 (en) * | 2012-07-30 | 2015-05-12 | Xerox Corporation | Metric learning for nearest class mean classifiers |
CN104933439B (zh) * | 2015-06-02 | 2018-04-17 | 西安电子科技大学 | 基于稀疏低秩回归的高光谱图像分类方法 |
CN104915684B (zh) * | 2015-06-30 | 2018-03-27 | 苏州大学 | 一种基于鲁棒多平面支持向量机的图像识别方法及装置 |
CN104992166B (zh) * | 2015-07-28 | 2018-09-11 | 苏州大学 | 一种基于鲁棒度量的手写体识别方法与系统 |
-
2015
- 2015-12-11 CN CN201510918300.2A patent/CN105528620B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104504412A (zh) * | 2014-11-28 | 2015-04-08 | 苏州大学 | 一种手写体笔划特征提取和识别方法及系统 |
CN104778479A (zh) * | 2015-04-23 | 2015-07-15 | 苏州大学 | 一种基于稀疏编码提取子的图像分类方法及系统 |
CN104794489A (zh) * | 2015-04-23 | 2015-07-22 | 苏州大学 | 一种基于深度标签预测的诱导式图像分类方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105528620A (zh) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105528620B (zh) | 一种联合鲁棒主成分特征学习与视觉分类方法及系统 | |
Li et al. | Robust face recognition based on dynamic rank representation | |
US9449432B2 (en) | System and method for identifying faces in unconstrained media | |
Peng et al. | Automatic subspace learning via principal coefficients embedding | |
CN105469063B (zh) | 鲁棒的人脸图像主成分特征提取方法及识别装置 | |
CN108509833B (zh) | 一种基于结构化分析字典的人脸识别方法、装置及设备 | |
CN112395979B (zh) | 基于图像的健康状态识别方法、装置、设备及存储介质 | |
CN106326871B (zh) | 一种基于字典分解和稀疏表示的鲁棒人脸识别方法 | |
CN106980848A (zh) | 基于曲波变换和稀疏学习的人脸表情识别方法 | |
CN106446754A (zh) | 图像识别方法、度量学习方法、图像来源识别方法及装置 | |
CN105608478B (zh) | 一种图像的特征提取与分类联合方法及系统 | |
CN105740912A (zh) | 基于核范数正则化的低秩图像特征提取的识别方法及系统 | |
CN108121962B (zh) | 基于非负自适应特征提取的人脸识别方法、装置及设备 | |
CN105260995B (zh) | 一种图像修复与去噪方法及系统 | |
CN104504412A (zh) | 一种手写体笔划特征提取和识别方法及系统 | |
CN108171261A (zh) | 鲁棒的自适应半监督图像分类方法、装置、设备及介质 | |
CN106096517A (zh) | 一种基于低秩矩阵与特征脸的人脸识别方法 | |
Prates et al. | Kernel cross-view collaborative representation based classification for person re-identification | |
CN104715266B (zh) | 基于src‑dp与lda相结合的图像特征提取方法 | |
Chen et al. | Low-rank latent pattern approximation with applications to robust image classification | |
Shrivastava et al. | Multiple kernel-based dictionary learning for weakly supervised classification | |
Zheng et al. | Extracting non-negative basis images using pixel dispersion penalty | |
Qiu et al. | Learning transformations for classification forests | |
CN107729844A (zh) | 人脸属性识别方法及装置 | |
CN108229552B (zh) | 一种模型处理方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201015 Address after: No.405, building 1, Tongji Science and Technology Plaza, No.2 Hushan Road, Changshu high tech Industrial Development Zone, Suzhou City, Jiangsu Province Patentee after: Suzhou hengzhihui Intelligent Technology Co.,Ltd. Address before: 215123 No. 199 benevolence Road, Suzhou Industrial Park, Jiangsu, China Patentee before: SOOCHOW University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240820 Address after: 210042 3rd floor, 699-1 Xuanwu Avenue, Xuanwu District, Nanjing City, Jiangsu Province Patentee after: Nanjing pinxing Technology Co.,Ltd. Country or region after: China Address before: Room 405, Building 1, Tongji Science and Technology Plaza, No. 2 Hushan Road, Changshu High-tech Industrial Development Zone, Suzhou City, Jiangsu Province 215500 Patentee before: Suzhou hengzhihui Intelligent Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |