CN105528468B - 一种飞控液压伺服作动器主要设计参数的估算方法 - Google Patents

一种飞控液压伺服作动器主要设计参数的估算方法 Download PDF

Info

Publication number
CN105528468B
CN105528468B CN201410508536.4A CN201410508536A CN105528468B CN 105528468 B CN105528468 B CN 105528468B CN 201410508536 A CN201410508536 A CN 201410508536A CN 105528468 B CN105528468 B CN 105528468B
Authority
CN
China
Prior art keywords
actuator
rocking arm
demand
length
arm length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410508536.4A
Other languages
English (en)
Other versions
CN105528468A (zh
Inventor
张新慧
王宜芳
李元元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aircraft Design and Research Institute of AVIC
Original Assignee
Xian Aircraft Design and Research Institute of AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aircraft Design and Research Institute of AVIC filed Critical Xian Aircraft Design and Research Institute of AVIC
Priority to CN201410508536.4A priority Critical patent/CN105528468B/zh
Publication of CN105528468A publication Critical patent/CN105528468A/zh
Application granted granted Critical
Publication of CN105528468B publication Critical patent/CN105528468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明属于航空飞行控制系统作动器设计技术领域,具体涉及一种飞控液压伺服作动器主要设计参数的估算方法。第一步,依据作动器行程范围,采用对称运动和对称腔的电液伺服作动器,通过摇臂长度估算公式求得作动器驱动摇臂长度;第二步,依据作动器摇臂长度范围,评估作动器点点安装长度空间需求,作动器点点安装中立最小长度和作动器驱动摇臂长度需求;第三步,依据作动器驱动舵面铰链力矩和有效作动器驱动摇臂长度计算出作动器理论载荷,给出作动器支撑载荷需求;第四步,依据舵面偏转速率要求和液压理论压力,通过估算公式推出作动器最大流量,从而提出作动器流量需求。本方法可以提高工作效率,预防多轮次的迭代设计,减少研发费用。

Description

一种飞控液压伺服作动器主要设计参数的估算方法
技术领域
本发明属于航空飞行控制系统作动器设计技术领域,具体涉及一种飞控液压伺服作动器主要设计参数的估算方法。
背景技术
一般飞机的设计都是一个长周期优选过程,在每一轮的设计中都需要较长时间计算和分析,对于飞行控制系统作动器更是需要多轮次的计算分析。而每次作动器的计算都需要较长周期,对项目研制进度有一定影响,因此,如何缩短作动器的计算分析过程成为一直追求的目标。
在通常的飞控液压伺服作动器设计中,需要飞机系统级提出作动器主要设计要求;由作动器设计单位进行详细的建模、计算和分析,给出主要设计参数;由飞机系统级进行与结构和液压进行协调讨论,以便评估作动器是否满足飞机安装空间和液压流量的要求。该过程协调过程较长,研制周期较长。
发明内容
本发明的目的是:本发明通过将作动器设计过程进行优化分析,总结出了作动器主要参数估算方法,可以加快评估过程,有效缩短研制经费。
本发明的技术方案是:
一种飞控液压伺服作动器主要设计参数的估算方法,对于采用对称运动和对称腔的电液伺服作动器驱动舵面,飞控液压伺服作动器主要设计要求有:舵面偏转角度要求±A,舵面偏转速率要求V,作动器驱动舵面铰链力矩M,液压系统名义压力Q;对飞机级主要评估项目有:作动器点点安装长度空间需求LO,作动器支撑载荷需求Pa支撑以及作动器最大流量需求Q需求;估算方法的步骤如下:
第一步,依据作动器驱动舵面偏转角度要求V,依据操纵面偏度与作动器输出位移之比常规要求为5rad/m~10rad/m,则可以给出作动器行程S的范围S1~S2;依据作动器行程范围,采用对称运动和对称腔的电液伺服作动器,通过摇臂长度B估算公式(1)求得作动器驱动摇臂长度B范围B1~B2;
B=S/2/(TanA°*0.95) (1)
第二步,依据作动器摇臂长度范围B1~B2,通过作动器中立时点点长度L0估算公式(2)计算出作动器中立时点点连接长度L范围L1~L2,从而很快评估作动器点点安装长度空间需求。一般飞机作动器安装长度空间都很小,所以逆推提出作动器点点安装中立最小长度L0=L1和作动器驱动摇臂长度B=B1需求;
L0=S/2*5+150mm (2)
第三步,依据作动器驱动舵面铰链力矩M和有效作动器驱动摇臂长度B有效(B有效=B*0.9)计算出作动器理论载荷,通过作动器最大载荷Pamax估算公式(3)给出作动器最大载荷Pamax,从而给出作动器支撑载荷需求Pa支撑=Pamax;
Pamax=M/B有效/0.95 (3)
第四步,依据舵面偏转速率要求V,舵面偏角要求±A,对应作动器行程关系S1,推出作动器线位移速度要求LV=V*S1/(A*2)。依据液压理论压力Q,通过估算公式(4)推出作动器最大流量QMAX,从而提出作动器流量需求Q需求=QMAX;
QMAX=LV*0.95*Pamax/(Q*0.8) (4)
根据上述过程估算方法则完成作动器主要设计参数,从而完成对飞机级主要项目提出需求并对比进行评估。
本发明的优点是:无需多方协调作动器的设计过程;预防飞机多轮次的迭代设计;减少研发费用;缩短研制周期。
具体实施方式
下面对本发明做进一步详细说明。
飞控液压伺服作动器主要设计要求有:采用对称运动和对称腔的电液伺服作动器驱动舵面,舵面偏转角度要求±A=±25°,舵面偏转速率要求V=44°/s,作动器驱动舵面铰链力矩M=4828N·m,液压系统名义压力Q=21MPa。对飞机级主要评估项目有:作动器点点安装长度空间需求LO,作动器支撑载荷需求Pa支撑以及作动器最大流量需求Q需求
依据作动器驱动舵面偏转角度±A=±25°要求,依据操纵面偏度V=44°/s与作动器输出位移之比常规要求为(5-10rad/m),则可以给出作动器行程S范围S1~S2=87.3mm~174.5mm;依据作动器行程范围S1~S2,采用对称运动和对称腔的电液伺服作动器,通过估算公式:
摇臂长度B=S/2/(TanA°*0.95) (1)
可以计算出作动器驱动摇臂长度B范围B1~B2=98.8mm~197.0mm;依据作动器摇臂长度范围B1~B2,通过估算公式
作动器中立时点点长度L0=S/2*5+150mm (2)
可以计算出作动器中立时点点连接长度L范围L1~L2=368.5mm~586.5mm,从而很快评估作动器点点安装长度空间需求。一般飞机作动器安装长度空间都很小,所以逆推提出作动器点点安装中立最小长度L0=L1=368.5mm和作动器驱动摇臂长度B=B1=98.8mm。
依据作动器驱动舵面铰链力矩M=4828N·m和有效作动器驱动摇臂长度(B有效=B*0.9=88.9mm),通过估算公式
作动器最大载荷Pamax=M/B有效/0.95 (3)
给出作动器最大载荷Pamax=57166N,从而给出作动器支撑载荷需求Pa支撑=Pamax=57166N。
依据舵面偏转速率要求V=44°/s,舵面偏角±A=±25°,对应作动器行程关系S1=87.3mm,推出作动器线位移速度要求LV=44*87.3/(25*2)≈76.8mm/s。根据液压理论压力Q=21MPa,通过估算公式
QMAX=LV*0.95*Pamax/(21*0.8) (4)
推出作动器最大流量QMAX≈14.9L/min,从而提出作动器流量需求Q需求=QMAX≈14.9L/min。
根据上述过程估算方法则完成作动器主要设计参数,从而提出对飞机级主要项目的需求:作动器点点安装长度空间需求L0=368.5mm,作动器支撑载荷需求Pa支撑=57166N以及作动器最大流量需求Q需求=14.9L/min。对比实际飞机情况进行评估。

Claims (1)

1.一种飞控液压伺服作动器主要设计参数的估算方法,其特征是,对于采用对称运动和对称腔的电液伺服作动器驱动舵面,飞控液压伺服作动器主要设计要求有:舵面偏转角度要求±A,舵面偏转速率要求V,作动器驱动舵面铰链力矩M,液压系统名义压力Q;对飞机级主要评估项目有:作动器点点安装长度空间需求LO,作动器支撑载荷需求Pa支撑以及作动器最大流量需求Q需求;估算方法的步骤如下:
第一步,依据作动器驱动舵面偏转角度要求±A,依据操纵面偏度与作动器输出位移之比常规要求为5rad/m~10rad/m,则可以给出作动器行程S的范围S1~S2;依据作动器行程范围,采用对称运动和对称腔的电液伺服作动器,通过摇臂长度B估算公式(1)求得作动器驱动摇臂长度B范围B1~B2;
B=S/2/(TanA°*0.95) (1)
第二步,依据作动器摇臂长度范围B1~B2,通过作动器中立时点点长度L0估算公式(2)计算出作动器中立时点点连接长度L范围L1~L2,从而评估作动器点点安装长度空间需求,作动器点点安装中立最小长度L0=L1和作动器驱动摇臂长度B=B1需求;
L0=S/2*5+150mm (2)
第三步,依据作动器驱动舵面铰链力矩M和有效作动器驱动摇臂长度B有效(B有效=B*0.9)计算出作动器理论载荷,通过作动器最大载荷Pamax估算公式(3)给出作动器最大载荷Pamax,从而给出作动器支撑载荷需求Pa支撑=Pamax;
Pamax=M/B有效/0.95 (3)
第四步,依据舵面偏转速率要求V,舵面偏角要求±A,对应作动器行程关系S1,推出作动器线位移速度要求LV=V*S1/(A*2);依据液压理论压力Q,通过估算公式(4)推出作动器最大流量QMAX,从而提出作动器流量需求Q需求=QMAX;
QMAX=LV*0.95*Pamax/(Q*0.8) (4)
根据上述过程估算方法则完成作动器主要设计参数,从而完成对飞机级主要项目提出需求并对比进行评估。
CN201410508536.4A 2014-09-28 2014-09-28 一种飞控液压伺服作动器主要设计参数的估算方法 Active CN105528468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410508536.4A CN105528468B (zh) 2014-09-28 2014-09-28 一种飞控液压伺服作动器主要设计参数的估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410508536.4A CN105528468B (zh) 2014-09-28 2014-09-28 一种飞控液压伺服作动器主要设计参数的估算方法

Publications (2)

Publication Number Publication Date
CN105528468A CN105528468A (zh) 2016-04-27
CN105528468B true CN105528468B (zh) 2018-07-24

Family

ID=55770691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410508536.4A Active CN105528468B (zh) 2014-09-28 2014-09-28 一种飞控液压伺服作动器主要设计参数的估算方法

Country Status (1)

Country Link
CN (1) CN105528468B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106586021B (zh) * 2016-12-28 2019-06-25 中国航空工业集团公司西安飞机设计研究所 一种作动器剩余行程确定方法
CN106650170B (zh) * 2017-01-04 2019-10-29 北京航空航天大学 一种液压伺服作动器的可靠性评估方法
CN110717222B (zh) * 2019-10-24 2023-03-14 中国航空工业集团公司沈阳飞机设计研究所 一种飞机舵面铰链力矩的确定方法
CN111191326B (zh) * 2019-12-27 2023-05-23 中国航空工业集团公司西安飞机设计研究所 一种飞机计算飞控作动器液压流量需求的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147298A (en) * 1976-08-02 1979-04-03 Louis J. Leemhuis Fluid flow controller
CN101590909A (zh) * 2009-07-02 2009-12-02 北京航空航天大学 一种应用于余度作动系统的力综合臂
CN102642622A (zh) * 2011-02-22 2012-08-22 中国航空工业集团公司西安飞机设计研究所 一种飞行控制方法
CN102945001A (zh) * 2011-08-15 2013-02-27 中国航空工业集团公司西安飞机设计研究所 一种伺服作动系统仿真装置及其仿真方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147298A (en) * 1976-08-02 1979-04-03 Louis J. Leemhuis Fluid flow controller
CN101590909A (zh) * 2009-07-02 2009-12-02 北京航空航天大学 一种应用于余度作动系统的力综合臂
CN102642622A (zh) * 2011-02-22 2012-08-22 中国航空工业集团公司西安飞机设计研究所 一种飞行控制方法
CN102945001A (zh) * 2011-08-15 2013-02-27 中国航空工业集团公司西安飞机设计研究所 一种伺服作动系统仿真装置及其仿真方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种新型机载一体化电液作动器的设计与分析;李军等;《北京航空航天大学学报》;20031231;第29卷(第2期);第1101-1104页 *

Also Published As

Publication number Publication date
CN105528468A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN105528468B (zh) 一种飞控液压伺服作动器主要设计参数的估算方法
WO2011031851A3 (en) Technique for controlling pumps in a hydraulic system
WO2012061066A3 (en) Hydraulic system for heavy equipment
EP2918735A3 (en) Hydraulic driving apparatus for working machine
WO2012118773A3 (en) Hydraulic control system implementing pump torque limiting
WO2013025416A3 (en) Method and apparatus for recovering inertial energy
PH12016000116A1 (en) Model based load demand control
CN104228887B (zh) 一种列车自动运行等级实时调整的方法及系统
WO2012051196A3 (en) Lift-gas optimization with choke control
WO2014176371A3 (en) Active suspension with structural actuator
GB2514026A (en) Submersible pump control
WO2014035502A3 (en) Electrohydraulic propeller governor
WO2009155235A3 (en) System and method for modeling flow events responsible for the formation of a geological reservoir
MX2016005257A (es) Sistema de irrigacion que tiene compensacion de terreno.
WO2012154463A3 (en) Method,apparatus,and computer-readable storage medium for controlling torque load of multiple variable displacement hydraulic pumps
WO2013075717A3 (en) A tool and a method for moving a wind turbine drivetrain component
DE602006016348D1 (de) Verfahren und computerprogrammprodukt zum steuern einer hydraulikanlage für ein allradantriebssystem
WO2013103954A3 (en) Electro-hydraulic system with float function
AU2012217996A8 (en) Materials handling vehicle estimating a speed of a movable assembly from a lift motor speed
WO2012135242A3 (en) System and method for adjusting balance of operation of hydraulic and electric actuators
GB201114619D0 (en) Method for controlling a pressure supply unit for a fluid assembly, and corresponding fluid assembly
WO2013003048A3 (en) Hydraulic control system having swing energy recovery
WO2015012929A3 (en) Stored pressure driven cycle
PT3769415T (pt) Sistema de atuador operado por energia solar controlado por um controlador solar
WO2013012189A3 (ko) 로봇의 주행면 주행 가능 영역 확인 방법, 로봇 및 기록 매체

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant