CN105527194B - A method for detecting the processing performance of rubber used in tires - Google Patents
A method for detecting the processing performance of rubber used in tires Download PDFInfo
- Publication number
- CN105527194B CN105527194B CN201610004850.8A CN201610004850A CN105527194B CN 105527194 B CN105527194 B CN 105527194B CN 201610004850 A CN201610004850 A CN 201610004850A CN 105527194 B CN105527194 B CN 105527194B
- Authority
- CN
- China
- Prior art keywords
- rubber
- extrusion
- raw rubber
- butadiene
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 91
- 239000005060 rubber Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000012545 processing Methods 0.000 title abstract description 22
- 238000001125 extrusion Methods 0.000 claims abstract description 55
- 238000012360 testing method Methods 0.000 claims abstract description 16
- 241001441571 Hiodontidae Species 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 229920002857 polybutadiene Polymers 0.000 claims description 31
- 239000005062 Polybutadiene Substances 0.000 claims description 30
- 239000000839 emulsion Substances 0.000 claims description 23
- 229920003051 synthetic elastomer Polymers 0.000 claims description 13
- 239000005061 synthetic rubber Substances 0.000 claims description 13
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 12
- 238000010057 rubber processing Methods 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 6
- 229920002943 EPDM rubber Polymers 0.000 claims description 3
- 244000043261 Hevea brasiliensis Species 0.000 claims description 3
- 229920005549 butyl rubber Polymers 0.000 claims description 3
- 229920003052 natural elastomer Polymers 0.000 claims description 3
- 229920001194 natural rubber Polymers 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims 5
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 claims 2
- 238000010008 shearing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 23
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000004793 Polystyrene Substances 0.000 description 19
- 229920002223 polystyrene Polymers 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 5
- 239000012530 fluid Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000000518 rheometry Methods 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009778 extrusion testing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
本发明涉及一种轮胎用橡胶加工性能的检测方法。所述方法的检测步骤如下:(1)对生胶样品采用门尼粘度计进行门尼粘度测试;(2)对步骤(1)中测试出的门尼粘度值相近的同种生胶样品裁剪后,放入转矩流变仪中,拟合出生胶样品的幂律方程:lgη=(A±0.03)lgγ+(B±0.06);(3)满足步骤(2)所述生胶样品的幂律方程,则所述轮胎用橡胶的流变性能合格。有益效果:本发明采用转矩流变仪毛细管挤出方法检测门尼粘度值相近的生胶体系材料,考察生胶在实际应用中密炼机混炼、挤出等不同剪切速率下橡胶的表观粘度,与现有方法相比,该方法对实际生产的结果更准确。
The invention relates to a method for detecting the processing performance of rubber used for tires. The detection steps of the method are as follows: (1) Mooney viscosity test is carried out on the raw rubber sample using a Mooney viscometer; (2) The same kind of raw rubber sample with similar Mooney viscosity values tested in step (1) is cut Finally, put into the torque rheometer, fit the power law equation of the raw rubber sample: lgη=(A±0.03)lgγ+(B±0.06); (3) satisfy the raw rubber sample described in step (2) Power-law equation, then the rheological properties of the tire rubber are qualified. Beneficial effects: the present invention uses the torque rheometer capillary extrusion method to detect raw rubber system materials with similar Mooney viscosity values, and investigates the properties of raw rubber under different shear rates such as internal mixer mixing and extrusion in practical applications. Apparent viscosity, compared with existing methods, this method is more accurate for actual production results.
Description
技术领域technical field
本发明涉及一种轮胎用橡胶检测方法,尤其涉及一种轮胎用橡胶加工性能的检测方法。The invention relates to a method for detecting rubber for tires, in particular to a method for detecting the processing performance of rubber for tires.
背景技术Background technique
轮胎行业中考察合成橡胶加工性能的指标为生胶的门尼粘度值,而不同厂家、不同批次的同种橡胶体系材料,在实际应用中加工性能可能存在差异,造成混炼胶料的质量不合格现象。具体为,由于门尼粘度值的测试条件单一,温度为100℃,转子转速为2r/min,即剪切速率在1.31/s左右,但实际生产中的温度和剪切速率是变化的,而且要比门尼粘度测试的温度和剪切速率高,所以单一条件下测定材料的门尼粘度值不能很好的反应材料在加工过程中的使用性能,在实际生产中经常会出现门尼粘度值相近的不同厂家,或是同一厂家的不同批次的同种生胶材料,混炼胶料门尼粘度相差大,加工性能存在较大差异的现象。In the tire industry, the index for investigating the processing performance of synthetic rubber is the Mooney viscosity value of raw rubber. However, the processing performance of the same rubber system material from different manufacturers and different batches may be different in actual applications, resulting in the quality of the compounded rubber. Unqualified phenomenon. Specifically, due to the single test condition of the Mooney viscosity value, the temperature is 100°C, the rotor speed is 2r/min, that is, the shear rate is about 1.31/s, but the temperature and shear rate in actual production are changing, and It is higher than the temperature and shear rate of the Mooney viscosity test, so the Mooney viscosity value of the material measured under a single condition cannot reflect the performance of the material during processing, and the Mooney viscosity value often appears in actual production Different similar manufacturers, or different batches of the same raw rubber material from the same manufacturer, have large differences in the Mooney viscosity of the compounded rubber materials, and there are large differences in processing performance.
因此,有必要提出有效的技术方案,解决上述问题。Therefore, it is necessary to propose an effective technical solution to solve the above problems.
发明内容Contents of the invention
本发明针对上述现有技术的不足,提供一种精准性高的轮胎用橡胶加工性能的检测方法。The present invention aims at the deficiencies of the above-mentioned prior art, and provides a method for detecting the processing performance of rubber for tires with high accuracy.
本发明解决上述技术问题的技术方案如下:The technical scheme that the present invention solves the problems of the technologies described above is as follows:
一种轮胎用橡胶加工性能的检测方法,所述方法的检测步骤如下:A method for detecting rubber processing performance for tires, the detection steps of the method are as follows:
(1)对生胶样品采用门尼粘度计进行门尼粘度测试;所述生胶样品选自同种合成橡胶的不同供应商或是相同供应商提供的不同批次的产品;所述生胶样品至少为50组;(1) Mooney Viscometer is used to test the raw rubber sample; the raw rubber sample is selected from different suppliers of the same synthetic rubber or different batches of products provided by the same supplier; the raw rubber At least 50 groups of samples;
(2)对步骤(1)中测试出的门尼粘度值相近的同种生胶样品裁剪后,放入转矩流变仪中;(2) After cutting the same kind of raw rubber samples with similar Mooney viscosity values tested in step (1), put them into the torque rheometer;
在转矩流变仪上输入生胶样品的比重值,称量每个速率下的挤出质量,记录表观粘度和剪切应力的数值,根据剪切速率和表观粘度的数值,拟合出生胶样品的幂律方程;Input the specific gravity value of the raw rubber sample on the torque rheometer, weigh the extrusion mass at each rate, record the values of apparent viscosity and shear stress, and fit according to the values of shear rate and apparent viscosity The power law equation of the raw rubber sample;
所述幂律方程如下:The power law equation is as follows:
lgη=(A±0.03)lgγ+(B±0.06)lgη=(A±0.03)lgγ+(B±0.06)
式中,η为表观粘度,γ为剪切速率,A为n-1,所述n为非牛顿指数, B为lgK,所述K为剪切速度为0时的表观粘度;In formula, η is apparent viscosity, and γ is shear rate, and A is n-1, and described n is non-Newtonian exponent, and B is 1gK, and described K is the apparent viscosity when shear rate is 0;
(3)满足步骤(2)所述生胶样品的幂律方程,则所述轮胎用橡胶的流变性能合格;不满足步骤(2)所述生胶样品的幂律方程,则所述轮胎用橡胶的流变性能不合格。(3) If the power-law equation of the raw rubber sample described in step (2) is met, the rheological properties of the tire rubber are qualified; if the power-law equation of the raw rubber sample described in step (2) is not satisfied, the tire The rheological properties of rubber are unqualified.
优选的,所述转矩流变仪为单螺杆挤出、毛细管口模,毛细管口模的规格为L/D=10、L/D=20、L/D=30、L/D=40,挤出螺杆的转速为1r/min~30r/min,挤出温度为110℃~170℃,并且每个挤出速率下保持时间为60s。Preferably, the torque rheometer is a single-screw extrusion, capillary die, and the specifications of the capillary die are L/D=10, L/D=20, L/D=30, L/D=40, The rotation speed of the extrusion screw is 1r/min-30r/min, the extrusion temperature is 110°C-170°C, and the holding time at each extrusion rate is 60s.
优选的,所述生胶样品为天然橡胶或合成橡胶;所述合成橡胶为顺丁橡胶,丁苯橡胶,三元乙丙橡胶或丁基橡胶。Preferably, the raw rubber sample is natural rubber or synthetic rubber; the synthetic rubber is butadiene rubber, styrene-butadiene rubber, EPDM rubber or butyl rubber.
优选的,所述丁苯橡胶为溶聚丁苯橡胶或乳聚丁苯橡胶。所述溶聚丁苯橡胶为非充油溶聚丁苯橡胶或充油溶聚丁苯橡胶,所述乳聚丁苯橡胶为非充油乳聚丁苯橡胶或充油乳聚丁苯橡胶。Preferably, the styrene butadiene rubber is solution polystyrene butadiene rubber or emulsion polystyrene butadiene rubber. The solution-polystyrene butadiene rubber is non-oil-extended polystyrene-butadiene rubber or oil-extended polystyrene-butadiene rubber, and the emulsion polystyrene-butadiene rubber is non-oil-extended polystyrene-butadiene emulsion or polystyrene-butadiene oil-extended emulsion.
优选的,所述转矩流变仪为混炼机型转矩流变仪。Preferably, the torque rheometer is a mixing type torque rheometer.
有益效果:Beneficial effect:
本发明采用转矩流变仪毛细管挤出方法检测门尼粘度值相近的生胶体系材料,考察生胶在实际应用中密炼机混炼、挤出等不同剪切速率下橡胶的表观粘度,与现有方法相比,该方法对实际生产的结果更准确。The present invention adopts the torque rheometer capillary extrusion method to detect raw rubber system materials with similar Mooney viscosity values, and investigates the apparent viscosity of raw rubber under different shear rates such as internal mixer mixing and extrusion in practical applications , compared with existing methods, this method is more accurate to the actual production results.
对于不同厂家、不同批次的同种合成橡胶拟合相应的方程,检测该种材料在实际生产中的加工性能,满足方程的材料被认为其混炼胶的加工性能相近,后续加工过程中不需要调整工艺,不满足方程的材料,虽然门尼粘度相近,但在实际加工过程中需要进行适当工艺条件的调整。For different manufacturers and different batches of the same synthetic rubber, the corresponding equation is fitted to detect the processing performance of the material in actual production. The materials satisfying the equation are considered to have similar processing performance of the compound rubber, and there is no need for subsequent processing. The process needs to be adjusted, and the materials that do not satisfy the equation, although the Mooney viscosity is similar, need to be adjusted to the appropriate process conditions in the actual processing process.
附图说明Description of drawings
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:Hereinafter, some specific embodiments of the present invention will be described in detail by way of illustration and not limitation with reference to the accompanying drawings. The same reference numerals in the drawings designate the same or similar parts or parts. Those skilled in the art will appreciate that the drawings are not necessarily drawn to scale. In the attached picture:
图1为本发明实施例1的锦湖石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图;Fig. 1 is the double-logarithmic graph of the apparent viscosity and the shear rate of the non-oil-extended emulsion polystyrene butadiene rubber 1502 of Kumho Petrochemical in Example 1 of the present invention;
图2为本发明实施例2的齐鲁石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图;Fig. 2 is the double-logarithmic graph of the apparent viscosity and the shear rate of the non-oil-extended emulsion polystyrene butadiene rubber 1502 of Qilu Petrochemical in Example 2 of the present invention;
图3为本发明实施例3的扬子石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图;Fig. 3 is the double-logarithmic graph of the apparent viscosity and the shear rate of the non-oil-extended emulsion polystyrene butadiene rubber 1502 of Yangzi Petrochemical in Example 3 of the present invention;
图4为本发明实施例4的吉林石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图;Fig. 4 is the double-logarithmic graph of apparent viscosity and shear rate of the non-oil-extended emulsion polystyrene butadiene rubber 1502 of Jilin Petrochemical in Example 4 of the present invention;
图5为本发明实施例5的锦湖石化的充油溶聚丁苯橡胶6270M的表观粘度与剪切速率的双对数曲线图;Fig. 5 is the double-logarithmic graph of the apparent viscosity and the shear rate of the oil-extended polystyrene-butadiene rubber 6270M of Kumho Petrochemical in Example 5 of the present invention;
图6为本发明实施例6的LG化学的充油溶聚丁苯橡胶2550的表观粘度与剪切速率的双对数曲线图。Fig. 6 is a double-logarithmic graph of apparent viscosity and shear rate of LG Chemical's oil-extended polystyrene butadiene rubber 2550 in Example 6 of the present invention.
具体实施方式detailed description
本发明涉及一种轮胎用橡胶加工性能的检测方法,所述方法的检测步骤如下:The invention relates to a method for detecting the processing performance of rubber for tires. The detection steps of the method are as follows:
(1)对生胶样品采用门尼粘度计进行门尼粘度测试;所述生胶样品选自同种生胶的不同供应商或是相同供应商提供的不同批次的产品;所述生胶样品至少为50组;(1) Mooney viscosity test is carried out on the raw rubber sample by Mooney viscometer; the raw rubber sample is selected from different suppliers of the same raw rubber or products of different batches provided by the same supplier; the raw rubber At least 50 groups of samples;
(2)对步骤(1)中测试出的门尼粘度值相近(所述相近指的是标准值±3的区间值)的同种生胶样品裁剪后,放入转矩流变仪中;(2) After cutting the same kind of raw rubber samples with similar Mooney viscosity values tested in step (1) (the said similarity refers to the interval value of the standard value ± 3), put them into the torque rheometer;
在转矩流变仪上输入生胶样品的比重值,称量每个速率下的挤出质量,记录表观粘度和剪切应力的数值,根据剪切速率和表观粘度的数值,拟合出生胶样品的幂律方程;Input the specific gravity value of the raw rubber sample on the torque rheometer, weigh the extrusion mass at each rate, record the values of apparent viscosity and shear stress, and fit according to the values of shear rate and apparent viscosity The power law equation of the raw rubber sample;
所述幂律方程如下:The power law equation is as follows:
lgη=(A±0.03)lgγ+(B±0.06)lgη=(A±0.03)lgγ+(B±0.06)
式中,η为表观粘度,γ为剪切速率,A为n-1,所述n为非牛顿指数, B为lgK,所述K为剪切速度为0时的表观粘度;In formula, η is apparent viscosity, and γ is shear rate, and A is n-1, and described n is non-Newtonian exponent, and B is 1gK, and described K is the apparent viscosity when shear rate is 0;
(3)满足步骤(2)所述生胶样品的幂律方程,则所述轮胎用橡胶的流变性能合格;不满足步骤(2)所述生胶样品的幂律方程,则所述轮胎用橡胶的流变性能不合格。(3) If the power-law equation of the raw rubber sample described in step (2) is met, the rheological properties of the tire rubber are qualified; if the power-law equation of the raw rubber sample described in step (2) is not satisfied, the tire The rheological properties of rubber are unqualified.
作为本发明的一个实施例,所述转矩流变仪为单螺杆挤出、毛细管口模;其中以下参数的使用,对于本发明轮胎用橡胶加工性能的检测方法的准确度来说是重要的,具体的:毛细管口模的规格为L/D=10、L/D=20、L/D=30、 L/D=40,挤出螺杆的转速为1r/min~30r/min,挤出温度为110℃~170℃,并且每个挤出速率下保持时间为60s。本发明采用转矩流变仪毛细管挤出模式可以测量不同温度,不同剪切速率下的剪切应力和表观粘度,通过设置螺杆的转速和使用不同长径比的毛细管,可以达到0~500S-1的剪切速率,可涵盖密炼机混炼和挤出加工过程的剪切速率的范围,根据大量实验,得出不同种材料幂律方程及系数范围,准确预测橡胶在实际生产中的加工稳定性能。As an embodiment of the present invention, the torque rheometer is a single-screw extruder and a capillary die; wherein the use of the following parameters is important for the accuracy of the detection method of the tire rubber processing performance of the present invention , specifically: the specifications of the capillary die are L/D=10, L/D=20, L/D=30, L/D=40, the rotating speed of the extrusion screw is 1r/min~30r/min, extruding The temperature is 110°C-170°C, and the holding time is 60s at each extrusion rate. The invention uses the capillary extrusion mode of the torque rheometer to measure the shear stress and apparent viscosity at different temperatures, different shear rates, and can reach 0-500S by setting the screw speed and using capillary tubes with different length-to-diameter ratios. The shear rate of -1 can cover the range of shear rate in the mixing and extrusion process of the internal mixer. According to a large number of experiments, the power law equation and coefficient range of different materials can be obtained to accurately predict the rubber in actual production. Processing stability.
作为本发明的一个实施例,所述生胶样品为天然橡胶或合成橡胶;所述合成橡胶为顺丁橡胶,丁苯橡胶,三元乙丙橡胶或丁基橡胶。优选的,所述丁苯橡胶为溶聚丁苯橡胶或乳聚丁苯橡胶;优选的,所述溶聚丁苯橡胶为非充油溶聚丁苯橡胶或充油溶聚丁苯橡胶,所述乳聚丁苯橡胶为非充油乳聚丁苯橡胶或充油乳聚丁苯橡胶。As an embodiment of the present invention, the raw rubber sample is natural rubber or synthetic rubber; the synthetic rubber is butadiene rubber, styrene-butadiene rubber, EPDM rubber or butyl rubber. Preferably, the styrene-butadiene rubber is solution polystyrene butadiene rubber or emulsion polystyrene butadiene rubber; preferably, the solution polystyrene butadiene rubber is non-oil-extended polystyrene-butadiene rubber or oil-extended polystyrene-butadiene rubber, so The above-mentioned polystyrene-butadiene emulsion is non-oil-extended polystyrene-butadiene emulsion or polystyrene-butadiene oil-extended rubber.
轮胎用橡胶是典型的聚合物,随着剪切速率的增大,聚合物的表观粘度减小,这种现象称为“剪切变稀”行为(shear-thinning),通常把具有“剪切变稀”效应的流体称假塑性流体(pseudoplastic fluid)。假塑性流体的流动规律符合Ostwald-de Wale幂律方程(power law):Rubber for tires is a typical polymer. As the shear rate increases, the apparent viscosity of the polymer decreases. This phenomenon is called "shear-thinning". The fluid with shear thinning effect is called pseudoplastic fluid. The flow law of pseudoplastic fluid conforms to the Ostwald-de Wale power law equation (power law):
两边取对数后:After taking the logarithm on both sides:
lgη=lgK+(n-1)lgγlgη=lgK+(n-1)lgγ
其中η为表观粘度,γ为剪切速率,A为n-1,其中n为非牛顿指数,B 为lgK,其中K为剪切速度为0时的表观粘度,称为粘度常数。Wherein η is the apparent viscosity, γ is the shear rate, A is n-1, wherein n is the non-Newtonian index, B is lgK, and wherein K is the apparent viscosity when the shear rate is 0, which is called the viscosity constant.
通过对不同种的生胶进行流变性能测试,得出相应的剪切速率和表观粘度值,对二者取双对数后,拟合相应的幂律方程;拟合结果表明门尼粘度相近、加工工艺条件相同的不同厂家,不同批次的同种生胶满足幂律方程lg η=(A±0.03)lgγ+(B±0.06),满足该方程的生胶在使用过程中加工性能稳定;不满足该方程的材料,需要根据实际情况提前进行加工工艺参数的调整。即采用转矩流变仪毛细管挤出方法检测门尼粘度值相近的生胶材料,预测该种材料在实际生产中的加工性能。By testing the rheological properties of different kinds of raw rubber, the corresponding shear rate and apparent viscosity value are obtained, and after taking the double logarithm of the two, the corresponding power law equation is fitted; the fitting result shows that the Mooney viscosity Different manufacturers with similar processing conditions and different batches of the same raw rubber satisfy the power law equation lg η=(A±0.03)lgγ+(B±0.06), and the processing performance of the raw rubber that satisfies this equation during use Stable; for materials that do not satisfy this equation, the processing parameters need to be adjusted in advance according to the actual situation. That is, the torque rheometer capillary extrusion method is used to detect raw rubber materials with similar Mooney viscosity values, and to predict the processing performance of such materials in actual production.
不同种生胶或同种生胶的不同批次均具有不同的A值和B值,但同种生胶材料具有一定的A值和B值,对于所有的生胶材料:A值范围为标准值± 0.03,B值的范围为标准值±0.06。Different kinds of raw rubber or different batches of the same kind of raw rubber have different A values and B values, but the same kind of raw rubber materials have certain A values and B values. For all raw rubber materials: the range of A values is the standard The value of B is ± 0.03, and the range of B value is ± 0.06 of the standard value.
所述生胶门尼粘度的测试参照GB/T 1232.1标准,采用圆盘剪切粘度计进行测量,测量的原理为:100℃下,预热1min,加热4min,转子转速为2r/min 条件下的转矩值,即门尼粘度的计量值。The Mooney viscosity of the raw rubber is tested with reference to the GB/T 1232.1 standard, and the disc shear viscometer is used for measurement. The measurement principle is: at 100°C, preheat for 1min, heat for 4min, and the rotor speed is 2r/min. The torque value, that is, the measured value of the Mooney viscosity.
所述采用转矩流变仪毛细管挤出模式对轮胎用生胶进行挤出,将转矩流变仪温度升到预先设置的温度值,根据不同胶种设置螺杆和挤出口模温度 110℃~170℃,设置挤出速率程序和时间,根据生胶种类对温度及剪切力的反应程度设置螺杆转速,确保剪切速率涵盖实际生产中剪切速率范围,待设备预热稳定之后,将待测生胶剪成细条,从高长径比(L/D=40)毛细管口模开始试验,记录挤出样品的质量,表观粘度和压力的数值。The raw rubber for tires is extruded using the capillary extrusion mode of the torque rheometer, the temperature of the torque rheometer is raised to a preset temperature value, and the temperature of the screw and the extrusion die is set to 110°C to 110°C according to different rubber types. 170°C, set the extrusion rate program and time, and set the screw speed according to the reaction degree of the raw rubber type to temperature and shear force, so as to ensure that the shear rate covers the shear rate range in actual production. After the equipment is preheated and stabilized, the Cut the raw rubber into thin strips, start the test from the high aspect ratio (L/D=40) capillary die, record the mass of the extruded sample, the apparent viscosity and the value of pressure.
该测试方法采用转矩流变仪进行测试,该设备可以同时应用于胶料混炼,轮胎半部件挤出模拟,应用范围广泛,并且都是指导车间实际加工生产使用。The test method uses a torque rheometer for testing. This equipment can be applied to rubber compound mixing and tire semi-component extrusion simulation at the same time. It has a wide range of applications and is used to guide the actual processing and production of the workshop.
为了更深入的了解合成橡胶的加工性能,仅靠检测生胶的门尼粘度值不能完整反映材料的使用性能,毛细管流变仪能够进行聚合物不同结构的比较,同种聚合物由于分子链结构不同,如线性、支链长短、嵌段结构等,反映在毛细管流变仪上就表现为剪切应力和表观粘度的差异。In order to gain a deeper understanding of the processing performance of synthetic rubber, the Mooney viscosity value of raw rubber alone cannot fully reflect the performance of the material. Capillary rheometers can compare different structures of polymers. The molecular chain structure of the same polymer Differences, such as linearity, branch length, block structure, etc., are reflected in the capillary rheometer as differences in shear stress and apparent viscosity.
作为本发明的一个实施例,所述转矩流变仪为混炼机型转矩流变仪,是一种多功能可换的积木式转矩测定仪器,包括小型密闭式混合器、小型螺杆挤出器及不同类型的挤出口模。本发明使用的挤出口模为狭缝毛细管口模,即转矩流变仪毛细管挤出模式,可以模拟合成橡胶的实际加工过程,表征合成橡胶的加工流变性能。As an embodiment of the present invention, the torque rheometer is a mixing type torque rheometer, which is a multi-functional interchangeable building block torque measuring instrument, including a small closed mixer, a small screw Extruders and different types of extrusion dies. The extrusion die used in the present invention is a slit capillary die, that is, the capillary extrusion mode of the torque rheometer, which can simulate the actual processing process of the synthetic rubber and characterize the processing rheological properties of the synthetic rubber.
下面列出具体生胶材料的幂律方程实施例,以对本发明进行进一步描述,但本发明的保护范围并不仅限于此:List the power law equation embodiment of specific raw rubber material below, to further describe the present invention, but protection scope of the present invention is not limited thereto:
实施例1:Example 1:
取锦湖石化的非充油乳聚丁苯橡胶1502,采用门尼粘度计测量生胶的门尼粘度值(ML1+4 100℃),然后将生胶样品剪成条状,在转矩流变仪单螺杆挤出,毛细管口模的模式下进行测试,毛细管口模的规格为L/D=20,L/D=30, L/D=40,设置螺杆及挤出口模温度为150℃,单螺杆的挤出速率为1r/min, 5r/min,10r/min,15r/min,20r/min,25r/min,30r/min,并且每个挤出速率下保持时间为60s,输入生胶的比重值,称量每个速率下的挤出质量,记录剪切应力和表观粘度的数值,根据表观粘度和剪切速率的数值,得出该材料的幂律方程如表1。图1所示为本发明实施例1的锦湖石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图。Take Kumho Petrochemical’s non-oil-extended Emulsion Polystyrene Butadiene Rubber 1502, use a Mooney viscometer to measure the Mooney viscosity value of the raw rubber (ML1+4 100°C), then cut the raw rubber sample into strips, Variable instrument single-screw extrusion, test under the mode of capillary die, the specification of capillary die is L/D=20, L/D=30, L/D=40, set the temperature of screw and extrusion die to 150°C , the single-screw extrusion rate is 1r/min, 5r/min, 10r/min, 15r/min, 20r/min, 25r/min, 30r/min, and the retention time at each extrusion rate is 60s, input raw The specific gravity value of the glue, the extrusion mass at each rate was weighed, and the values of shear stress and apparent viscosity were recorded. According to the values of apparent viscosity and shear rate, the power law equation of the material was obtained as shown in Table 1. Fig. 1 shows the double-logarithmic curve of apparent viscosity and shear rate of Kumho Petrochemical's non-oil-extended emulsion polystyrene butadiene rubber 1502 in Example 1 of the present invention.
实施例2:Example 2:
取齐鲁石化的非充油乳聚丁苯橡胶1502,采用门尼粘度计测量生胶的门尼粘度值(ML1+4 100℃),然后将生胶样品剪成条状,在转矩流变仪单螺杆挤出,毛细管口模的模式下进行测试,毛细管口模的规格为L/D=20,L/D=30, L/D=40,设置螺杆及挤出口模温度为150℃,单螺杆的挤出速率为1r/min, 5r/min,10r/min,15r/min,20r/min,25r/min,30r/min,并且每个挤出速率下保持时间为60s,输入生胶的比重值,称量每个速率下的挤出质量,得出剪切应力和表观粘度的数值,根据表观粘度和剪切速率的数值,得出合成橡胶的幂律方程如表1。图2所示为本发明实施例2的齐鲁石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图。Take Qilu Petrochemical’s non-oil-extended Emulsion Polystyrene Butadiene Rubber 1502, use a Mooney viscometer to measure the Mooney viscosity value of the raw rubber (ML1+4 100°C), then cut the raw rubber sample into strips, and test it in the torque rheology The single-screw extrusion of the instrument is carried out under the mode of the capillary die. The specifications of the capillary die are L/D=20, L/D=30, and L/D=40. The temperature of the screw and the extrusion die is set at 150°C. The extrusion rate of the single screw is 1r/min, 5r/min, 10r/min, 15r/min, 20r/min, 25r/min, 30r/min, and the holding time at each extrusion rate is 60s, input raw rubber According to the specific gravity value, the extrusion mass at each rate is weighed to obtain the values of shear stress and apparent viscosity. According to the values of apparent viscosity and shear rate, the power law equation of synthetic rubber is shown in Table 1. Fig. 2 is a double-logarithmic curve of apparent viscosity and shear rate of non-oil-extended emulsion polystyrene butadiene rubber 1502 of Qilu Petrochemical in Example 2 of the present invention.
实施例3:Example 3:
取扬子石化的非充油乳聚丁苯橡胶1502,采用门尼粘度计测量生胶的门尼粘度值(ML1+4 100℃),然后将生胶样品剪成条状,在转矩流变仪单螺杆挤出,毛细管口模的模式下进行测试,毛细管口模的规格为L/D=20,L/D=30,L/D=40,设置螺杆及挤出口模温度为150℃,单螺杆的挤出速率为1r/min, 5r/min,10r/min,15r/min,20r/min,25r/min,30r/min,并且每个挤出速率下保持时间为60s,输入生胶的比重值,称量每个速率下的挤出质量,记录剪切应力和表观粘度的数值,根据表观粘度和剪切速率的数值,得出该材料的幂律方程如表1。图3所示为本发明实施例3的扬子石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图。Take the non-oil-extended emulsion polystyrene butadiene rubber 1502 of Yangzi Petrochemical, and use the Mooney viscometer to measure the Mooney viscosity value of the raw rubber (ML1+4 100°C), and then cut the raw rubber sample into strips, and test it in torque rheology The instrument is single-screw extruded and tested under the mode of capillary die. The specifications of capillary die are L/D=20, L/D=30, L/D=40, and the temperature of screw and extrusion die is set at 150°C. The extrusion rate of the single screw is 1r/min, 5r/min, 10r/min, 15r/min, 20r/min, 25r/min, 30r/min, and the holding time at each extrusion rate is 60s, input raw rubber Weigh the extrusion mass at each rate, record the values of shear stress and apparent viscosity. According to the values of apparent viscosity and shear rate, the power law equation of the material is shown in Table 1. Fig. 3 is a double-logarithmic graph showing the apparent viscosity and shear rate of Yangzi Petrochemical's non-oil-extended emulsion polystyrene butadiene rubber 1502 in Example 3 of the present invention.
实施例4:Example 4:
取吉林石化的非充油乳聚丁苯橡胶1500E,采用门尼粘度计测量生胶的门尼粘度值(ML1+4 100℃),然后将生胶样品剪成条状,在转矩流变仪单螺杆挤出,毛细管口模的模式下进行测试,毛细管口模的规格为L/D=20, L/D=30,L/D=40,设置螺杆及挤出口模温度为150℃,单螺杆的挤出速率为 1r/min,5r/min,10r/min,15r/min,20r/min,25r/min,30r/min,并且每个挤出速率下保持时间为60s,输入生胶的比重值,称量每个速率下的挤出质量,记录剪切应力和表观粘度的数值,根据表观粘度和剪切速率的数值,得出该材料的幂律方程如表1。图4所示为本发明实施例4的吉林石化的非充油乳聚丁苯橡胶1502的表观粘度与剪切速率的双对数曲线图。Take the non-oil-extended emulsion polystyrene butadiene rubber 1500E of Jilin Petrochemical Co., Ltd., and use the Mooney viscometer to measure the Mooney viscosity value of the raw rubber (ML1+4 100°C), and then cut the raw rubber sample into strips. The instrument is single-screw extrusion, and the test is carried out in the mode of capillary die. The specifications of capillary die are L/D=20, L/D=30, L/D=40, and the temperature of screw and extrusion die is set at 150°C. The extrusion rate of the single screw is 1r/min, 5r/min, 10r/min, 15r/min, 20r/min, 25r/min, 30r/min, and the retention time at each extrusion rate is 60s, input raw rubber Weigh the extrusion mass at each rate, record the values of shear stress and apparent viscosity. According to the values of apparent viscosity and shear rate, the power law equation of the material is shown in Table 1. Fig. 4 is a double-logarithmic curve of apparent viscosity and shear rate of Jilin Petrochemical's non-oil-extended emulsion polystyrene butadiene rubber 1502 in Example 4 of the present invention.
实施例5:Example 5:
取锦湖石化的充油溶聚丁苯橡胶6270M,采用门尼粘度计测量生胶的门尼粘度值(ML1+4 100℃),然后将生胶样品剪成条状,在转矩流变仪单螺杆挤出,毛细管口模的模式下进行测试,毛细管口模的规格为L/D=20,L/D=30, L/D=40,设置螺杆及挤出口模温度为150℃,单螺杆的挤出速率为1r/min, 5r/min,10r/min,15r/min,20r/min,25r/min,30r/min,并且每个挤出速率下保持时间为60s,输入生胶的比重值,称量每个速率下的挤出质量,记录剪切应力和表观粘度的数值,根据表观粘度和剪切速率的数值,得出该材料的幂律方程如表1。图5所示为本发明实施例5的锦湖石化的充油溶聚丁苯橡胶6270M的表观粘度与剪切速率的双对数曲线图。Take Kumho Petrochemical’s oil-soluble polystyrene-butadiene rubber 6270M, and use a Mooney viscometer to measure the Mooney viscosity value of the raw rubber (ML1+4 100°C), then cut the raw rubber sample into strips, and test it in torque rheology The single-screw extrusion of the instrument is carried out under the mode of the capillary die. The specifications of the capillary die are L/D=20, L/D=30, and L/D=40. The temperature of the screw and the extrusion die is set at 150°C. The extrusion rate of the single screw is 1r/min, 5r/min, 10r/min, 15r/min, 20r/min, 25r/min, 30r/min, and the holding time at each extrusion rate is 60s, input raw rubber Weigh the extrusion mass at each rate, record the values of shear stress and apparent viscosity. According to the values of apparent viscosity and shear rate, the power law equation of the material is shown in Table 1. Fig. 5 is a double-logarithmic graph showing the apparent viscosity and shear rate of Kumho Petrochemical's oil-extended styrene-butadiene rubber 6270M in Example 5 of the present invention.
实施例6:Embodiment 6:
取LG化学的充油溶聚丁苯橡胶2550,采用门尼粘度计测量生胶的门尼粘度值(ML1+4 100℃),然后将生胶样品剪成条状,在转矩流变仪单螺杆挤出,毛细管口模的模式下进行测试,毛细管口模的规格为L/D=20,L/D=30, L/D=40,设置螺杆及挤出口模温度为150℃,单螺杆的挤出速率为1r/min, 5r/min,10r/min,15r/min,20r/min,25r/min,30r/min,并且每个挤出速率下保持时间为60s,输入生胶的比重值,称量每个速率下的挤出质量,记录剪切应力和表观粘度的数值,根据表观粘度和剪切速率的数值,得出该材料的幂律方程如表1。图6所示为本发明实施例6的LG化学的充油溶聚丁苯橡胶2550的表观粘度与剪切速率的双对数曲线图。Take LG Chemical’s oil-extended styrene-butadiene rubber 2550, and use a Mooney viscometer to measure the Mooney viscosity value of the raw rubber (ML1+4 100°C), then cut the raw rubber sample into strips, and test it on the torque rheometer. Single-screw extrusion, test under the mode of capillary die, the specification of capillary die is L/D=20, L/D=30, L/D=40, set the temperature of screw and extrusion die at 150℃, single The extrusion rate of the screw is 1r/min, 5r/min, 10r/min, 15r/min, 20r/min, 25r/min, 30r/min, and the retention time at each extrusion rate is 60s, input raw rubber Specific gravity value, weighing the extrusion mass at each rate, recording the values of shear stress and apparent viscosity, according to the values of apparent viscosity and shear rate, the power law equation of the material is shown in Table 1. Fig. 6 is a double-logarithmic graph showing the apparent viscosity and shear rate of LG Chem's oil-extended styrene-butadiene rubber 2550 in Example 6 of the present invention.
表1不同厂家的丁苯橡胶的门尼粘度和幂律方程对比表Table 1 Comparison table of Mooney viscosity and power law equation of styrene-butadiene rubber from different manufacturers
从表1可以看出,实施例1-实施例4中的四个厂家的SBR1502(含1500E) 的门尼粘度值差别在5%以内,并且在车间使用过程中未进行工艺条件的调整,经过毛细管挤出试验后,得出聚合物熔体的剪切速率和表观粘度值,取双对数后,得出lgη=(n-1) lg γ+lgK,其中n-1=A±0.03,lgK=B±0.06,根据检测得出的不同厂家SBR1502剪切速率和表观粘度值后,得出A=-0.61, B=4.68。As can be seen from Table 1, the Mooney viscosity value difference of the SBR1502 (containing 1500E) of four producers in the embodiment 1-embodiment 4 is within 5%, and the adjustment of process conditions is not carried out in the workshop use process, after After the capillary extrusion test, obtain the shear rate and the apparent viscosity value of the polymer melt, after taking double logarithm, draw lgη=(n-1) lgγ+lgK, wherein n-1=A ± 0.03 , lgK=B±0.06, according to the shear rate and apparent viscosity of SBR1502 from different manufacturers, A=-0.61, B=4.68.
实施例5和实施例6这 两种充油溶聚丁苯橡胶的门尼粘度差别也在5%以内,满足车间稳定生产的充油溶聚丁苯橡胶(丁二烯含量23.5%,充油为 37.5phr)的幂律方程为lgη=(-0.80±0.03)lgγ+(4.83±0.06),实例 5和实例6的幂律方程在所述的幂律方程范围内。The Mooney viscosity difference of these two kinds of oil-extended polystyrene-butadiene rubbers of embodiment 5 and embodiment 6 is also within 5%, which satisfies the oil-extended polystyrene-butadiene rubber (butadiene content 23.5%, oil-extended The power-law equation of 37.5phr) is lgη=(-0.80±0.03)lgγ+(4.83±0.06), and the power-law equations of Example 5 and Example 6 are within the scope of the power-law equation.
在本发明中,具体拟合计算的过程需要运用到Matlab或类似功能软件,利用最小二乘法确定与真实值相差最小的拟合数值。In the present invention, the specific fitting calculation process needs to be applied to Matlab or similar functional software, and the least square method is used to determine the fitting value with the smallest difference from the real value.
本发明可用其他的不违背本发明的精神或主要特征的具体形式来概述。因此,无论从哪一点来看,本发明的上述实施方案都只能认为是对本发明的说明而不能限制本发明,权利要求书指出了本发明的范围,而上述的说明并未指出本发明的范围,因此,在与本发明的权利要求书相当的含义和范围内的The present invention may be embodied in other specific forms without departing from the spirit or main characteristics of the invention. Therefore, no matter from which point of view, the above-mentioned embodiments of the present invention can only be regarded as descriptions of the present invention and cannot limit the present invention, and the claims have pointed out the scope of the present invention, and the above description does not point out the scope of the present invention. scope, therefore, within the meaning and scope equivalent to the claims of the present invention
任何改变,都应认为是包括在本发明的权利要求书的范围内。Any changes should be considered to be included in the scope of the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610004850.8A CN105527194B (en) | 2016-01-05 | 2016-01-05 | A method for detecting the processing performance of rubber used in tires |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610004850.8A CN105527194B (en) | 2016-01-05 | 2016-01-05 | A method for detecting the processing performance of rubber used in tires |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105527194A CN105527194A (en) | 2016-04-27 |
CN105527194B true CN105527194B (en) | 2018-01-02 |
Family
ID=55769555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610004850.8A Active CN105527194B (en) | 2016-01-05 | 2016-01-05 | A method for detecting the processing performance of rubber used in tires |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105527194B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI671128B (en) * | 2016-12-30 | 2019-09-11 | 財團法人工業技術研究院 | Coating method of non-newtonian fluid material and coating system thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6412337B1 (en) * | 2000-01-28 | 2002-07-02 | Polyvalor S.E.C. | Apparatus and method for measuring the rheological properties of a power law fluid |
CN103353433A (en) * | 2013-07-03 | 2013-10-16 | 天津大学 | Method for testing wall slip length of polymer under dynamic rheological conditions |
-
2016
- 2016-01-05 CN CN201610004850.8A patent/CN105527194B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6412337B1 (en) * | 2000-01-28 | 2002-07-02 | Polyvalor S.E.C. | Apparatus and method for measuring the rheological properties of a power law fluid |
CN103353433A (en) * | 2013-07-03 | 2013-10-16 | 天津大学 | Method for testing wall slip length of polymer under dynamic rheological conditions |
Non-Patent Citations (3)
Title |
---|
"PP/EPDM/玻璃微珠复合材料挤出流动性的研究";梁基照;《橡胶工业》;20051231;第52卷(第6期);第329-332页 * |
"大型仪器用于高分子物理实验的实践与探索";唐萍 等;《实验科学与技术》;20150630;第13卷(第3期);第154-157页 * |
"天然胶原的稳态流变性能和数学模拟";段炼 等;《功能材料》;20101231;第41卷(第12期);第2068-2071页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105527194A (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
White | Elastomer rheology and processing | |
CN105372155B (en) | A kind of method of test evaluation polyvinyl chloride lubricants for use in processing metal lubrication performance | |
Sofou et al. | Rheological characterization and constitutive modeling of bread dough | |
CN105527194B (en) | A method for detecting the processing performance of rubber used in tires | |
Barczewski et al. | Rheological and single screw extrusion processability studies of isotactic polypropylene composites filled with basalt powder | |
Klozinski et al. | Comparison of off-line, on-line and in-line measuring techniques used for determining the rheological characteristics of polyethylene composites with calcium carbonate | |
Pole et al. | Correlations in rheological behavior between large amplitude oscillatory shear and steady shear flow of silica‐filled star‐shaped styrene‐butadiene rubber compounds: Experiment and simulation | |
Kloziński et al. | The evaluation of extensional viscosity of highly filled polyolefins composites films with calcium carbonate | |
Chen et al. | Insight on natural rubber’s relationship with coagulation methods and some of its properties during storage | |
Rides et al. | An investigation of high rate capillary extrusion rheometry of thermoplastics | |
Wang et al. | A novel method for the determination of steady-state torque of polymer melts by HAAKE MiniLab | |
JP4136532B2 (en) | Viscoelastic material processability evaluation method and apparatus, processing condition setting method and processing apparatus, and process management method | |
Kloziński et al. | The application of an extrusion slit die in the rheological measurements of polyethylene composites with calcium carbonate using an in‐line rheometer | |
Ramini et al. | Shear heating parameter of rubber compounds useful for process control in injection molding machine | |
Dick et al. | Practical rubber rheology and dynamic properties | |
Du et al. | Online characterization of ambient temperature influence on die swell behavior of rubber compound | |
Hopmann et al. | The role of rubber rheology in tire tread extrusion: a review. | |
Skalková et al. | Analysis of rheological behavior of elastomeric blends | |
KR200478944Y1 (en) | Simulation apparatus for tire tread | |
Putzig et al. | Wall Slippage in high-pressure capillary viscometry: effects of molecular weight, compound composition, and capillary surface coating | |
CN115963037A (en) | Method for evaluating quality stability of butadiene rubber | |
US20250005219A1 (en) | Predictive method based upon machine learning for the development of composites for tire tread compounds | |
CN116087479B (en) | A method for determining the effective purity of rubber vulcanization accelerator | |
Steffe et al. | On‐line measurement of dynamic rheological properties during food extrusion | |
KR20210146625A (en) | DSC Analysis method for LLD/LD Melt Blend |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20191220 Address after: 545516 No.1, Guandong Road, Luorong Town, Luzhai County, Liuzhou City, Guangxi Zhuang Autonomous Region Patentee after: GUANGXI LINGLONG TIRE Co.,Ltd. Address before: 265400 No. 777 Jinlong Road, Yantai, Shandong, Zhaoyuan Patentee before: SHANDONG LINGLONG TYRE Co.,Ltd. |
|
TR01 | Transfer of patent right |