CN105521562B - 一种肿瘤热疗的温度场预示与控制装置及方法 - Google Patents

一种肿瘤热疗的温度场预示与控制装置及方法 Download PDF

Info

Publication number
CN105521562B
CN105521562B CN201610053082.5A CN201610053082A CN105521562B CN 105521562 B CN105521562 B CN 105521562B CN 201610053082 A CN201610053082 A CN 201610053082A CN 105521562 B CN105521562 B CN 105521562B
Authority
CN
China
Prior art keywords
temperature field
temperature
value
display control
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610053082.5A
Other languages
English (en)
Other versions
CN105521562A (zh
Inventor
叶福丽
史贵连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGZHOU BRIGHT MEDICAL TECHNOLOGY Co.,Ltd.
Original Assignee
Hubei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Science and Technology filed Critical Hubei University of Science and Technology
Priority to CN201610053082.5A priority Critical patent/CN105521562B/zh
Publication of CN105521562A publication Critical patent/CN105521562A/zh
Application granted granted Critical
Publication of CN105521562B publication Critical patent/CN105521562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/022Apparatus adapted for a specific treatment
    • A61N5/025Warming the body, e.g. hyperthermia treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明公开了一种肿瘤热疗的温度场预示与控制装置及利用该装置实现的一种肿瘤热疗的温度场预示与实时控制方法。所述肿瘤热疗的温度场预示与控制装置包括红外热像仪,B超机,显示控制装置,温度场优化仿真装置和微波辐射源;所述显示控制装置连接微波辐射源、红外热像仪和温度场优化仿真装置,所述温度场优化仿真装置连接B超机。本发明避免了温度边界条件的处理,提高了优化迭代的效率,大幅提高了肿瘤热疗过程中温度场重构的速度,为广大的癌症患者带来低成本的高效治疗。

Description

一种肿瘤热疗的温度场预示与控制装置及方法
技术领域
本发明涉及临床医学检测技术领域,具体来说涉及一种肿瘤热疗的温度场预示与控制装置,以及使用该装置所实现的一种肿瘤热疗的温度场预示与实时控制方法。
背景技术
在现代医学中,肿瘤及其周围组织的三维热分布信息不仅有助于疾病的诊断和分析,而且对于热疗过程中温度场的预示与控制有着十分重要的价值。
传统的生物体三维温度场的重构和预示通常采取解析法和数值求解法两种。其中,解析方法的优势在于系统的行为和特征可以通过方程及其解的形式来解释和揭示,主要缺点是只有简单问题才能得到极其有限的解,比如线性或常参数系统等。而实际系统往往是十分复杂的,为了模拟和仿真真实系统,所采用的数学模型也就会相应变得更为复杂,此时必须采取数值方法进行求解。对于温度场反问题的求解,常用的数值方法有两种,即有限差分法和有限元法。如果模型的边界比较规则,采取有限差分法较为快捷,如果模型的边界不规则,则适用于采用有限元法。但它们存在一个共同的问题:对温度边界条件的要求十分苛刻,需要获取模型全部表面的温度分布信息。这一特点使得上述数值方法在实际的临床应用中遇到巨大的阻碍。如何寻找一种方便快捷的方式提高肿瘤热疗过程中温度场重构的速度,为广大的癌症患者带来低成本的高效治疗是本领域技术人员需要研究的一个重大课题。
发明内容
为解决上述问题,本发明提供一种肿瘤热疗的温度场预示与控制装置及方法。由生物体表面温度推导其内部温度场分布是一个典型的热传导反问题,本发明以生物体热源的温度为优化变量,通过建立合理的目标函数,将这一典型的热传导反问题转换成正问题的求解过程,从而避免传统数值方法中复杂的边界条件处理和正则化处理过程,提高了肿瘤热疗过程中温度场重构的速度,从而达到实时监控的效果。
本发明提供的一种肿瘤热疗的温度场预示和控制过程如下:
优选的,采用高精度红外热像仪获取病灶部位(器官)一个表面的温度,提取有限个点的实际温度值;
进一步地,以一定的方法来选取点的位置及其个数,即在红外热图表面作十字形(或圆形、三角形等)线条,在线条上等距离取点,提取相应点的实际温度值;
进一步地,十字形(或圆形、三角形等)的中心靠近红外热图的最高温区域,使图形线条的分布尽量反映红外热图的温度分布特征;
可选的,本发明的实施方法中,采用B超机在病灶部位获得病灶的位置信息和形状信息,基于某种全局优化算法,以病灶的温度为优化变量,使用有限元法对温度样本进行计算,从而得到该样本下的病灶部位温度分布的理论值;
对应于红外热图中所选取的点,相应地提取这些点的理论温度值;
对于所有的选取点,首先取每个选取点的实际温度值与理论温度值之差,然后取全部选取点的绝对值之和,和值越小,则当前病灶的温度样本越优;
通过上述方法,实现了肿瘤热疗过程中温度场的预示,医生则根据病灶及其周围组织的温度场的预示判断当前的热疗温度是否符合要求,然后通过调节外部装置对内部温度进行控制。
可选的,一种肿瘤热疗的温度场预示与控制装置,包括红外热像仪、温度场优化仿真系统、微波辐射源、B超机和显示控制装置。所述红外热像仪和显示控制装置相连,实现病灶部位实际表面温度的显示、等距点的选择以及其温度值得提取;所述B超机和温度场优化仿真系统相连,实现病灶部位的真实组织结构的显示,以便于准确构建仿真模型;所述温度场优化仿真系统和显示控制装置相连,实现病灶部位的理论表面温度的获取,得到与实际模型相对应的选取点的温度值,并取所有点的理论温度值和实验温度值之 差的绝对值;所述微波辐射源和显示控制装置相连,根据热疗过程中病灶部位温度场的预示结果,实现对热疗温度的实时监视与控制。
本发明的积极进步效果在于:一、通过生物体表面温度反演得到内部三维温度场,是一个典型的热传导反问题,本发明将这一反问题转变成为正问题的求解过程;二、以病灶温度为优化变量,采用全局优化算法重构病灶部位的温度场,在重构过程中,只需获取一个表面的温度分布,避免了常用数值方法中的繁琐边界条件的处理过程;三、在构建目标函数时,只需按某种方式选取有限个点,并在实际模型和仿真模型中提取对应的温度值,这使得优化迭代的效率得到了极大的提高,而这也正是肿瘤热疗过程中温度场预示与实时控制的一个重要的技术环节。
附图说明
图1为本发明一种肿瘤热疗的温度场预示与控制装置的结构示意图。
图2为本发明基于全局优化算法的温度场重构方法流程图。
图3为本发明目标函数的构建方法示意图。
图4为本发明温度场优化仿真系统中优化模块、有限元建模与数据提取模块和目标函数计算迭代模块的三个模块的数据交换流程图。
具体实施方式
为了使本发明的目的、方法、技术方案及优点更加清楚明白,以下结合附图对本发明进行进一步详细说明。应当理解,此处描述仅仅用以解释本发明,并不限定本发明。
图1为本发明一种肿瘤热疗的温度场预示与控制装置的结构示意图。如图1所示,红外热像仪和显示控制装置相连接,微波辐射源和显示控制装置相连接,温度场优化仿真系统和显示控制装置相连接,B超机和温度场优化仿真系统相连接。此外,图1中还显示了热疗病床及其病人的摆位方法。
如图1中的①所示,首先通过B超机获取病灶部位的组织结构信息,把该信息传递给温度场优化仿真系统进行生物热传导的建模,优化变量为病灶的温度。
如图1中的②所示,红外热像仪探测到病灶部位表面温度信息,并形成红外热图,然后将该热图传递给显示控制装置,通过显示控制装置,医生对获取的红外热图进行与病灶部位的等比例处理,然后按某种方式(十字形,或圆形,或三角形等)等距离取点并提取其对应的温度值。以十字形为例,在红外热图中的病灶部位区域作十字形,接着在十字形上等距离取有限个点并提取其对应的温度值。
在一个优化样本下,计算出病灶部位的理论表面温度分布,并对应于实际的红外热图,选择相同数量、相同位置的等距点,提其理论温度值。计算各个点的理论温度值与实际温度值之差并取绝对值,然后计算所有选取点的绝对值之和,若和值越小,则当前样本越优。
如图1所示,显示控制装置和温度场优化仿真系统相连接,显示控制装置将提取的红外热图信息传递给温度场优化仿真模块,以进行全局优化算法的迭代计算;温度场优化仿真模块将仿真结果,即热疗过程中的病灶温度值实时传递给显示控制装置,作为医生决定是否做下一步处理的依据。
如图1所示,显示控制装置和微波辐射源相连接,根据温度场优化仿真系统传递给显示控制装置的数据,医生根据热疗需要调整微波辐射源的功率与强度,从而实现了热疗过程中病灶温度场的实时控制。
在肿瘤热疗过程中,图1中的红外热像仪即②和微波辐射源即③是同时进行的,从而实现热疗温度场的动态实时预示与控制。
本领域技术人员应该注意到,红外热图上等距点的选取方法除了上述提到的几种方式,其他类似的选取方法如椭圆形,梯形,以及其他规则或不规则的图形提取方法,都属于本发明的保护范围。在没有作出创造性劳动前提下所获得的其他所有事实方案,也属于本发明的保护范围。
图2为本发明基于全局优化算法的温度场重构方法流程图。如图2所示,以病灶的温度为优化变量,其变化范围设置为35℃-50℃。全局优化算法决定了新解得产生、迭代和取舍方式,而目标函数则用来评 价个体的优劣。当最优值,即最接近病灶温度真实值确定下来之后,采用有限元方法,病灶部位的温度场及其表面温度分布也相应地计算出来。
本领域技术人员应该注意到,图2中所列举的3种全局优化算法,即多岛遗传算法,自适应模拟退火算法和并行粒子群算法只是三种应用的实例,其他优化算法的在该部分的应用,属于本发明的保护范围。
图3为本发明目标函数的构建方法示意图。目标函数是全局优化算法中衡量个体优劣的唯一标准。本发明以病灶的温度为优化变量,即以T为优化变量。每经过一次迭代,都需要采用适应度函数来评价变量个体的优劣。将每次迭代计算后所得到的表面温度与实验温度相减并取绝对值之和,其值越小,则当前的迭代变量越接近真实值。然而,一个面上点的数量是无限大的,即便在面上均匀取点,也会使得算法的迭代效率十分低下。为了解决这个问题,本发明在仿真模型和实验模型的相同面上的分别对应提取有限个点的温度值,所选点的个数不宜过多但能够基本反映温度在该表面的分布特征。目标函数表达形式如(1)式所示:
fmin(T)=∑|Tm-TEm|m∈N (1)
式(1)中,m为病灶部位表面所选点的个数;Tm仿真温度值;TEm为实际温度值。
图4为本发明温度场优化仿真系统中的三个模块的变量(数据)交换流程图。这三个模块包括优化模块,有限元建模与数据提取模块,目标函数的计算迭代模块。如图4所示,优化模块的作用是执行智全局优化算法,评估变量个体的适应度;有限元建模与数据提取模块的作用是接收优化模块变量,代入仿真模型并执行有限元计算;目标函数的计算迭代模块的作用是结合有限元计算结果执行适应度计算以及变量迭代。
应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以作出若干变形和改进,这些都属于本发明的保护范围。

Claims (4)

1.一种肿瘤热疗的温度场预示与控制装置,其特征在于,包括:显示控制装置、温度场优化仿真系统、B超机、红外热像仪和微波辐射源;其中红外热像仪和显示控制装置相连接,微波辐射源和显示控制装置相连接,温度场优化仿真系统和显示控制装置相连接,B超机和温度场优化仿真系统相连接;
所述红外热像仪用于实时探测病灶部位的表面温度,并将红外热图传递给显示控制装置,
所述B超机用于获取病灶部位的真实的结构,并将结果传递给温度场优化仿真系统,用于构建病灶部位的生物热传导模型,
所述显示控制装置用于处理红外热像仪传递的红外热图,将处理和提取的信息传递给温度场优化仿真系统,并根据温度场优化仿真系统传递的病灶最优温度值,判断是否调整微波辐射源的功率和强度,
所述温度场优化仿真系统用于执行基于全局优化算法,以寻找最接近病灶真实温度值的最优值,其热传导模型的构建是基于B超机获取的真实的病灶部位的组织结构,其目标函数的构建是基于红外热图的实际温度值和仿真温度值,温度场优化仿真系统将仿真结果传递给显示控制装置,作为调整微波辐射源功率和强度的依据,所述微波辐射源作为肿瘤热疗的外部能量源,其功率和强度受到显示控制装置的控制。
2.一种如权利要求1所述的肿瘤热疗的温度场预示与控制装置的控制方法,其特征在于,包括:对红外热图进行处理,即与实际的病灶部位进行等比例计算,并在红外热图表面作十字形或圆形或三角形的线条,在线条上等距离取点的方式在病灶区域等距离获取有限个选取点,提取其对应的温度值;显示病灶部位的表面热图;显示病灶的当前温度值。
3.一种如权利要求2所述的肿瘤热疗的温度场预示与控制装置的控制方法,其特征在于执行具体的全局优化算法;当最优值,即最接近病灶实际温度的仿真值确定下来后,采用有限元方法,则相应的病灶部位的仿真温度场以及表面温度也随之确定下来。
4.一种如权利要求2所述的肿瘤热疗的温度场预示与控制装置的控制方法,其特征在于,其目标函数的构建是一个核心部分,以病灶的温度为优化变量,即以T为优化变量,通过目标函数来评价变量个体的优劣,即将每次迭代计算后所得到的仿真表面温度与实际表面温度相减并取绝对值之和,其值越小,则当前的迭代变量越接近真实值。
CN201610053082.5A 2016-01-27 2016-01-27 一种肿瘤热疗的温度场预示与控制装置及方法 Active CN105521562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610053082.5A CN105521562B (zh) 2016-01-27 2016-01-27 一种肿瘤热疗的温度场预示与控制装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610053082.5A CN105521562B (zh) 2016-01-27 2016-01-27 一种肿瘤热疗的温度场预示与控制装置及方法

Publications (2)

Publication Number Publication Date
CN105521562A CN105521562A (zh) 2016-04-27
CN105521562B true CN105521562B (zh) 2018-11-09

Family

ID=55764297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610053082.5A Active CN105521562B (zh) 2016-01-27 2016-01-27 一种肿瘤热疗的温度场预示与控制装置及方法

Country Status (1)

Country Link
CN (1) CN105521562B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106037929B (zh) * 2016-05-23 2019-07-26 方崇亮 一种彩超显像微波治疗系统及微波辐射探头识别方法
CN110404175B (zh) * 2018-04-28 2024-03-22 深圳烯旺先进材料技术有限公司 肿瘤热疗控制系统及其控制方法
CN110404176A (zh) * 2018-04-28 2019-11-05 烯旺新材料科技股份有限公司 肿瘤热疗设备及其控制方法
CN110584619A (zh) * 2019-08-30 2019-12-20 赵宏杰 基于悬挂镜头的面部皮肤红外温度场检测系统
CN111445754B (zh) * 2020-04-30 2023-04-07 中国医学科学院生物医学工程研究所 一种模拟激光外科手术的辅助训练系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228809A (en) * 1977-10-06 1980-10-21 Rca Corporation Temperature controller for a microwave heating system
CN103932680A (zh) * 2014-04-15 2014-07-23 广州玖玖伍捌信息科技有限公司 一种人体肿瘤复发监测及热疗一体系统

Also Published As

Publication number Publication date
CN105521562A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN105521562B (zh) 一种肿瘤热疗的温度场预示与控制装置及方法
CN105474219B (zh) 用于根据医学图像和临床数据来估计生理学心脏测量的系统和方法
CN104856755B (zh) 用于基于医学图像的组织消融的个体化计算的系统和方法
CN107072624B (zh) 用于自动治疗计划的系统和方法
Krishnamoorthi et al. Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology
Vergara et al. Patient-specific generation of the Purkinje network driven by clinical measurements of a normal propagation
CN107411767B (zh) 基于冠状动脉ct血管造影的狭窄病灶血流阻力计算方法
CN104867104A (zh) 基于xct图像非刚度配准的目标鼠解剖结构图谱获取方法
Bahador et al. Numerical and experimental investigation on the breast cancer tumour parameters by inverse heat transfer method using genetic algorithm and image processing
CN111420271A (zh) 一种基于头部肿瘤治疗的电极贴片定位方法
Levshinskii et al. Verification and validation of computer models for diagnosing breast cancer based on machine learning for medical data analysis
CN105512489A (zh) 一种基于多尺度心脏Thimthy综合症发病机制的建模方法
CN205850007U (zh) 一种肿瘤热疗的温度场预示与控制装置
Lange et al. Protective role of false tendon in subjects with left bundle branch block: A virtual population study
CN110858412B (zh) 基于图像配准的心脏冠脉cta模型建立方法
Camps et al. Digital Twinning of the Human Ventricular Activation Sequence to Clinical 12-lead ECGs and Magnetic Resonance Imaging Using Realistic Purkinje Networks for in Silico Clinical Trials
Hossain et al. Neural network approach for the determination of heat source parameters from surface temperature image
Novochadov et al. Comparative modeling the thermal transfer in tissues with volume pathological focuses and tissue engineering constructs: a pilot study
CN107085866A (zh) 一种人体直骨ct图像的模拟仿真方法及系统
Myronakis et al. A graphical user interface for XCAT phantom configuration, generation and processing
Li et al. Research on the application of BP neural networks in 3D reconstruction noise filter
Pawar et al. PDE-constrained shape registration to characterize biological growth and morphogenesis from imaging data
Adamopoulos et al. Eyelid basal cell carcinoma classification using shallow and deep learning artificial neural networks
Santos et al. A computing platform to analyze breast abnormalities using infrared images
Milan et al. Graded meshes in bio-thermal problems with transmission-line modeling method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200728

Address after: 4 / F, building 1, No. 1, Keyuan Road, Baiyun District, Guangzhou City, Guangdong Province 510080

Patentee after: GUANGZHOU BRIGHT MEDICAL TECHNOLOGY Co.,Ltd.

Address before: 437100 No. 88, Xianning Avenue, Xianning, Hubei

Patentee before: HUBEI University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right
CB03 Change of inventor or designer information

Inventor after: Ye Fuli

Inventor after: Shi Guilian

Inventor after: Huang Diwen

Inventor after: Cui Zhongshu

Inventor after: Tian Zhoushan

Inventor after: Xu Dan

Inventor before: Ye Fuli

Inventor before: Shi Guilian

CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Ye Fuli

Inventor after: Shi Guilian

Inventor after: Huang Diwen

Inventor after: Cui Shuzhong

Inventor after: Tian Zhoushan

Inventor after: Xu Dan

Inventor before: Ye Fuli

Inventor before: Shi Guilian

CB03 Change of inventor or designer information