CN105519030A - 通信系统中进行快速链路自适应的装置与计算机程序产品 - Google Patents

通信系统中进行快速链路自适应的装置与计算机程序产品 Download PDF

Info

Publication number
CN105519030A
CN105519030A CN201480014439.8A CN201480014439A CN105519030A CN 105519030 A CN105519030 A CN 105519030A CN 201480014439 A CN201480014439 A CN 201480014439A CN 105519030 A CN105519030 A CN 105519030A
Authority
CN
China
Prior art keywords
group
csi
lqm
system model
crc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480014439.8A
Other languages
English (en)
Inventor
沙希·康德
巴苏基·恩达·帕里延多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN105519030A publication Critical patent/CN105519030A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/002Algorithms with memory of the previous states, e.g. Markovian models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Abstract

一种收发信机,用于为通信系统中的快速链路自适应选择信道状态信息。所述收发信机包括与处理装置耦合的射频单元及存储器。所述处理装置用于:基于接收到的数据信号,生成信道和噪声协方差估计值和循环冗余校验结果;基于估计值生成一组链路质量度量(LQM);缓存所述生成的一组LQM;基于所述缓存的一组LQM和所述一组CRC结果,使用高斯过程(GP)系统模型更新模型参数;基于生成的一组LQM,使用更新后的模型参数与GP系统模型为支持的一组CSI中的每一个CSI预测误块率(BLER);从所述支持的一组CSI中选择具有最大吞吐量的CSI和低于阈值的预测BLER。

Description

通信系统中进行快速链路自适应的装置与计算机程序产品
技术领域
本发明的各个方面一般涉及采用链路反馈的通信系统,尤其涉及快速链路自适应技术。
背景技术
随着手机、智能手机和平板设备等现代无线通信设备的普及,对流媒体视频、电视、音乐和用户设备(UE)或移动台(MS)的互联网接入等大量多媒体数据能力的需求也随之激增。为满足这种日益增长的对更高数据速率的需求,基于多输入多输出(MIMO)、正交频分多址接入(OFDMA)、和比特交织编码调制(BICM)等技术的新通信标准正在开发。例如,这些标准包括第三代合作伙伴计划(3GPP)正在研发的长期演进(LTE)和LTE-Advanced(LTE-A),电气电子工程师学会(IEEE)维护的802.11和802.16系列无线宽带标准,WiMAX论坛对IEEE802.11标准的实现方式WiMAX,以及其他标准。
通过无线通信信道传输的数据质量通常由于介质的易失性而变得复杂,会受到衰落、来自其他用户的干扰和UE设备之间的变动等因素的影响。众所周知,根据当前信道条件,对诸如调制编码方案(MCS)或传输功率之类的系统参数进行自适应可显著提升总体吞吐量。但是,要对通信链路或发射机与接收机之间的链路进行自适应,发射机需要准确了解链路的当前信道状态信息(CSI)。
为了满足这一点,如上所述的那些现代通信系统包括某种类型的反馈机制,以允许发送机之间的链路闭环自适应,发射机可位于基站收发信台或eNodeB,而接收机可位于MS或者UE上。例如,3GPPLTE和LTE-A标准包括从一个UE或MS发送回CSI至发射机的规定,其中,CSI用于选择调制编码方案(MCS)、和/或者预编码矩阵、和/或者秩数等传输参数。LTE包括几种类型的CSI,包括信道质量指示(CQI),秩指示(RI)、及预编码矩阵指示(PMI)。所述CQI是一个介于1和15之间的整数值。笼统地说,每一个CQI值与29个MCS中的其中一个对应,这29个MCS用于不包括HARQ重传的下行共享物理信道(PDSCH)上的数据传输。在本方案中,较高的CQI值对应于较高吞吐量的MCS。此后,CQI和MCS可互换使用。
确定接收机的适当CSI值、发送所述CSI到发射机、并基于接收到的CSI来修改所述链路的过程称为链路自适应(LA),通常用于采用MIMO-OFDMA技术的系统中,例如,3GPPLTErel-8中定义的PDSCH。LA的目的是调整传输参数,如MCS和/或预编码矩阵和/或秩数,这样,在保持块错误率(BLER)这个在无线和其他通信系统中使用的典型服务质量QoS度量低于给定阈值的同时,最大程度地提高物理层的平均吞吐量。在移动通信系统中使用的BLER阈值通常约为0.1,或10%,可根据所期望的QoS来调大或调小。
在移动通信系统中,链路自适应方案通常是为了实现从一个无线基站到MS的传输,被称为下行链路(DL),但也可以用来改善上行链路(UL)传输。为了实现LA,接收机接收包含数据包的传输数据,并基于所接收的信号计算链路质量度量(LQM)。然后,接收机确定适当的CSI值并将它们发送给发射机,这些CSI值用于为随后的数据传输选择链路参数。无线链路是非常不稳定的介质,因此当计算一个CSI值并发送给发射机用于调整链路参数时,该链路可能已经发生很大地改变,导致自适应无法达到理想效果。因此,当使用修改后的传输方案时,接收机应该尝试预测未来的CSI,而不是仅仅计算当前的CSI值和把其返回给发射机,这样才能提升链路吞吐量。因此,LA需要根据当前的和过去的信道信息来预测用于下一次的传输最佳CSI。由于无线链路是不断迅速变化的,用于CSI预测的LA算法必须足够快地调整,以跟踪这些变化。能够适应这些快速的链路变化的算法被称为快速链路自适应(FLA)。
FLA可以是一个棘手和具有挑战性的问题。在一个动态和受到各种变化影响的恶劣环境下,例如,慢速或快速衰落场景、异质网络、干扰和由于运动、温度和UE之间的变动而引起的UE条件改变,对传输参数做出调整以最大程度地提升平均吞吐量性能并维持可接受的低BLER会遇到许多困难。一个理想的FLA技术应该满足一些制约因素,包括以下内容:
为了最大程度地提升平均吞吐量,同时保持BLER低于给定阈值,FLA应该能够推荐一个适于任何实际的移动环境的MCS/CQI;
所述FLA技术应该有一个“快速”自适应率,因此它能够紧密跟踪信道质量的变化;
在不同信道条件下,参数和/或查找表(LUT)必须保持较小数量,计算的复杂性必须保持恒定;
该FLA技术应该能够成功应对线性和非线性信道均衡器,不完美信道和噪声协方差的知识,以及射频(RF)缺陷。
许多针对FLA问题的解决方案已经提出,每个解决方案都有其优点和缺点。经典的方法是使用带有或不带有校准与校正的链路质量度量(LQM),如平均交互信息每编码比特映射(MMIBM)。在这种方法中,通过利用采用的均衡器的一组后处理信号干扰噪声比(SINR),获得一个标量链路质量度量(LQM)。然而,只有线性最小均方误差(LMMSE)类型的均衡器才了解闭合形式后处理SINR。对于其他类型的均衡器,如最大似然(ML)型均衡器,需要一些近似估计。在获得各个传输参数的如MCS之类的标量LQM后,经典经典的方法是从LQM到BLER的映射中找到对应的BLER,该映射通常是离线创建的。该离线映射或查找表(LUT)是在加性高斯白噪声(AWGN)信道条件下MCS分别获得的,以及考虑到的传输块大小。此后,推荐一个适当的频谱效率最高的MCS方案,这样考虑到的MCS方案的预测BLER就低于期望的阈值。预测的BLER阈值通过模拟获得,这样,平均BLER可以满足期望的QoS要求的约束条件。这种“经典”的方法在文献中进行了实证研究,并在一个经校准的设置中有良好的表现。不巧地是,为每一个需要的MCS和信道条件找到校准和校正因子需要进行漫长而枯燥的模拟。不同的传输大小需要若干LUT,因此,基于LTE/LTE–A系统就无法使用这种方法。当使用非线性或ML型均衡器时,也很难找到合适的校正因子。在实际系统中,射频(RF)缺陷是不可避免的,会对性能产生负面影响,因为无法调整校正因子来适应所有类型的现实世界中的变化和缺陷。
基于支持向量机(SVM)的FLA技术也得以确立。这些方法使用SVM为实时或在线的每个候选MCS获知均值或有序后处理的SINR和BLER之间的映射。这种获知的映射会定期更新,并用于预测各组支持的MCS方案的BLER性能。然后,预测的BLER值可用来为下一个数据包选择和推荐MCS方案。基于SVM的FLA优于基于经典LQM/LUT的方法,也可以应付某些类型的射频和非线性缺陷。然而,基于SVM的方法存在内存消耗大,复杂性成本不够低,很难在当前状态下的数字信号处理(DSP)设备中应用的问题。基于SVM的FLA技术在非平稳的场景下的工作表现如何或它们是否可以适当地跟踪系统的变化,仍不得而知。
另外一种LA解决方法是一种被称为量化内核最小均方(QKLMS)的在线内核方法(OKM)。在获知均值或有序后处理的SINR与BLER之间的映射方面,QKLMS与SVM方法是相似的,但是QKLMS没有那么复杂,且对存储器要求比目前已知的SVM方法要低得多。虽然QKLMS具有一些优势,但这种方法也存在一些问题。QKLMS跟踪能力较差,其更准确地特征为一种“慢”LA技术。通过详尽的和耗时的离线网格搜索来寻找QKLMS自由超参数。需要额外的搜索来确定如何从可用的一组MCS中选择一个合适的MCS。OKM的输入是平均后处理SINR或均衡器中的一组有序后处理SINR,都具有非常高的动态范围,因而降低由OKM提供的潜在增益。
因此,人们希望找到一种FLA技术,可以解决至少一些上述问题。
发明内容
在上述技术背景下,本发明的目的是提供设备和方法,通过此设备与方法,能够提高采用了链路自适应反馈的通信链路中的数据传输速率,尤其但不完全是为了在接收机上选择CSI。
本发明的另一目的是提供设备和方法,使得FLA可用于在动态环境下调整或者推荐适合的CSI值来最大程度地提高通信链路的平均吞吐量,同时使平均BLER低于期望阈值。这些设备和方法提供一个“快速”适应率,能密切跟踪信道状态的快速变化。
本发明的又一个目的是提供设备和方法,使得FLA可用于在不同信道条件下保持参数和/或查找表(LUT)的数量较小,并保持恒定的计算复杂性。
本发明的再一个目的是提供设备和方法,使得FLA可用于在平稳或非平稳环境下成功应对线性和非线性信道均衡器,不完美的信道和噪声协方差知识,以及射频(RF)缺陷。
上述和进一步的目的和优点都是依据本发明,通过使用高斯过程(GP)的系统模型,可以调整和更新其模型参数来快速跟踪通信链路的信道状态变化。更新后的GP系统模型用于为期望的一组CSI预测将来传输的BLER性能,选择一个与最高吞吐量相关联的而且能够维持预测的BLER低于预定阈值的CSI。
根据本发明的第一方面,上述和进一步的目的和优点是通过一个可用于选择通信链路的信道状态信息(CSI)收发信机获得的。所述收发信机包括:接收机,用于接收来自所述通信链路的通信信号,并产生一个接收到的数据信号;处理装置,与所述接收机耦合,用于接收所述数据信号;存储器,与所述处理装置耦合。所述处理装置用于:基于接收到的数据信号,生成信道估计值、噪声协方差估计值和一组循环冗余校验(CRC)结果;基于信道估计值和噪声协方差估计值,生成一组链路质量度量(LQM);缓存所述生成的一组LQM。基于所述缓存的一组LQM和所述一组CRC结果,使用高斯过程(GP)系统模型更新GP系统模型的模型参数。基于生成的一组LQM,使用更新后的模型参数与GP系统模型为支持的一组CSI中的每一个CSI预测误块率(BLER)。所述处理装置从所述支持的一组CSI中选择具有最大吞吐量的CSI和低于阈值的预测BLER。
根据第一方面,在所述收发信机的第一种可能的实现形式中,使用GP系统模型来更新模型参数包括:基于所述生成的一组CRC结果,所述缓存的一组LQM和训练数据字典,更新模型参数。基于所述缓存的一组LQM,生成的CRC结果和所述接收到的数据信号的CSI,更新所述训练数据字典。
根据第一方面的第一种可能的实现形式,在所述收发信机的第二种可能的实现形式中,所述训练数据字典包括多组缓存的LQM、与每组LQM关联的至少一组CRC结果,以及关联的一组CSI。
根据第一方面的第二种可能的实现形式,在所述收发信机的第三种可能的实现形式中,所述训练数据字典通过以下方式增强:当为当前CSI生成的CRC结果为通过,所述支持的一组CSI中的所有低吞吐量CSI与所述CRC通过结果关联;当为当前CSI生成的CRC结果为失败,所述支持的一组CSI中的所有高吞吐量CSI与所述CRC失败结果关联。
根据第一方面或者第一方面的第一种至第三种可能的实现形式,在所述收发信机的第四种可能的实现形式中,所述GP系统模型是一种非递归GP系统模型。
根据第一方面或者第一方面的第一种至第三种可能的实现形式,在所述收发信机的第五种可能的实现形式中,所述GP系统模型是一种递归系统模型。
根据第一方面或者根据第一方面的上述第一种至第五种中任何一种可能的实现形式,在所述收发信机的第六种可能的实施形式中,所述LQM209是一种有效的平均交互信息(平均MI)度量。
根据第一方面的第六种可能的实现形式,在所述收发信机的第七种可能的实现形式中,生成一组平均MI包括:基于一个线性均衡器的假设,且接收到的数据信号经过非线性均衡调节,为接收到的数据信号中的每一个RE生成交互信息(MI)值;基于生成的MI值,生成所述一组有效的平均MI。
根据第一方面的第四或第五种可能的实现形式,在所述收发信机的第八种可能的实现形式中,所述GP系统模型包括一组GP系统模型,该组GP系统模型中的各GP系统模型用于为特定的CSI预测BLER,当与所接收到的数据信号关联的CSI不与所述一组GP系统模型中的任何一个关联时,与最近的CSI关联的GP系统模型得到更新。
根据第一方面或者根据上述第一方面的第一种至第八种中任何一种可能的实现形式,在所述收发信机的第九种可能的实现形式中,所述CSI值是一个宽带信道质量指示(CQI)、子带CQI、秩指示、宽带预编码矩阵指示(PMI)、或子带PMI。
根据第一方面或者根据上述第一方面的第一种至第九种中任何一种可能的实现形式,在所述收发信机的第十种可能的实现形式中,所述通信链路包括无线通信链路,所述接收机包括射频(RF)单元。
根据第一方面或者根据上述第一方面的第一种至第十种中任何一种可能的实现形式,在所述收发信机的第十一种可能的实现形式中,所述通信链路包括正交频分多址(OFDMA)类型的通信链路。
根据第一方面的第十一种可能的形式,在收发信机的第十二种可能的实现形式中,所述系统包括非线性均衡或线性均衡。
根据第一方面或者根据第一方面的上述第十种至第十二种中任何一种可能的实现形式,在所述收发信机的第十三种可能的实现形式中,所述系统是一种用户设备,包括用户界面和显示器。
根据本发明的第二方面,上述和进一步的目的和优点通过一种计算机程序产品获得,包括一个存储有数据的非瞬态计算机可读存储介质,在处理装置访问时,所述处理装置执行操作,包括:接收信道估计值和噪声协方差估计值;基于信道估计值和噪声协方差估计值,生成一组链路质量度量(LQM);缓存所述生成的一组LQM;基于接收到的数据信号,生成一组循环冗余校验(CRC)结果;基于所述缓存的一组LQM和所述一组CRC结果,使用高斯过程(GP)系统模型更新GP系统模型的模型参数;基于生成的一组LQM,使用更新后的模型参数与GP系统模型为支持的一组CSI中的每一个CSI预测误块率(BLER);从所述支持的一组CSI中选择具有最大吞吐量的CSI和低于阈值的预测BLER。
根据本发明的第三方面,上述和进一步的目的和优点是根据通信系统中被选择的信道状态信息(CSI)通过一个方法获得的。所述方法包括:>接收信道估计值和噪声协方差估计值;基于信道估计值和噪声协方差估计值,生成一组链路质量度量(LQM)。缓存所述的一组LQM。基于接收到的数据信号,生成一组循环冗余校验(CRC)结果;基于所述缓存的一组LQM和所述生成的CRC结果,使用高斯过程(GP)系统模型来更新一组模型参数。所述更新后的一组模型参数用于在GP系统模型中为支持的一组CSI的中每一个CSI预测误块率(BLER)。然后,从所述支持的一组CSI中选择一个CSI,所选CSI具有最大吞吐量且预测的BLER低于预定阈值。
根据第三方面,在所述方法的第一种可能的实现形式中,使用GP系统模型来更新模型参数包括:基于所述生成的一组CRC结果、所述缓存的一组LQM和训练数据字典,更新模型参数;根据所述缓存的一组LQM、生成的CRC结果和所述接收到的数据信号的CSI,更新所述训练数据字典。
根据第三方面或者第三方面的第一种可能的实现形式,在所述方法的第二种可能的实现形式中,所述训练数据字典包括多组缓存的LQM,与每组LQM关联的至少一组CRC结果,以及关联的一组CSI。
根据第三方面或者第三方面的第二种可能的实现形式,在所述方法的第三种可能的实现形式中,所述训练数据字典得以增强;当为当前CSI生成的CRC结果为通过,所述支持的一组CSI中的所有低吞吐量CSI与所述CRC通过结果关联;当为当前CSI生成的CRC结果为通过,所述支持的一组CSI中的所有低吞吐量CSI与所述CRC通过结果关联。
根据第三方面或者第三方面的第一种至第三种中任何一种可能的实现形式,在所述方法的第四种可能的实现形式中,所述GP系统模型是一种非递归GP系统模型。
根据第三方面或者第三方面的上述第一种至第三种中任何一种可能的实现形式,在所述方法的第五种可能的实现形式中,所述GP系统模型是一种递归系统模型。
根据第三方面,所述方法的第五种可能的实现形式的目的是为了避免与非递归GP系统模型所需的矩阵求逆相关的计算复杂性。
根据第三方面或者根据第三方面的第一种至第五种中任何一种可能的实现形式,在所述方法的第六种可能的实现形式中,所述LQM是一种有效的平均交互信息(平均MI)度量。
根据第三方面或者根据第三方面的第六种可能的实现形式,在所述方法的第七种可能的实现形式中,生成一组平均MI包括:基于一个线性均衡器的假设,且接收到的数据信号经过非线性均衡调节,为接收到的数据信号中的每一个RE生成一组交互信息(MI)值;基于生成的一组MI值,生成所述一组有效的平均MI。
根据第三方面或者根据第三方面的第四或第五种实现形式,在所述方法的第八种可能的实现形式中,所述GP的系统模型包括一组GP系统模型,该组GP系统模型中的各个GP系统模型用于为特定的CSI预测BLER,当与接收到的数据信号关联的CSI不与所述一组GP系统模型中的任何GP系统模型关联时,与最近的CSI关联的GP系统模型得到更新。
根据第三方面或者根据第三方面的上述第一种至第八种中任何一种实现形式,在所述方法的第九种可能的实现形式中,所述CSI值是一个宽带信道质量指示(CQI)、子带CQI、秩指示、宽带预编码矩阵指示(PMI),或子带PMI。
通过下文中结合附图对实施例进行的描述,示例性实施例的这些和其他方面、实现形式和优点显而易见。然而,应当理解的是,此类描述和附图仅仅用于说明的目的,而不能作为对本发明的限制;对本发明的任何限制,应参考所附权利要求书。本发明的其他方面和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者可以通过实施本发明而了解。此外,本发明的方面和优点可通过所附权利要求书特别指出的手段或结合方式实现和获得。
附图说明
在附图中:
图1示出了综合了公开实施例所有方面的一个简化的LTE接收机的方块图;
图2示出了一个综合公开实施例所有方面的用于选择信道状态信息的示例性方法的流程图;
图3示出了综合公开实施例所有方面的宽带-CQI预测的GP系统模型的训练与预测模式;
图4示出了综合本发明所有方面的物理下行链路共享信道的总吞吐量的曲线图;
图5示出了综合了本发明所有方面的物理下行链路共享信道的平均BLER曲线图;
图6示出了综合本发明所有方面的说明LA技术的跟踪性能的曲线图;
图7示出了一个综合公开实施例所有方面的适于FLA的装置的方块图。
具体实施方式
本发明公开的实施例通过FLA新技术,避免了现有技术中的许多问题。这些新技术基于使用非参数高斯过程(GP)的回归/分类方法进行在线学习和BLER预测。GP是一种非参数回归和分类的贝叶斯方法,比上面描述的现有技术更符合原则。并且,除了提供一个预测的平均估计值,基于GP的技术还提供了估计值的不确定性(与在OKM中不一样),其可用于改善链路自适应。所述公开的基于GP的FLA技术使用概率法来解决具有挑战性的FLA问题,在保持低复杂性和低内存要求的同时,这种技术与现有技术的解决方案相比具有几个优势。所述公开的基于GP的FLA技术的一些理想特性列举如下:
所述公开的基于GP的FLA机制能够在动态环境中调整或推荐合适的CSI值,以最大程度地提高平均吞吐量,并使平均BLER低于期望阈值;
所述公开的基于GP的FLA技术在平稳和非平稳环境中的工作可令人接受;
参数数量少;
复杂性保持恒定不变,内存需求低;
所述公开的基于GP的FLA技术能够成功应对线性和非线性信道均衡器、不完美信道状态信息、和RF缺陷。
现有技术的OKM-LA系统使用MIMO均衡器的后处理SINR作为LQM,并基于此进行适配。相比之下,本发明公开的实施例使用的是有效平均交互信息(平均MI)度量。在经典方法中已使用了一种不同类型的平均MI度量,然而,本发明中的平均MI度量避免了在其他FLA技术,如MMIBM,中必要的用于改善性能、但却令人烦恼的校正/校准因子。要获得这些校正/校准因子,需要进行广泛而耗时的模拟,而且,获得的校正/校准因子不能正常应对射频损伤,在采用强大的信道编码器/解码器,如涡轮编码器或低密度奇偶校验(LDPC)编码器的系统中作用就没有那么明显了。
基于GP的FLA的一般步骤可以概括如下:
计算接收信号的LQM;
将计算得到的LQM和对应的CRC结果输入到GP系统模型的在线学习算法,以更新GP系统模型的滤波器或模型参数;
使用GP系统模型中更新后的模型参数来为每个考虑到的CSI生成BLER预测;
使用BLER预测来选择即将返回给发射机的适当的CSI。
与现有技术中的方法相比,本发明所述的基于GP的方法的一个额外优点是通过评估边缘似然以符合原则的方式获得自由超参数。
为了便于说明和帮助理解,此处将描述一个基于3GPPLTERel-8标准的示例性实施例。在给出的实施例中,选择作为反馈值的CSI是CQI,所述CQI发送给发射机,用于选择MCS。但是,此处公开的方法和装置并不限于此,本领域的技术人员能够很容易意识到,提供从发射机到接收机反馈CSI的方法的其他通信系统,例如,WCDMA、WiFi、WiMax,以及可以使用其他CSI的其他类型的通信系统,如RI或PMI,能以类似的方法进行建模并有利地采用本发明公开的方法和装置。同样地,本发明所使用的许多术语的含义与在LTE环境中使用时的含义是一致的;然而,应当理解的是,其他通信系统可以使用不同的术语表达类似的概念,这些系统也能有利地采用本发明公开的实施例。
现在参照图1,可以看到一个综合本发明的各个方面并示出一个用于OFDMA通信系统的接收机系统100的一个实施例的方块图。所示的接收机系统100接收OFDM符号的符号流102,该符号流通过导频提取器106和数据提取器104分别分离为导频符号110和数据符号109。在转发给提取器104和106之前,符号流102通过通信链路接收并进行数字化,所述通信链路可以是通过空气进行传播的射频链路,或者其他类型的合适的链路或介质。提取的导频符号110提供给产生信道估计值111和噪声协方差估计值113的估计器108,用于后续计算。假设时间和频率完美同步,在给定的(LTE)资源粒子RE下,后快速傅里叶变换(FFT)接收信号向量Y如等式(1)所示:
Y=Hx+u,(1)
Y是复杂矩阵的一个元素,NR是接收天线的数量,与信道矩阵相对应,表示空间层的数量,NT是发射天线的数量。在LTE系统环境中的资源粒子RE是最小的时间频率单元,用于描述物理下行链路。数据在此链路上接收,并且对应一个OFDM符号和一个OFDM子载波。未知的数据符号109和已知的导频符号110可用复杂向量表示,而是一个复杂的加性高斯白噪声(AWGN)向量。在相应地提取数据109和导频110符号信息后,信道估计值111和噪声协方差估计值113由估计器108生成。所示的接收机系统100使用估计器108中的导频符号辅助的信道估计。可替代地,可用其他类型的信道估计获得信道估计值111和噪声方差估计值113。这些估算值111和113与提取的数据符号109一起提供给处理段112,在此,数据符号109被解码并产生估计的信息比特118。解码由控制信息126支持,所述控制信息通过控制信道流程122从控制信道中解码和提取。信息比特118的生成通过MIMO检测器114和涡轮解码116完成,并创建估计信息比特118和关联的CRC结果120。使用GP系统模型124估计可能返回到发送机(未示出)的用于链路自适应的CSI130。GP系统模型124接收来自解码器116的CRC结果120和其他信道控制信息128。
例如,在所示的实施例中,其他信道控制信息128可包括用于编码与CRC结果关联的信息比特的CQI/MCS。GP系统模型124可生成各种CSI,例如,在所示的LTE接收机的实施例中,这些CSI130可包括宽带-CQI、秩指示、子带CQI、宽带预编码矩阵指示,和/或子带预编码矩阵指示。正如接下来将进一步讨论的,GP系统模型124生成BLER预测,以评估各种链路参数的性能,并产生相应的CSI130。CSI130可被发送回无线基站或其他无线发射机(未示出),在那里它们可以被用来相应地适配RF链路。进一步地,CSI130可以在与接收机系统相连接的发射机系统100中使用(例如,当发射机系统和接收机系统都是收发信机系统的一部分或者形成一个收发信机系统)。
在使用LTE系统来说明基于GP的FLA的示例性实施例中,被选来用于说明的CSI130是一个宽带-CQI,正如LTE标准规定的那样,与可用于传输数据到UE的29个可用的MCS中的一个对应。可替代地,可依据来自使用基于公开的GP系统模型的预测技术的eNodeB(或通常来自于基站)的被请求的CSI报告相应地生成其他CSI130。
图2示出了一种用于确定包含一个用于BLER预测的GP系统模型的CSI的示例性方法200的实施例的流程图。示例性方法200可用于得出CQI值220或其他的CSI,在OFDMA或其他类型的通信系统中提供闭环链路自适应。信道估计值111和噪声协方差估计值113,如参考图1所述的信道和噪声协方差估计值,由SINR计算过程206接收,以产生一组均衡后的SINR207。用于第n个空间层和考虑到的RE的均衡后的SINR207如等式(2)所述:
SINR n = 1 [ ( H H R u u - 1 H + 1 ) - 1 ] n , n - 1 , - - - ( 2 )
标记A[)m,n表示矩阵A的第m行和第n列的元素,I是一个具有适当维度的单位矩阵。
本发明公开的GP技术的优点在于,即使接收机采用ML型均衡器这样的非线性均衡器,后处理SINR值207仍然可以使用LMMSE均衡器假设来计算。这是因为,基于GP的LA反馈估计器对于系统中的所述类型的均衡器是非常不敏感,并且能非常好地获知从平均MI到CRC/BLER的非线性映射。因此,数据导频功率的比率等其他信息是不必要的。
均衡后的SINR值207可用于计算208LQM209。在公开的实施例中选用的LQM是平均MI度量,因为它具有基于信息论的良好特性,并且通过在经典的基于LUT的LA方法中的使用证明是非常稳定的。相比之下,现有技术的LA方法同时使用平均和有序的一组后处理SINR作为LQM。对于基于LUT和基于在线学习的LA方法来说,这些LQM均被证明不佳。本发明公开的平均MI度量不需要开展大量模拟,以获得为类似MMIBM的其他LQMS改善FLA性能所需的校正/校准因子。平均MILQM的计算208可通过两个步骤完成。计算208开始时,对于在考虑到的RE上考虑到的CQI/MCS中使用的给定调制字母表,估计每个RE与每个空间层(对于给定的秩假设)的MI210。可以使用计算得到的后处理SINR207,为各个调制字母表估计MI213。例如,如表1所示,该估计公式可用于几个调制字母表-正交相移键控(QPSK),16态正交幅度调制(16QAM)和64态QAM。
表1
MI估计值213可用于计算212在一个码字内的所有层的每个码字209的平均MI,和一个报告子帧中考虑到的RE。码字是映射或信道编码的结果,它把从媒体访问控制(MAC)层接收的传输块或数据包映射到包含数据位和CRC位的不同码字中。然后,所述码字经过一个称为调制的过程,生成复值的OFDM基带信号,然后上变频到载波频率。可替代地,在一个非OFDM类型的通信系统中,码字可为使用不同的调制和上变频方案的传输准备。在所有这些方案中,每一个比特块或码字块被转换为数据信号,随后通过链路发送到一个接收机。如等式(3)所示,可使用一个算术平均值来得到一组平均MI209:
m e a n - M I = ( 1 γ ) Σ n Σ k ∈ R E s MI n [ k ] , - - - ( 3 )
其中,γ是一个归一化常数。在替代性实施例中,可使用几何平均值来计算所述的一组平均MI209。需要为考虑过的一组CQI中的所有调制字母表获得MI。
预测过程214使用一组平均MI209以及CRC结果216,为每个CSI(在图2所示的具体实施方案中,CSI是一个CQI)211生成一组BLER预测。正如即将在下面详细描述的那样,可通过一组GP系统模型完成BLER预测214,其中,每个CQI指数都有自己的GP系统模型。在某些实施方案中,所有的GP系统模型可以拥有相同的处理步骤,但训练数据字典和/或模型参数可能不同。这些GP系统模型有两种工作模式:训练模式和预测模式。在预测模式下,基于考虑到的CQI的当前子帧中的一组估计的平均MI209,各个CQI指数的每个GP系统模型产生预测的BLER。在训练模式下,根据各个CQI的CRC结果的可用性,利用在前一个子帧中计算得到的缓存的相应平均MI,每个CQI指数的相应的GP系统模型得到训练和更新。只有接收到的码字才有准确的CRC结果,因此,对于每组接收到的数据,只有与接收到的CQI对应的一个GP系统模型能被更新。这样,在UE重新启动或长期的不连续接收后,训练会稍微慢一些。
要为来自一组接收数据的不同的CQI指数加速几个GP系统模型训练,可为除当前接收码字的CQI之外的CQI估计一个CRC结果。当接收到的CQI的CRC结果为通过,所有较低的CQI的CRC结果,即对应于较低吞吐量MCS的CQI,也可以假设CRC结果为通过。相反地,当当前接收到的CQI的CRC结果为失败,所有较高CQI的CRC结果,即对应于较高吞吐量的MCS的CQI,也可以假设为失败。根据上述CRC假设规则,所有的GP系统模型对应于当前的CQI和较高或较低的CQI。为简单起见,可以假设,在HARQ重传的情况下,在重传中使用与初始传输中相同的CQI指数。
在某些实施例中,可以包括外环链路自适应(OLLA)以帮助基于GP的FLA更快地学习。这个OLLA可以考虑用于接收机和/或发射机。
CQI220作为方法200的输出或结果,通过识别最高吞吐量的CQI(即,与具有最大的吞吐量的MCS对应的CQI)来选择218,使得为所选的CQI220预测的BLER小于或等于预定的BLER阈值,例如,约为0.1的BLER。再次提出地是,也是在本示例性实施例中,产生的CSI值是CQI,根据进一步的实施例,也可通过方法200生成其他类型的CSI值。生成的CQI220可用于快速链路自适应(即选择与CQI220对应的MCS)。
图3示出了GP系统模型的训练模式302和预测模式304的应用300,用于为选择一个宽带CQI值而进行的BLER估计值314的预测。预测模式304接收LQM312,在某些实施例中可为当前接收码字的每个码字的平均MI值,并使用一组经训练过程302计算的模型参数306生成BLER预测314,在选择一个推荐的宽带CQI时使用。每个计算间隔或迭代可以是周期性的,例如,对应于每个接收的子帧、帧或接收数据的其他周期性单元;或者,迭代可以是非周期性的,例如,应发射机的请求报告CSI。
训练模式302接收来自前一个计算间隔的LQM308及来自当前计算间隔的CRC结果310,并更新所述的一组模型参数306。CQI的计算、选择、和传输所花时间是有限的。例如,可能需要大约8毫秒来计算、选择、并发送一个推荐的CQI值至发射机。发射机将花额外的时间来调整系统参数,并将数据发送给接收机。在LTE系统中,发射机的时延可以是子帧时间或约1毫秒。因此,在接收一组数据、选择一个新的CQI和接收基于使用全新的CQI传输的数据的CRC结果之间,存在一个时延,例如,在上述例子中约为9毫秒。为了在GP系统模型中说明这一点,训练模式302使用延时LQM308以及从根据CQI传输的数据中提取的CRC结果310,其中,LQM308在某些实施例中可能是一组平均MI,而CQI是从所述延时的LQM308生成的。术语链路质量度量(LQM)在本发明中可互换使用,同时指代度量、即函数、以及使用度量计算出的值。延时的LQM可称为一组缓存LQM,LQM可存储在一个被称为缓冲器的计算机存储器中,并在稍后进行检索。在某些实施例中,可以使用混合自动重传请求(HARQ)。在采用HARQ的实施例中,UE可假设每个重试数据包是基于导致较大时延和额外的缓存的原始传输的CQI进行编码。
为了帮助理解,考虑一个具体的例子是非常有益的,例如,一个4×4的MIMOLTE系统,具有20MHz的小区带宽以及最多100个物理资源块(PRB)。请注意,这里给出的具体的例子只是为了帮助理解,而不应该解释为以任何方式限制本发明。在一个典型的LTE系统中,一般有15个支持的CQI。值得注意的是,LTE支持多种码块大小。众所周知,最大码块比最小的码块提供更好的BLER性能。因此,在选择报告返回给发射机的CSI,如CQI/PMI/RI时,需要考虑不同的码块大小(或分配的PRB)的性能。
在选择CSI的反馈值时,每个CQI和码块大小结合使用一个单独的GP系统模型,从而需要维护大量的GP系统模型。为减少GP系统模型的数量,可使用一个包含可能的码块大小的子集。例如,在一个带宽为20MHz的系统中,最多有100个PRB,所选的子集可以包含减少了的数目,例如,3种码块大小,或PRB的数目,对应于,例如,6个PRB、50个PRB、和100个PRB。减少后,只有3种码块大小和15个的支持CQI,可以同时支持子带和宽带CQI反馈;采用了15×3或四十五(45)个GP系统模型。在训练模式中,如果在当前接收到的子帧中分配的带宽有12个PRB,CRC结果可用来训练与采用的带宽对应的GP系统模型;在当前的例子中,是与6个PRB关联的15个GP系统模型。类似地,如果在下一子帧中分配的带宽为38个PRB,可利用现有的CRC结果和缓存/延时LQM来训练与50个PRB关联的15个GP系统模型(对应15个支持的CQI)。在当前的例子中,宽带GP系统模型假设为与100个PRB的GP系统模型关联。在预测模式中,接收机同时计算宽带和一组子带LQM,然后使用各自的GP系统模型来预测BLER。
在如上所述的一个LTE系统例子中选择PMI/RI反馈值时,每个秩假设都有一组GP系统模型,共有3(带宽)×15(支持的CQI)×4(秩假设),即180个GP系统模型。意向中的GPFLA的复杂性成本主要由视窗或字典大小决定。若字典大小约为3至5,一个典型的接收机就能轻松应对180个GP系统模型典型的实现成本。对于PMI反馈的选择,所述接收机可以为每个PMI实现180个GP系统模型,或者可替代地,可在没有GP系统的情况下首先从LQM中确定一个合适的PMI,从而简化系统。
GP系统模型基于核函数,为执行和利用线性函数进行回归和分类,将低维度输入数据隐式映射到一个高维度输出数据。这种映射可以视为函数上的分布。与GP系统模型关联的自由超参数可通过边缘似然的最大化来获得或学习。通常,这比对众多自由参数执行标准网格搜索更加有效。
在一个实施例中,所述的基于GP的FLA方法包括非递归或滑动窗口的GP系统模型,以确定反馈给发射机的所述信道质量信息。一种非递归或滑动窗口GP系统模型使用字典,字典包含与在时间间隔或时间窗收集的数据对应的训练数据,其中,该窗口随着时间的推移会及时向前滑动。继续阐述用于码字的候选CQI的LTE例子,字典或窗口中将存在有限数量M对训练数据,其中,每对包括一个由于上述报告时延造成延迟的给定的数据包或子帧的平均MI,和对应的CRC结果和CQI值。
非递归或滑动窗口GP系统模型作为GP系统模型124的一种可能的实现方式,可在方法200的步骤214中使用,通过两个阶段选择CQI:
第一阶段为与宽带或子带CQI对应的每个码字计算有效/平均MI;
第二阶段包括一个训练步骤和一个预测步骤:
a.在训练/更新时,当给定的CQI有一个CRC结果,包括CQI候选的一个考虑到的调制字母表中的相应的(延时的)平均MI的CRC结果被传递到非递归的GP系统模型,以计算滤波器系数,平均MI/CQI/CRC数据被用于更新字典。
b.在预测中,滤波器系数与当前平均MI值一起用于为每个考虑到的CQI/MCS预测BLER值。
请注意,在窗口内的输入/输出的多对平均MI/CRC均被缓存,即存储在存储器中,供以后检索,用于训练或模型参数的计算,还有BLER的预测模式。然而,如果CRC结果是可用于所述CQI或者已如上所述进行了估计,该训练模式仅为该考虑到的CQI激活。
一组平均MI的输入/输出数据对和包含在字典中的对应的延时的CRC结果可通过等式(4)表示:
其中:mMIi对应于字典中的第i个实例或指数处的平均MI;CRCi对应于字典中的第i个实例或指数处的CRC结果;M是表示字典大小的整数值。应当注意的是,在字典中的一组输入输出对就时间或子帧而言并不需要是持续的;第i个指数可仅仅代表一个识别字典中的数据对的指数。从平均MImM,到CRC(或对等的BLER)的回归映射或(非线性)映射可以用等式(5)描述:
其中,f(.),是一个潜在的或未知的函数,将输入平均MI映射到CRC输出;w是线性回归模型的权重的一个列向量;对应于特征空间;ε对应于被建模为具有零均值和方差的独立同分布(IID)高斯噪声的模型误差,其中
对于FLA,有必要预测由当前基于该组考虑到的CQI候选的训练数据计算的(即,当前的子帧或时间间隔)平均MI要产生的CRC/BLER结果。为简单起见,让该组训练数据(为简略起见,可以标记为没有上标的的情况下)的该组输入数据表示为实数的向量(假设t<M),该组的CRC结果表示为二进制值的向量,其中,权重的似然可以用等式(6)描述:
因此,权重的似然符合具有平均和方差的高斯分布,即,
假设权重的先验分布是具有零均值和协方差矩阵Σ,的高斯分布,权重的后验分布由等式(7)给出:
等式(7)可改写为等式(8):
其中,因此,为方便起见,权重的后验分布可用等式(9)表示:
其中,这表明,当前计算的平均MImMIt在CRC结果上的预测分布可通过平均如等式(10)所示的关于权重的后验分布的所有可能的线性模型输出获得。
通过矩阵求逆引理,并应用所谓的核技巧得到等式(11)所示的预测平均值以及等式(12)所示的协方差,等式(10)所示的预测分布可以改写:
其中,是一个向量,通过按元素计算核函数,结合字典中的所有输入数据来描述当前可用的输入数据mMIt的相似性。
例如,高斯核,也称为径向基函数(RBF),表示为
κ ( x , y ) = exp ( - | x - y | 2 2 l 2 ) .
其中,l被称为核宽度,是一个自由参数(需要被调整,或者可以从给定的字典中自动获得)包括方差σε2。同样地,是通过计算给定的一组输入和输出数据的每一个组合的核函数而得到的协方差矩阵。值αi通常是随时间变化的滤波器系数。
上面讨论的非递归的GP系统模型需要在线矩阵求逆(等式11),这对于实际系统来说,特别是对于较大的窗口尺寸来说,计算成本非常高。可替代地,可将递归GP系统模型用于FLA。一个此类递归GP系统模型可被称为带跟踪的核递推最小二乘法,KRLS–T。上述全部或非递归GP系统模型可以递归形式重新用公式表示。
等式(11)和等式(12)可改写为:
C o v ( f ( mMI t ) ) = σ f ( mMI t ) 2 = κ ( mMI t , mMI t ) - k t T C t - 1 - 1 k t , - - - ( 14 )
考虑到等式(5)所示的用于将平均MI映射到CRC估计值(或等同的BLER估计值)的线性模型,可使用等式(13)和等式(14)得到CRC的预测分布,如等式(15)所示:
为了获得用于CRC/BLER预测的递归GP系统模型,在组中多达(t-1)-th个样本数据的预测平均值(μf(·))和协方差分别如等式(16)和等式(17)所示;
Σ f ( { mMI i } i = 0 t - 1 ) = Σ t - 1 = K t - 1 - K t - 1 T C t - 1 - 1 K t - 1 . - - - ( 17 )
当新数据是训练模式下可用的(mMIt,CRCt),则该均值和协方差的递归更新由等式(18)和等式(19)分别给出:
μ t = μ t - 1 μ f ( mMI t ) - ( μ f ( mMI t ) - CRC t σ CRC t 2 ) h t σ f ( mMI t ) 2 , - - - ( 18 )
Σ t = Σ t - 1 h t h t T σ f ( mMI t ) 2 - ( 1 σ CRC t 2 ) h t σ f ( mMI t ) 2 h t T σ f ( mMI t ) 2 , - - - ( 19 )
其中, h t = Σ t - 1 K t - 1 - 1 k t = ( I - K t - 1 C t - 1 - 1 ) k t .
在下次更新时,新数据(mMIt+1,CRCt+1)将是可用的,由此增加了矩阵的大小。通过使用秩-1更新到前一矩阵如等式(20)所示,可避免大型和不断增长的矩阵的在线求逆:
Q t = K t - 1 = Q t - 1 0 0 T 0 - ( 1 γ t 2 ) q t - 1 q t - 1 T , - - - ( 20 )
其中,qt=Qt-1kt
在上述推导中,有两个因素被忽略了:一个在非平稳环境下有用的遗忘因子λ∈(0,1];以及码本和字典的大小限制,即需要限制字典中的数据量以帮助实现。
基于递归GP的CRC/BLER预测(包括训练和预测模式),即KRLS–T算法,可以利用平均MI和CRC结果(如果有)概括如下。首先,使用一组初始的平均MI,mMI0,和来自第一次迭代的CRC结果,CRC1,执行初始化步骤,如上所述,平均MI会被缓存或者延时,标记为与CRC1一起使用的mMI0,。
初始滤波器系数用等式7a,7b,7c和7d来计算:
μ 0 = K ( mMI 0 , mMI 0 ) [ K ( mMI 0 , mMI 0 ) + σ ϵ 2 ] - 1 CRC 1 , - - - ( 7 a )
Σ 0 = K ( mMI 0 , mMI 0 ) - K ( mMI 0 , mMI 0 ) [ K ( mMI 0 , mMI 0 ) + σ ϵ 2 ] - 1 K ( mMI 0 , mMI 0 ) , - - - ( 7 b )
Q0=[K(mMI0,mMI0)]-1,(7c)
X={mMI0}.(7d)
其中,σε2代表表示一个建模误差,K(·,·)代表表示一个如上所述的核函数。在每个时间迭代中,得到用下标t表示的BLER预测和协方差σyt2,用于训练数据字典中的每个输入/输出对,其中,M表示字典中的输入/输出对的数量。每对中的输入是一个给定的子帧的延时平均MI,而输出是相应的CRC结果。每个对用下标i表示,其中,i=0、1、2、…M。在每个迭代t(定义为t=i+1)中,对于每一个平均MI/CRC对i,可以使用以下算法来得到预测。
当前的滤波器参数进行更新,如等式8a和8b所示:
μ i ← λ μ i , - - - ( 8 a )
Σi←λΣi+(1-λ)K(X,X),(8b)
其中,λ∈0(1])是遗忘因子,这是KRLS-T算法的一个额外的自由参数。接下来,用等式9a、9b、9c及9d评估一些中间值:
qt=QiK(mMIt,X),(9a)
ht=Σiqt,(9b)
γ t 2 = K ( mMI t , mMI t ) - [ K ( mMI t , X ) ] T q t , - - - ( 9 c )
σ ^ f t 2 = γ t 2 + q t T h t . - - - ( 9 d )
所述BLER预测和协方差σyt2或者不确定性可通过等式10a和10b得到:
σ ^ y t 2 = σ ϵ 2 + σ ^ f t 2 . - - - ( 10 b )
然后,使用等式11a、11b和11c更新下一次迭代的滤波器参数:
Σ i + 1 = Σ i h t h t T σ ^ f t 2 - ( 1 σ ^ y t 2 ) h t σ ^ y t 2 h t σ ^ y t 2 T , - - - ( 11 b )
Q i + 1 = Q i 0 0 T 0 - ( 1 γ t 2 ) q t - 1 q t - 1 T . - - - ( 11 c )
然后,使用平均MImMIt更新输入向量X,如等式12所示:
X={X,mMIt}.(12)
通过在采用闭环链路自适应的3GPPLTErel-8系统中进行模拟,以选择CQI反馈和调整发射机的MCS,可以看出上述GP系统模型FLA技术实施例的优点。完成模拟运行的目的是把基于递归GP的FLA的实施例、如上所述的KRLS-T,和基于QKLMS的方法以及传统或经典的MMIBM方法进行比较。在每次运行中使用的模拟参数列于下面的表2中。
表2
图4示出了带有频分双工FDD的物理下行链路共享信道PDSCH的总吞吐量的曲线图400。图4中,纵轴402表示以兆比特每秒Mbps为单位的两个码字的总吞吐量,横轴404表示以分贝db为单位的信噪比SNR。图5示出了使用与表2中相同的仿真参数,用于图4中的模拟时获得的两个码字的平均BLER的曲线图500。图5中,纵轴502为以百分比表示的两个码字的平均BLER,横轴504表示以分贝db为单位的信噪比SNR。
表3提供了在图4和图5的图例中显示的图形标签的说明。
表3
所述曲线图400表明所公开的基于递归GP的FLA,KRLS–T,在吞吐量方面可超过经典的MMIBM方法,图500表明递归GP系统模型,KRLS-T,与经典的基于MMIBM的方法相比,在保持平均BLER低于期望的阈值10%方面有更好的表现。从图4中还可明显看出,量化内核最小均方,QKLMS,LA方法在吞吐量和BLER方面可提供与基于GP的FLA相似的性能。
QKLMS方法提供相似的性能在意料之中。因为,众所周知的是,一旦基于QKLMS的FLA经过适当调整,就能表现出色。但是,QKLMS无法做到尽可能快地适应或跟踪变化,以在瞬息万变的无线介质上表现出色。图6示出了与以往QKLMSLA方法的跟踪性能相比,新的递归GP系统模型FLAKRLS–T的跟踪性能曲线图600和601。曲线图600示出了基于QKLMS的LA方法和新的基于递归GP的FLA的方法KRLS-T的跟踪性能,在纵轴602上显示了以Mbps为单位的零码字的吞吐量,在横轴604上显示了发送的子帧的数量。曲线图601同时示出了QKLMS和KRLS-T技术的在纵轴606上的瞬间吞吐量差方以及在横轴604上的发送的子帧的数量。曲线图600和601表明基于递归GP的FLA收敛到平均吞吐量的速度远远超过基于QKLMS的方法。由此可以看出,与现有技术的链路自适应方法相比,本发明公开的GP系统模型的FLA方法表现更佳,并且能更快地跟踪链路介质中的变化。
图7是示出了适于执行本发明描述的FLA方法的无线通信装置700的方块图。装置700包括与计算机存储器704耦合的处理装置702、射频(RF)单元706、用户界面(UI)单元708、以及显示单元710。在某些实施例中,并不需要与用户进行交互。在这些实施例中,用户界面708和显示器710可从装置700中省略。装置700可以用于无线通信UE的各种形式的MS,比如手机、智能手机、平板设备等。处理装置702可能是单个处理设备,也可能包括多个处理设备,这些设备包括专用设备,例如,可能包括数字信号处理(DSP)设备、微处理器或者其他专业处理设备和通用处理器。
存储器704与处理装置702耦合,可能是多种计算机存储器的组合,比如,易失性存储器、非易失性存储器、只读存储器(ROM)、或其他类型的计算机存储器,存储计算机程序指令,指令可能组成包括操作系统、应用、文件系统的方法组,也可能为用于其他理想的计算机实现方法的其他计算机程序指令,例如,本发明公开的FLA方法。存储器704也包括程序数据和数据文件,由计算机程序指令存储处理。
射频(RF)单元706与处理器耦合,用于接收和/或发射基于与处理装置702交换的数字数据712的射频信号。RF单元706包括模数转换器,用于按照理想的采样率对接收到的RF信号进行数字化处理,例如,30.72兆赫(MHz)采样率通常用于20MHz的LTE信道带宽,然后发送数字化的RF信号712至处理装置702。相反地,RF单元706可包括数模转换器,用于将RF单元706从处理装置702接收到的数字数据712转换成模拟信号,以备传输。
UI708可能包括一个或者多个众所周知的用户界面元素,例如,触摸屏、按键、按钮、及用于与用户交换数据的其他元素。显示器710用于显示适于UE的各种信息,可以通过任何一种众所周知的显示器类型实现,例如,有机发光二极管(OLED)、液晶显示屏(LCD)等。通信装置700适合执行本发明描述的、参照图1和图2所述的FLA方法和算法。
因此,尽管文中已示出、描述和指出应用于本发明的示例性实施例的本发明的基本新颖特征,但应理解,所述领域的技术人员可以在不脱离本发明的精神和范围的情况下,对装置和方法的形式和细节以及装置操作进行各种省略、取代和改变。此外,明确希望,以大体相同的方式执行大体相同的功能以实现相同结果的那件元件的所有组合均在本发明的范围内。此外,应认识到,结合所揭示的本发明的任何形式或实施例进行展示和/或描述的结构和/或元件可作为设计选择的通用项而并入所揭示或描述或建议的任何其他形式或实施例中。因此,本发明仅受限于随附权利要求书所述的范围。

Claims (15)

1.一种用于选择通信链路的信道状态信息(CSI)的收发信机(700),其特征在于,所述收发信机(700)包括:
接收机(706),用于接收来自所述通信链路的通信信号(102),并产生一个接收到的数据信号;
处理装置(702),与所述接收机(706)耦合,用于接收所述数据信号;
存储器(704),与所述处理装置(702)耦合,
其中,所述处理装置(702)用于:
基于接收到的数据信号(102),生成信道估计值(111)、噪声协方差估计值(113)和一组循环冗余校验(CRC)结果(120);
基于信道估计值(111)和噪声协方差估计值(113),生成一组链路质量度量(LQM)(209);
缓存所述生成的一组LQM(209);
基于所述缓存的一组LQM(209)和所述一组CRC结果(120),使用高斯过程(GP)系统模型更新GP系统模型(302)的模型参数;
基于生成的一组LQM(209),使用更新后的模型参数与GP系统模型为一组支持的CSI中的每一个CSI预测(124)、(214)、(304),误块率(BLER)(211);
从所述一组支持的CSI中选择(210)具有最大吞吐量的CSI(220)和低于阈值的预测BLER。
2.根据权利要求1所述的收发信机(700),其特征在于,使用GP系统模型来更新模型参数包括:
基于所述生成的一组CRC结果(120),所述缓存的一组LQM(209)和训练数据字典,更新模型参数;
基于所述缓存的一组LQM(209),生成的CRC结果(120)和所述接收到的数据信号的CSI,更新所述训练数据字典。
3.根据权利要求2所述的收发信机(700),其特征在于,所述训练数据字典包括多组缓存的LQM,与每组LQM关联的至少一组CRC结果,以及关联一组CSI。
4.根据权利要求3所述的收发信机(700),其特征在于,所述训练数据字典通过以下方式增强:
当为当前CSI生成的CRC结果为通过,所述支持的一组CSI中的所有低吞吐量CSI与所述CRC通过结果关联;
当为当前CSI生成的CRC结果为通过,所述支持的一组CSI中的所有低吞吐量CSI与所述CRC通过结果关联。
5.根据上述权利要求1至4任意一项所述的收发信机(700),其特征在于,所述GP系统模型是一种非递归GP系统模型。
6.根据权利要求1至4所述的收发信机(700),其特征在于,所述GP系统模型是一种递归系统模型。
7.根据上述权利要求1至6任意一项所述的收发信机(700),其特征在于,所述LQM(209)是一种有效的平均交互信息(平均MI)度量。
8.根据权利要求7所述的收发信机(700),其特征在于,生成一组平均MI包括:
基于一个线性均衡器的假设,且接收到的数据信号经过非线性均衡调节,为接收到的数据信号中的每一个RE生成交互信息(MI)值;
基于生成的MI值,生成所述一组有效的平均MI。
9.根据权利要求5或6所述的收发信机(700),其特征在于,所述GP系统模型包括一组GP系统模型,其中:
所述一组GP系统模型中的各个GP系统模型用于为特定的CSI预测BLER;
当与接收到的数据信号关联的CSI不与所述一组GP系统模型中的任何一个关联时,与最近的CSI关联的GP系统模型得到更新。
10.根据上述权利要求1至9任何一项所述的收发信机(700),其特征在于,所述CSI值是一个宽带信道质量指示(CQI)、子带CQI、秩指示、宽带预编码矩阵指示(PMI)、或子带PMI。
11.根据上述权利要求1至10任何一项所述的收发信机(700),其特征在于,所述通信链路包括无线通信链路,所述接收机包括射频(RF)单元。
12.根据上述权利要求1至11任何一项所述的收发信机(700),其特征在于,所述通信链路包括正交频分多址(OFDMA)类型的通信链路。
13.根据权利要求12所述的收发信机(700),其特征在于,所述系统包括非线性均衡或线性均衡。
14.根据上述权利要求11至13任何一项所述的收发信机(700),其特征在于,所述系统是一种用户设备,包括用户界面(708)和显示器(710)。
15.一种计算机程序产品,包括一个存储有数据的非瞬态计算机可读存储介质,在处理装置访问时,所述处理装置执行操作,包括:
接收信道估计值(111)和噪声协方差估计值(113);
基于信道估计值(111)和噪声协方差估计值(113),生成一组链路质量度量(LQM)(209);
缓存所述生成的一组LQM(209);
基于接收到的数据信号(102),生成一组循环冗余校验(CRC)结果(120);
基于所述缓存的一组LQM(209)和所述一组CRC结果(120),使用高斯过程(GP)系统模型更新GP系统模型(302)的模型参数;
基于生成的一组LQM,使用更新后的模型参数与GP系统模型为支持的一组CSI中的每一个CSI预测(124)、(214)、(304),误块率(BLER)(211);
从所述支持的一组CSI中选择(210)具有最大吞吐量的CSI(220)和低于阈值的预测BLER。
CN201480014439.8A 2014-04-30 2014-04-30 通信系统中进行快速链路自适应的装置与计算机程序产品 Pending CN105519030A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/058795 WO2015165515A1 (en) 2014-04-30 2014-04-30 Computer program product and apparatus for fast link adaptation in a communication system

Publications (1)

Publication Number Publication Date
CN105519030A true CN105519030A (zh) 2016-04-20

Family

ID=50693650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480014439.8A Pending CN105519030A (zh) 2014-04-30 2014-04-30 通信系统中进行快速链路自适应的装置与计算机程序产品

Country Status (3)

Country Link
EP (1) EP2959621B1 (zh)
CN (1) CN105519030A (zh)
WO (1) WO2015165515A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137208A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 信道状态信息的传输方法、接入网设备和终端设备
WO2020062035A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for uplink transmission control
CN113780336A (zh) * 2021-07-27 2021-12-10 浙江工业大学 一种基于机器学习的轻量级缓存划分方法及装置
CN113839740A (zh) * 2020-06-24 2021-12-24 中兴通讯股份有限公司 外环值确定方法、装置、设备及存储介质
CN114402560A (zh) * 2019-09-19 2022-04-26 高通股份有限公司 用于确定信道状态信息的系统和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602389B2 (en) * 2015-08-13 2020-03-24 Lg Electronics Inc. Method for reporting channel state information of terminal in wireless communication system and device using the method
WO2018044849A1 (en) * 2016-08-29 2018-03-08 Idac Holdings, Inc. Methods for finite blocklength coding in wireless communication systems
CN114125932B (zh) * 2020-09-01 2023-08-15 中国移动通信集团湖南有限公司 数据分流的方法、装置及网络设备
CN112257795B (zh) * 2020-10-28 2022-10-18 重庆邮电大学 一种基于朴素贝叶斯的空间光通信系统非线性补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110069629A1 (en) * 2009-09-22 2011-03-24 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
CN102026267A (zh) * 2009-09-16 2011-04-20 华为技术有限公司 混合信道状态信息的反馈方法、反馈信息处理方法及装置
CN102549992A (zh) * 2009-09-18 2012-07-04 高通股份有限公司 在多用户通信系统中支持自适应站相关信道状态信息反馈速率的协议
CN103155624A (zh) * 2010-10-08 2013-06-12 捷讯研究有限公司 用于lte信道状态信息估计的方法和装置
WO2013181394A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Device-to-device (d2d) link adaptation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026267A (zh) * 2009-09-16 2011-04-20 华为技术有限公司 混合信道状态信息的反馈方法、反馈信息处理方法及装置
CN102549992A (zh) * 2009-09-18 2012-07-04 高通股份有限公司 在多用户通信系统中支持自适应站相关信道状态信息反馈速率的协议
US20110069629A1 (en) * 2009-09-22 2011-03-24 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
CN103155624A (zh) * 2010-10-08 2013-06-12 捷讯研究有限公司 用于lte信道状态信息估计的方法和装置
WO2013181394A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Device-to-device (d2d) link adaptation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137208A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 信道状态信息的传输方法、接入网设备和终端设备
CN110140313A (zh) * 2017-01-25 2019-08-16 华为技术有限公司 信道状态信息的传输方法、接入网设备和终端设备
CN110140313B (zh) * 2017-01-25 2020-09-08 华为技术有限公司 信道状态信息的传输方法、接入网设备和终端设备
US11082108B2 (en) 2017-01-25 2021-08-03 Huawei Technologies Co., Ltd. Channel state information transmission method, access network device, and terminal device
WO2020062035A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for uplink transmission control
US11451321B2 (en) 2018-09-28 2022-09-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for uplink transmission control
CN114402560A (zh) * 2019-09-19 2022-04-26 高通股份有限公司 用于确定信道状态信息的系统和方法
CN113839740A (zh) * 2020-06-24 2021-12-24 中兴通讯股份有限公司 外环值确定方法、装置、设备及存储介质
CN113780336A (zh) * 2021-07-27 2021-12-10 浙江工业大学 一种基于机器学习的轻量级缓存划分方法及装置
CN113780336B (zh) * 2021-07-27 2024-02-02 浙江工业大学 一种基于机器学习的轻量级缓存划分方法及装置

Also Published As

Publication number Publication date
EP2959621B1 (en) 2018-08-15
WO2015165515A1 (en) 2015-11-05
EP2959621A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US11581965B2 (en) Processing communications signals using a machine-learning network
CN105519030A (zh) 通信系统中进行快速链路自适应的装置与计算机程序产品
CN101228700B (zh) 用于mimo信道的球解码装置
CN110198180B (zh) 一种链路自适应调整方法、设备及计算机可读存储介质
US11968005B2 (en) Provision of precoder selection policy for a multi-antenna transmitter
CN101383652A (zh) 一种多输入多输出系统的信号检测方法及装置
Saxena et al. Contextual multi-armed bandits for link adaptation in cellular networks
Yun et al. Reinforcement learning for link adaptation in MIMO-OFDM wireless systems
Careem et al. Real-time prediction of non-stationary wireless channels
KR20210101582A (ko) 무선 통신 시스템에서 머신 러닝 기반 제한된 피드백 방법 및 장치
Bobrov et al. Massive MIMO adaptive modulation and coding using online deep learning algorithm
US20220255775A1 (en) Device and Method for Reliable Classification of Wireless Signals
Saxena et al. Bayesian link adaptation under a BLER target
CN105229956A (zh) 用于无线通信系统中增强型慢速链路自适应的方法和装置
CN108055110A (zh) 用于先验解码的系统和方法
US20220374685A1 (en) Provision of Optimized Action for Application in a Wireless Communication Network to Affect Data Transmission Over a Communication Channel
JP5990199B2 (ja) 複数の宛先デバイスの中の少なくとも1つの宛先デバイスによって受信される信号の品質を高めるための方法
JP2010004517A (ja) 移動通信システムにおける通信装置及び通信方法
KR20240048524A (ko) 심층 신경망과 정적 알고리즘 모듈을 포함하는 하이브리드 무선 프로세싱 체인
US20240022297A1 (en) Hardware-context aware data transmitter for communication signals based on machine learning
JP5937366B2 (ja) 無線通信ネットワークの設定を求める方法及びデバイス、並びに無線通信ネットワークの宛先デバイスによって受信される信号の品質を向上させる方法及びシステム
Xu et al. RC-Struct: Reservoir computing meets knowledge of structure in MIMO-OFDM
SHARAFUDEN DESIGN AND ANALYSIS OF A ROBUST CODEC FOR WIRELESS CHANNEL USING MACHINE LEARNING
Zou et al. Flexible Link Adaptation in Fully-Decoupled RAN: A Machine Learning Approach
KR20230099221A (ko) 통신 시스템에서 데이터 수신 성능 향상을 위한 방법 및 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160420

WD01 Invention patent application deemed withdrawn after publication