CN105502652B - 一种提高厌氧氨氧化颗粒污泥形成速度的方法 - Google Patents

一种提高厌氧氨氧化颗粒污泥形成速度的方法 Download PDF

Info

Publication number
CN105502652B
CN105502652B CN201610057750.1A CN201610057750A CN105502652B CN 105502652 B CN105502652 B CN 105502652B CN 201610057750 A CN201610057750 A CN 201610057750A CN 105502652 B CN105502652 B CN 105502652B
Authority
CN
China
Prior art keywords
stage
sludge
mlss
granular sludge
mlvss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610057750.1A
Other languages
English (en)
Other versions
CN105502652A (zh
Inventor
于鹏飞
孙明
唐欷晨
苏杨
傅金祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai shengmaiyuan Biotechnology Co., Ltd
Original Assignee
Shenyang Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Jianzhu University filed Critical Shenyang Jianzhu University
Priority to CN201610057750.1A priority Critical patent/CN105502652B/zh
Publication of CN105502652A publication Critical patent/CN105502652A/zh
Application granted granted Critical
Publication of CN105502652B publication Critical patent/CN105502652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明涉及一种提高厌氧氨氧化菌颗粒污泥形成速度的方法,以低C/N实际工业污水作为厌氧氨氧化颗粒污泥培养营养源,控制进水NH4 +‑N和NO2 ‑N质量浓度比例在(1.05~1.42):1;以厌氧污泥与畜禽养殖粪便混合物作为接种污泥,通过改变进水基质浓度和降低水力停留时间和控制厌氧氨氧化颗粒污泥的粒径、颗粒污泥沉降速度及MLVSS/MLSS等方式,从而改变厌氧氨氧化进水氮负荷,能够有效解决厌氧氨氧化菌的持留和扩增难题,厌氧氨氧化污泥颗粒化能在一定程度上减弱由环境改变而带来的脱氮效率下降影响。

Description

一种提高厌氧氨氧化颗粒污泥形成速度的方法
技术领域
本发明涉及ANAMMOX污泥颗粒化技术,属于废水生物处理领域,旨在公开一种快速形成ANAMMOX颗粒污泥的方法。
背景技术
ANAMMOX是一种具有广阔前景的废水生物脱氮新技术,具有节约氧耗、无需添加有机碳源、污泥产量低、基质去除速率高等优点,成为国内外研究热点。但厌氧氨氧化菌对环境敏感,应用难点之一就是厌氧氨氧化菌的持留和扩增,厌氧氨氧化污泥颗粒化能在一定程度上缓解由环境改变而带来的效率下降,是解决这个问题的有效途径。厌氧氨氧化颗粒污泥具有沉降性能好、生物活性高、抗冲击负荷强、产泥量少,可以有效持留厌氧氨氧化菌,因此厌氧氨氧化污泥颗粒化的研究具有理论与实践重要意义。
形成颗粒污泥的影响因素有很多:接种污泥、废水性质、污泥负荷、碱度等。在厌氧污泥形成颗粒的过程中,有机负荷是重要的控制条件,当污泥负荷达到0.3kgCOD/(kgVSS·d)以上时,颗粒污泥开始形成,氧氨氧化污泥颗粒化的过程中,NH4 +-N和NO2 -N作为厌氧氨氧化反应的基质,适当提高污泥负荷,会加快颗粒化的进程,若浓度过高,会对厌氧氨氧化菌产生抑制作用,当超出一定范围,会对厌氧氨氧化菌造成不可逆伤害;而浓度过低,厌氧氨氧化菌养分不充足,无法快速富集,形成颗粒污泥。
发明内容
本发明涉及一种提高厌氧氨氧化菌颗粒污泥形成速度的方法,通过改变进水基质浓度和降低水力停留时间的方式,从而改变厌氧氨氧化进水氮负荷,能够有效解决厌氧氨氧化菌的持留和扩增难题,厌氧氨氧化污泥颗粒化能在一定程度上减弱由环境改变而带来的脱氮效率下降影响。
本发明所述快速形成厌氧氨氧化颗粒污泥的方法,其涉及的步骤和工艺条件是:
1) 以低C/N实际工业污水作为厌氧氨氧化颗粒污泥培养营养源,控制反应器进水NH4 +-N和NO2 -N质量浓度比例在(1.05~1.42):1,C/N质量浓度比小于0.5。
2) 以厌氧污泥与畜禽养殖粪便混合物作为接种污泥对 UASB 反应器进行接种,其中混合后污泥混培物MLSS 为 3000~4000mg/L,MLVSS 为 2000~2500mg/L,添加PAC 2~3mg/L和PAM0.5mg/L。
3) 培养温度控制在 35±3℃,控制 p H 在 7.5 ~ 8.5。
4)形成厌氧氨氧化颗粒污泥过程分为三个阶段:第一阶段为基质提升阶段,初始进水氨氮浓度约为150~200mg/L,保持其他条件不变,之后进水氨氮以10 mg/L为单位,逐级提高至190~250mg/L;第二阶段为缩短HRT阶段,初始HRT为26h,以2h为一个梯度,以10天一个周期将HRT从26h缩短为16h;第三阶段为负荷冲击阶段,保持其他条件不变,进水负荷快速提升至0.6930 kgN/m3•d;每个梯度反应器达到稳定状态后,进行下一个梯度。
本发明所用的反应器如图1所示。
控制厌氧氨氧化颗粒污泥的粒径,粒径在此范围内的颗粒污泥有助于维持反应器的污泥动态平衡和运行的稳定性。第Ⅰ阶段粒径的增大对anammox颗粒污泥的厌氧氨氧化活性的具有双重影响,较大粒径抵抗不利条件的性能更高,但比表面积相对较小,传质效率较差,对厌氧氨氧化活性不利,以湿式筛法控制SGR(颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比)在25~30%以上;第Ⅱ阶段将HRT缩短后,厌氧氨氧化颗粒污泥SGR初期有所下降,经过10d的适应期后,逐渐有所回升,以湿式筛法控制SGR(颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比)在35~45%;第III阶段加入冲击负荷,反应器的SGR有出现下降,但颗粒污泥的SGR后期恢复更快,以湿式筛法控制SGR(颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比)在45%以上。此方法形成颗粒污泥在沉降性能、抵抗外界环境条件变化的优越性。
控制沉降性能使颗粒污泥长期保留在反应器中,从而充分发挥厌氧氨氧化菌的作用。第Ⅰ阶段50天,沉降速度在45~65m/h之间逐渐提高,提高基质浓度对厌氧氨氧化颗粒污泥有促进作用;在第Ⅱ阶段,HRT缩短之后,沉降速度保持第Ⅰ阶段的增长幅度,将沉降性能差(沉降速度60m/h以下)的污泥排除反应器外,具有良好沉降性能(沉降速度60~75m/h)的污泥则留在反应器中,沉降速度逐渐升高;在第III阶段冲击负荷阶段,沉降速度维持在65m/h和75m/h之间,浓度过低不利于形成基质浓度梯度,减缓了厌氧氨氧化颗粒污泥的形成速度,但浓度过高,氨氮、亚硝态氮对厌氧氨氧化菌存在抑制作用,且亚硝态氮对厌氧氨氧化菌的抑制程度更高,因此提升基质浓度存在界限。
控制颗粒污泥总固体浓度(MLSS)、挥发性悬浮物固体浓度(MLVSS)和MLVSS/MLSS。在第Ⅰ阶段,逐渐提高MLSS为3780~3880mg/L、逐渐提高MLVSS/MLSS为71%~77%;在第Ⅱ阶段进入缩短水力停留时间阶段后,MLSS保持第I阶段水平,MLVSS/MVSS逐渐升高为75~85%,MLVSS/MVSS的提高还可以提高污泥的EPS含量和细胞疏水性;在第III阶段MLSS和MLVSS/MLSS值维持第Ⅱ阶段后期水平,即MLSS为3880mg/L、MLVSS/MVSS为85%。
本发明的在快速形成厌氧氨氧化颗粒污泥过程中具有独特的技术优势,其有益效果主要表现在
①严格控制环境条件,使反应器的氮素负荷逐步提高,从而使反应器中的厌氧氨氧化菌快速富集,形成颗粒污泥。
②以低C/N实际工业污水作为厌氧氨氧化颗粒污泥培养营养源,并以厌氧污泥与畜禽养殖粪便混合物作为接种污泥, 扩展厌氧氨氧化实际应用的可能,而畜禽养殖粪便的加入也促进了颗粒污泥形成,其中存在的悬浮粒状杂质具有凝核作用,使颗粒污泥更易成核。
③本方法形成颗粒污泥在沉降性能、抵抗外界环境条件变化的优越性。
④厌氧氨氧化颗粒污泥表面具有高浓度气泡附着在其表面,当颗粒的比表面积较大同时气泡较小的时候,缩短HRT可以使得上升流速逐渐增加,水流剪切力也逐渐增大,较大的水流剪切力使得污泥在反应器中更加分散以及处于良好流化状态,有利于颗粒污泥的形成。
附图说明
图1 为反应装置图;
图2 具体实施过程氨氮去除效果;
图3 具体实施过程亚硝态氮去除效果。
1-配水水箱;2-计量泵;3-进水口;4-水浴水箱;5-水浴循环泵;6-蠕动泵;7-反应区;8-回流口;9-出水口;10-三相分离器;11-排气口;12-液封;13-主出气口。
具体实施方式
本发明的具体实施步骤和效果是:
①以实际经过一级处理后的养殖场粪便废水与酿酒废水(按照一定比例混合作为厌氧氨氧化颗粒污泥培养营养源),控制进水NH4 +-N和NO2 -N质量浓度比例在1.2:1,C/N质量浓度比小于0.5。
②以厌氧污泥与奶牛场养殖粪便混合物作为接种污泥对 UASB 反应器进行接种,其中混合后污泥混培物MLSS 为 3400mg/L,MLVSS 为 2200mg/L,添加PAC 2~3mg/L和PAM0.5mg/L。
③培养温度控制在 35±3℃,控制 p H 在 7.5 ~ 8.5。
④过程分为三个阶段:第一阶段为基质提升阶段,初始进水氨氮浓度约为150mg/L,保持其他条件不变,之后进水氨氮以10 mg/L为单位,逐级提高至190mg/L;第二阶段为缩短HRT阶段,初始HRT为26h,以2h为一个梯度,以10天一个周期将HRT从26h缩短为16h;第三阶段为负荷冲击阶段,保持其他条件不变,进水负荷快速提升至0.6930 kgN/m3•d。每个梯度反应器达到稳定状态后,进行下一个梯度,期间pH值7.85左右、反应器温度32+1℃。如表1所示为厌氧氨氧化颗粒污泥形成三个阶段的具体数据表。
表1厌氧氨氧化颗粒污泥形成三个阶段
具体实施过程氨氮去除效果如图2所示;具体实施过程亚硝态氮去除效果如图3所示。
控制厌氧氨氧化颗粒污泥的粒径,以湿式筛法控制SGR(颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比)在25~30%以上;第Ⅱ阶段以湿式筛法控制SGR(颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比)在35~45%;第III阶段在第100天加入冲击负荷,以湿式筛法控制SGR(颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比)在45%以上。
控制沉降性能使颗粒污泥长期保留在反应器中,从而充分发挥厌氧氨氧化菌的作用。第Ⅰ阶段50天,沉降速度在45~65m/h之间逐渐提高;在第Ⅱ阶段,HRT缩短之后,沉降速度保持第Ⅰ阶段的增长幅度,将沉降性能差(沉降速度60m/h以下)的污泥排除反应器外,具有良好沉降性能(沉降速度60~75m/h)的污泥则留在反应器中,沉降速度逐渐升高;在第III阶段冲击负荷阶段,沉降速度维持在65m/h和75m/h之间。
控制颗粒污泥总固体浓度(MLSS)、挥发性悬浮物固体浓度(MLVSS)和MLVSS/MLSS。在第Ⅰ阶段,逐渐提高MLSS为3780~3880mg/L、MLVSS/MLSS为71%~77%;在第Ⅱ阶段进入缩短水力停留时间阶段后,MLSS保持第I阶段水平,MLVSS/MVSS逐渐升高为75~85%,MLVSS/MVSS的提高还可以提高污泥的EPS含量和细胞疏水性;在第III阶段MLSS和MLVSS/MLSS值维持第Ⅱ阶段后期水平,即MLSS为3880mg/L、MLVSS/MVSS为85%。

Claims (4)

1.一种提高厌氧氨氧化菌颗粒污泥形成速度的方法,其特征在于包括以下步骤:
1) 以低C/N实际工业污水作为厌氧氨氧化颗粒污泥培养营养源,控制反应器进水NH4 +-N和NO2 -N质量浓度比例在(1.05~1.42):1,C/N质量浓度比小于0.5;
2) 以厌氧污泥与畜禽养殖粪便混合物作为接种污泥对 UASB 反应器进行接种,其中混合后污泥混培物MLSS 为 3000~4000mg/L,MLVSS 为 2000~2500mg/L,添加PAC 2~3mg/L和PAM0.5mg/L;
3) 培养温度控制在 35±3℃,控制 p H 在 7.5~8.5;
4)形成厌氧氨氧化颗粒污泥过程分为三个阶段:第Ⅰ阶段为基质提升阶段,初始进水氨氮浓度为150~200mg/L,保持其他条件不变,之后进水氨氮以10 mg/L为单位,逐级提高至190~250mg/L;第Ⅱ阶段为缩短HRT阶段,初始HRT为26h,以2h为一个梯度,以10天一个周期将HRT从26h缩短为16h;第III阶段为负荷冲击阶段,保持其他条件不变,进水负荷快速提升至0.6930 kgN/(m3•d);每个梯度反应器达到稳定状态后,进行下一个梯度。
2.根据权利要求1所述的一种提高厌氧氨氧化菌颗粒污泥形成速度的方法,其特征在于控制厌氧氨氧化颗粒污泥的粒径;第Ⅰ阶段以湿式筛法控制SGR,即颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比,在25~30%以上;第Ⅱ阶段以湿式筛法控制SGR,即颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比,在35~45%;第III阶段以湿式筛法控制SGR即颗粒粒径0.9~1.5mm的颗粒占所有粒径颗粒的重量百分比,在45%以上。
3.根据权利要求1所述的一种提高厌氧氨氧化菌颗粒污泥形成速度的方法,其特征在于控制沉降性能使颗粒污泥长期保留在反应器中;第Ⅰ阶段,沉降速度在45~65m/h之间逐渐提高;在第Ⅱ阶段,沉降速度保持第Ⅰ阶段的增长幅度,将沉降性能差,即沉降速度60m/h以下的污泥排除反应器外,具有良好沉降性能,即沉降速度60~75m/h的污泥则留在反应器中,沉降速度逐渐升高;在第III阶段冲击负荷阶段,沉降速度维持在65m/h和75m/h之间。
4.根据权利要求1所述的一种提高厌氧氨氧化菌颗粒污泥形成速度的方法,其特征在于控制颗粒污泥总固体浓度(MLSS)、挥发性悬浮物固体浓度(MLVSS)和MLVSS/MLSS;在第Ⅰ阶段,逐渐提高MLSS为3780~3880mg/L、MLVSS/MLSS为71%~77%;在第Ⅱ阶段进入缩短水力停留时间阶段后,MLSS保持第I阶段水平,MLVSS/MVSS逐渐升高为75~85%;在第III阶段MLSS和MLVSS/MLSS值维持第Ⅱ阶段后期水平,即MLSS为3880mg/L、MLVSS/MVSS为85%。
CN201610057750.1A 2016-01-28 2016-01-28 一种提高厌氧氨氧化颗粒污泥形成速度的方法 Active CN105502652B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610057750.1A CN105502652B (zh) 2016-01-28 2016-01-28 一种提高厌氧氨氧化颗粒污泥形成速度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610057750.1A CN105502652B (zh) 2016-01-28 2016-01-28 一种提高厌氧氨氧化颗粒污泥形成速度的方法

Publications (2)

Publication Number Publication Date
CN105502652A CN105502652A (zh) 2016-04-20
CN105502652B true CN105502652B (zh) 2018-02-02

Family

ID=55711037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610057750.1A Active CN105502652B (zh) 2016-01-28 2016-01-28 一种提高厌氧氨氧化颗粒污泥形成速度的方法

Country Status (1)

Country Link
CN (1) CN105502652B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906062B (zh) * 2016-07-12 2018-07-27 沈阳建筑大学 一种控制回流比提高厌氧氨氧化颗粒污泥形成速度的方法
CN107522272A (zh) * 2017-08-23 2017-12-29 沈阳建筑大学 促进好氧颗粒污泥化的混合絮凝剂及其使用方法
CN109354163A (zh) * 2018-11-19 2019-02-19 北京工业大学 可以自由调节沉降时间的污泥沉淀管装置及其使用方法
CN109879416B (zh) * 2019-02-22 2021-12-21 杭州师范大学 一种启动主流厌氧氨氧化反应器的方法
CN109748388A (zh) * 2019-03-11 2019-05-14 福建省环境科学研究院(福建省排污权储备和管理技术中心) 一种附着增殖型惰性生物载体培养厌氧氨氧化颗粒污泥的方法
CN113072178B (zh) * 2021-04-01 2023-01-03 宜宾五粮液股份有限公司 采用酿酒废水提高厌氧氨氧化菌脱氮性能的方法
CN113788541B (zh) * 2021-09-30 2022-12-20 同济大学 一种利用混凝剂促进厌氧氨氧化菌快速颗粒化的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238166A (ja) * 2004-02-27 2005-09-08 Kurita Water Ind Ltd 嫌気的アンモニア酸化処理方法
CN103043788B (zh) * 2013-01-04 2013-12-11 哈尔滨工业大学 厌氧氨氧化颗粒污泥的培养方法
CN103539260B (zh) * 2013-10-14 2015-03-04 北京工业大学 一种uasb内强化厌氧氨氧化颗粒污泥的方法

Also Published As

Publication number Publication date
CN105502652A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105502652B (zh) 一种提高厌氧氨氧化颗粒污泥形成速度的方法
Du et al. Efficient partial-denitrification/anammox (PD/A) process through gas-mixing strategy: System evaluation and microbial analysis
Du et al. Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature
CN103663725B (zh) 基于颗粒污泥的连续流生物脱氮方法及装置
CN101830558B (zh) 一种厌氧氨氧化颗粒污泥的培养方法
CN101580297B (zh) 一种污泥内循环生物滤池挂膜方法
CN102838255B (zh) 笼状填料式厌氧—缺氧—好氧处理啤酒废水的装置及方法
He et al. Operation stability and recovery performance in an Anammox EGSB reactor after pH shock
Jiang et al. Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature
JP6241187B2 (ja) 嫌気性処理方法及び嫌気性処理装置
CN102583900A (zh) 一种分段进水mbbr脱氮除磷的方法
CN104261555B (zh) 一种在连续流反应器中培养全程自养脱氮颗粒污泥的方法
CN105540834A (zh) 一种厌氧反硝化颗粒污泥的培养方法
CN103086505B (zh) 一种强化厌氧处理废水耐冲击负荷的装置与方法
CN103112948A (zh) 低基质浓度高上升流速快速培养自养脱氮颗粒污泥的方法
CN102992482B (zh) 低浓度有机废水厌氧反应器
CN101323486A (zh) 一种实现低碳氮比高浓度含氮废水稳定生物亚硝化的方法
CN102701440B (zh) Ic反应器快速培养颗粒化污泥的试剂和方法
De Bruin et al. Promising results pilot research aerobic granular sludge technology at WWTP Ede
Santorio et al. Pilot-scale continuous flow granular reactor for the treatment of extremely low-strength recirculating aquaculture system wastewater
CN104193000B (zh) 用于增大颗粒污泥粒径的上升式厌氧颗粒污泥反应器
CN201485329U (zh) 高效高浓度有机废水厌氧反应器的螺旋式布水器
CN103304029A (zh) 一种处理农村分散式污水的人工土壤渗滤系统
Zhong et al. The characteristic and comparison of denitrification potential in granular sequence batch reactor under different mixing conditions
De Prá et al. Novel one-stage reactor configuration for deammonification process: Hydrodynamic evaluation and fast start-up of NITRAMMOX® reactor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191119

Address after: 200120 Shanghai, Nanhui, new towns around the Lake Road West, No. two, building C,

Patentee after: Shanghai shengmaiyuan Biotechnology Co., Ltd

Address before: 110168 Liaoning province Shenyang Hunnan Hunnan Road No. 9

Patentee before: Shenyang Building Univ.