CN105499827A - Low-melting-point intermediate-temperate aluminum brazing flux for brazing aluminum and aluminum alloy, and preparation method of low-melting-point intermediate-temperate aluminum brazing flux - Google Patents
Low-melting-point intermediate-temperate aluminum brazing flux for brazing aluminum and aluminum alloy, and preparation method of low-melting-point intermediate-temperate aluminum brazing flux Download PDFInfo
- Publication number
- CN105499827A CN105499827A CN201610065943.1A CN201610065943A CN105499827A CN 105499827 A CN105499827 A CN 105499827A CN 201610065943 A CN201610065943 A CN 201610065943A CN 105499827 A CN105499827 A CN 105499827A
- Authority
- CN
- China
- Prior art keywords
- aluminum
- brazing
- flux
- melting
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 80
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 230000004907 flux Effects 0.000 title claims abstract description 69
- 238000005219 brazing Methods 0.000 title claims abstract description 59
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 229910000838 Al alloy Inorganic materials 0.000 title abstract description 14
- 239000000956 alloy Substances 0.000 claims abstract description 23
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 15
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 12
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 12
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims description 39
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 30
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 229910018626 Al(OH) Inorganic materials 0.000 claims description 16
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 10
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- 239000013543 active substance Substances 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- 229910016569 AlF 3 Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910007570 Zn-Al Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910018459 Al—Ge Inorganic materials 0.000 description 2
- UYFXWCIZFDKSTJ-UHFFFAOYSA-J aluminum;cesium;tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Al+3].[Cs+] UYFXWCIZFDKSTJ-UHFFFAOYSA-J 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910018566 Al—Si—Mg Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- -1 cesium fluorogermanate-cesium Chemical compound 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- SKFYTVYMYJCRET-UHFFFAOYSA-J potassium;tetrafluoroalumanuide Chemical compound [F-].[F-].[F-].[F-].[Al+3].[K+] SKFYTVYMYJCRET-UHFFFAOYSA-J 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/40—Making wire or rods for soldering or welding
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及钎焊材料技术领域,特别是涉及一种钎焊铝及其合金用的低熔点中温铝钎剂及制备方法。The invention relates to the technical field of brazing materials, in particular to a low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys and a preparation method thereof.
背景技术Background technique
铝合金由于优良的物理、化学性能,良好的加工、表面处理和耐蚀性能,在近代工业材料中占有重要的地位和广泛的应用。钎焊工艺是实现各种复杂铝合金器件精密连接的首选方法。在钎焊过程中常常采用钎剂来清除铝表面的氧化膜和减小熔态钎料与母材之间的界面张力。Aluminum alloy occupies an important position and is widely used in modern industrial materials due to its excellent physical and chemical properties, good processing, surface treatment and corrosion resistance. The brazing process is the preferred method to realize the precise connection of various complex aluminum alloy devices. In the brazing process, flux is often used to remove the oxide film on the aluminum surface and reduce the interfacial tension between the molten solder and the base metal.
常规Nocolok方法应用氟铝酸钾钎剂的最大不足在于钎剂熔化温度过高,超过大多数铝合金如Al-Cu系、Al-Si-Mg系等的过烧温度。一种有可靠应用前景的中温不溶性钎剂是Suzuki对CsF-AlF3系的应用。多年来的研究结果和生产经验均表明,采用铯盐氟化物钎剂(CsF-AlF3或KF-CsF-AlF3)的中温无腐蚀钎焊工艺,是解决大量热处理强化铝合金(特别是极难钎焊的含镁铝合金)构件钎焊连接的最有前景的工艺。然而氟铝酸铯盐钎剂理论熔点471℃,其熔程与常规Zn-Al钎料的匹配性不好,钎焊温度过高从而导致大量可热处理铝合金无法实施钎焊。因而研制开发熔点更低的无腐蚀、难溶于水的钎剂,成为十余年来铝钎剂发展的重要方面。The biggest disadvantage of the conventional Nocolok method of applying potassium fluoroaluminate flux is that the melting temperature of the flux is too high, exceeding the overburning temperature of most aluminum alloys such as Al-Cu series, Al-Si-Mg series, etc. A medium-temperature insoluble flux with reliable application prospects is the application of Suzuki to the CsF-AlF 3 series. Years of research results and production experience have shown that the medium temperature non-corrosion brazing process using cesium salt fluoride flux (CsF-AlF 3 or KF-CsF-AlF 3 ) is the solution to a large number of heat-treated aluminum alloys (especially extremely The most promising process for the brazing connection of difficult-to-braze magnesium-aluminum alloy) components. However, the theoretical melting point of cesium fluoroaluminate brazing flux is 471°C, and its melting range does not match that of conventional Zn-Al brazing filler metals. The brazing temperature is too high, so that a large number of heat-treatable aluminum alloys cannot be brazed. Therefore, the research and development of non-corrosive and water-insoluble fluxes with lower melting points has become an important aspect of the development of aluminum fluxes for more than ten years.
发明内容Contents of the invention
为了克服上述现有技术的不足,本发明提供了一种钎焊铝及其合金用的低熔点中温铝钎剂及制备方法,以解决与常规Zn-Al钎料熔程不匹配,钎焊温度过高而导致大量可热处理铝合金无法实施钎焊的问题。In order to overcome the above-mentioned deficiencies in the prior art, the present invention provides a low-melting-point medium-temperature aluminum brazing flux and a preparation method for brazing aluminum and its alloys, to solve the mismatch with the conventional Zn-Al solder melting range, the brazing temperature Too high will lead to the problem that a large number of heat-treatable aluminum alloys cannot be brazed.
为了实现上述目的,本发明所采用的技术方案是提供一种钎焊铝及其合金的低熔点中温铝钎剂,其中:所述低熔点中温铝钎剂组分包括CsAlF4、Cs2AlF5和Cs2GeF6,所述中温铝钎剂组分中各元素总含量的质量百分比含量分别为:元素铝(Al):8.45%~9.18%;元素铯(Cs):57.47%~62.41%;元素氟(F):26.08%~28.31%;元素锗(Ge):0.10%~8.00%,所述元素铝(Al)、元素铯(Cs)与元素氟(F)的质量比满足比例1:6.80:3.08。In order to achieve the above purpose, the technical solution adopted by the present invention is to provide a low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys, wherein: the low-melting-point medium-temperature aluminum flux components include CsAlF 4 , Cs 2 AlF 5 and Cs 2 GeF 6 , the mass percentages of the total content of each element in the medium-temperature aluminum flux component are: element aluminum (Al): 8.45% to 9.18%; element cesium (Cs): 57.47% to 62.41%; Elemental fluorine (F): 26.08% to 28.31%; elemental germanium (Ge): 0.10% to 8.00%, and the mass ratio of the elemental aluminum (Al), elemental cesium (Cs) and elemental fluorine (F) satisfies ratio 1: 6.80:3.08.
同时提供了一种钎焊铝及其合金用的低熔点中温铝钎剂的制备方法。At the same time, it provides a method for preparing low-melting-point and medium-temperature aluminum flux for brazing aluminum and its alloys.
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明钎剂的熔点为430~480℃,钎焊温度可以控制在520℃以内,可应用于过烧温度较低的铝合金钎焊;1. The melting point of the brazing flux of the present invention is 430-480°C, and the brazing temperature can be controlled within 520°C, which can be applied to the brazing of aluminum alloys with low overburning temperature;
2、本发明钎剂的活性与传统的氟铝酸铯二元体系钎剂CsF-AlF3活性相当,但是熔点有进一步的降低,对含镁铝合金有特殊的活性作用;2. The activity of the brazing flux of the present invention is equivalent to that of the traditional cesium fluoroaluminate binary system brazing flux CsF- AlF3 , but the melting point is further reduced, and it has a special active effect on magnesium-containing aluminum alloys;
3、本发明钎剂的熔程与常规Zn-Al钎料的匹配性较好,扩大了Zn-Al钎料的适用范围,可以钎焊大多数可热处理的铝合金材料。3. The melting range of the brazing flux of the present invention matches well with conventional Zn-Al brazing filler metals, expands the application range of Zn-Al brazing filler metals, and can braze most heat-treatable aluminum alloy materials.
具体实施方式detailed description
结合实施例对本发明的钎焊铝及其合金用的低熔点中温铝钎剂及制备方法进一步说明。The low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys of the present invention and the preparation method are further described in conjunction with examples.
本发明的钎焊铝及其合金用的低熔点中温铝钎剂及制备方法的设计思想基于Al-Si低熔共晶的存在,大大改善了Nocolok钎剂的高温活性,理论上Al-Ge在420℃下的低熔共晶作用对于铯盐钎剂的活性改善也是有一定作用的。按照该思路进行了大量研究,却未发现设想中的Al-Ge低熔共晶反应出现。但是,在不断改变钎剂合成顺序过程中无意发现了一种新的钎剂体系,即本发明的氟锗酸铯-氟铝酸铯钎剂体系。本发明的钎剂体系具有低熔点特性的温度优势而不失常规CsF-AlF3二元钎剂体系的活性。The low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys of the present invention and the design idea of the preparation method are based on the existence of Al-Si low-melting eutectic, which greatly improves the high-temperature activity of Nocolok flux. In theory, Al-Ge The low-melting eutectic effect at 420 ° C also has a certain effect on the improvement of the activity of cesium salt flux. A lot of research has been carried out according to this idea, but the expected Al-Ge eutectic reaction has not been found. However, a new flux system was unintentionally discovered during the process of continuously changing the flux synthesis sequence, that is, the cesium fluorogermanate-cesium fluoroaluminate flux system of the present invention. The flux system of the present invention has the temperature advantage of low melting point characteristics without losing the activity of the conventional CsF-AlF 3 binary flux system.
本发明的钎焊铝及其合金的低熔点中温铝钎剂组分包括CsAlF4、Cs2AlF5和Cs2GeF6,所述中温铝钎剂组分中各元素总含量的质量百分比含量分别为:元素铝(Al):8.45%~9.18%;元素铯(Cs):57.47%~62.41%;元素氟(F):26.08%~28.31%;元素锗(Ge):0.10%~8.00%,所述元素铝(Al)、元素铯(Cs)与元素氟(F)的质量比满足比例1:6.80:3.08。The low-melting-point and medium-temperature aluminum flux components for brazing aluminum and its alloys of the present invention include CsAlF 4 , Cs 2 AlF 5 and Cs 2 GeF 6 , and the mass percentages of the total content of each element in the medium-temperature aluminum flux components are respectively For: element aluminum (Al): 8.45% ~ 9.18%; element cesium (Cs): 57.47% ~ 62.41%; element fluorine (F): 26.08% ~ 28.31%; element germanium (Ge): 0.10% ~ 8.00%, The mass ratio of the element aluminum (Al), the element cesium (Cs) and the element fluorine (F) satisfies the ratio of 1:6.80:3.08.
本发明的钎焊铝及其合金用的低熔点中温铝钎剂的制备方法包括以下步骤:The preparation method of the low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys of the present invention comprises the following steps:
1)所述中温铝钎剂以分析纯级的Al(OH)3粉末、CsCO3粉末、GeO2粉末和浓度10%氢氟酸溶液为制备原料,按上述中温铝钎剂组分中各元素总含量的质量百分比的比例计算、称量上述原材料的Al(OH)3粉末、CsCO3粉末、GeO2粉末和10%浓度氢氟酸溶液。1) The medium-temperature aluminum brazing flux is prepared with analytically pure grade Al(OH) powder, CsCO powder, GeO powder and 10 % hydrofluoric acid solution, and each element in the above-mentioned medium-temperature aluminum flux component is To calculate the ratio of the mass percentage of the total content, weigh the Al(OH) 3 powder, CsCO 3 powder, GeO 2 powder and 10% concentration hydrofluoric acid solution of the above raw materials.
2)将步骤1)称取的Al(OH)3粉末放入盛有蒸馏水的塑料锥形瓶,水温保持在80~85℃,在加热型磁力搅拌器上水浴加热15min。2) Put the Al(OH) 3 powder weighed in step 1) into a plastic Erlenmeyer flask filled with distilled water, keep the water temperature at 80-85°C, and heat in a water bath on a heating type magnetic stirrer for 15 minutes.
3)将步骤1)称取的活性物质GeO2用氢氟酸溶液溶解,倒入步骤2)溶液中,充分搅拌。3) Dissolve the active substance GeO 2 weighed in step 1) with hydrofluoric acid solution, pour it into the solution in step 2), and stir well.
4)将步骤1)称取的CsCO3粉末在300℃温度下烘干30min,倒入步骤3)溶液中,充分搅拌。4) Dry the CsCO 3 powder weighed in step 1) at 300° C. for 30 minutes, pour it into the solution in step 3), and stir thoroughly.
5)15min后将步骤3)溶液倒入塑料培养皿中,自然风干,研磨,即形成所述钎焊铝及其合金用的低熔点中温铝钎剂,所述中温铝钎剂熔点为430~480℃。5) After 15 minutes, pour the solution of step 3) into a plastic petri dish, air-dry naturally, and grind to form the low-melting-point medium-temperature aluminum brazing flux for brazing aluminum and its alloys, and the melting point of the medium-temperature aluminum flux is 430 ~ 480°C.
本发明的钎焊铝及其合金用的低熔点中温铝钎剂制备过程中发生的化学反应过程分析如下:The chemical reaction process that takes place in the preparation process of the low-melting-point medium-temperature aluminum brazing flux for brazing aluminum and its alloys of the present invention is analyzed as follows:
GeO2粉末与10%浓度氢氟酸反应后添加到Al(OH)3溶液中,不稳定的H2GeF6与CsF反应产生了新相Cs2GeF6,如反应式(1)~(4)。在CsF少量的情况下CsAlF4优先生成(5),从而生成Cs2AlF5的量就自然减少(6)。当Ge含量足够高时,钎剂主相中就不再存在Cs2AlF5。GeO 2 powder is reacted with 10% concentration of hydrofluoric acid and added to Al(OH) 3 solution, and the unstable H 2 GeF 6 reacts with CsF to produce a new phase Cs 2 GeF 6 , as shown in the reaction formula (1)~(4 ). In the case of a small amount of CsF, CsAlF 4 is preferentially formed (5), so that the amount of Cs 2 AlF 5 naturally decreases (6). When the Ge content is high enough, Cs 2 AlF 5 no longer exists in the main flux phase.
GeO2+6HF→H2GeF6+2H2O(1)GeO 2 +6HF→H 2 GeF 6 +2H 2 O(1)
Al(OH)3+3HF→AlF3+3H2O(2)Al(OH) 3 +3HF→AlF 3 +3H 2 O(2)
Cs2CO3+2HF→2CsF+H2O+CO2(3)Cs 2 CO 3 +2HF→2CsF+H 2 O+CO 2 (3)
2CsF+H2GeF6→Cs2GeF6+2HF(4)2CsF+H 2 GeF 6 →Cs 2 GeF 6 +2HF(4)
AlF3+CsF→CsAlF4(CsF少量)(5)AlF 3 +CsF→CsAlF 4 (small amount of CsF)(5)
AlF3+2CsF→Cs2AlF5(CsF多量)(6)AlF 3 +2CsF→Cs 2 AlF 5 (more CsF)(6)
本发明的钎焊铝及其合金用的低熔点中温铝钎剂组分包括CsAlF4、Cs2AlF5和Cs2GeF6,所述中温铝钎剂组分中各元素总含量的质量百分比含量分别为:元素铝(Al):8.45%~9.18%;元素铯(Cs):57.47%~62.41%;元素氟(F):26.08%~28.31%;元素锗(Ge):0.10%~8.00%,所述元素铝(Al)、元素铯(Cs)与元素氟(F)的质量比满足比例1:6.80:3.08。当所述中温铝钎剂组分中元素锗(Ge)总含量为4.00~8.00%时,该钎剂以CsAlF4和Cs2GeF6为主相,熔点比传统的CsF-AlF3钎剂有显著的降低。The low-melting-point and medium-temperature aluminum flux components for brazing aluminum and its alloys of the present invention include CsAlF 4 , Cs 2 AlF 5 and Cs 2 GeF 6 , and the mass percentage content of the total content of each element in the medium-temperature aluminum flux components is They are: element aluminum (Al): 8.45% to 9.18%; element cesium (Cs): 57.47% to 62.41%; element fluorine (F): 26.08% to 28.31%; element germanium (Ge): 0.10% to 8.00% , the mass ratio of the element aluminum (Al), element cesium (Cs) and element fluorine (F) satisfies the ratio of 1:6.80:3.08. When the total content of germanium (Ge) in the medium-temperature aluminum flux component is 4.00-8.00%, the flux has CsAlF 4 and Cs 2 GeF 6 as main phases, and its melting point is higher than that of traditional CsF-AlF 3 flux. significantly lower.
本发明的钎焊铝及其合金用的低熔点中温铝钎剂的制备方法包括以下步骤:The preparation method of the low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys of the present invention comprises the following steps:
1)所述中温铝钎剂以分析纯级的Al(OH)3粉末、CsCO3粉末、GeO2粉末和浓度10%氢氟酸溶液为制备原料,按权利要求1所述比例计算、称量上述原材料的Al(OH)3粉末、CsCO3粉末、GeO2粉末和10%浓度氢氟酸溶液。1) The medium temperature aluminum brazing flux is prepared with analytically pure grade Al(OH) 3 powder, CsCO 3 powder, GeO 2 powder and 10% hydrofluoric acid solution, calculated and weighed in proportion according to claim 1 Al(OH) 3 powder, CsCO 3 powder, GeO 2 powder and 10% concentration hydrofluoric acid solution of the above raw materials.
2)将步骤1)称取的Al(OH)3粉末放入盛有蒸馏水的塑料锥形瓶,水温保持在80~85℃,在加热型磁力搅拌器上水浴加热15min。2) Put the Al(OH) 3 powder weighed in step 1) into a plastic Erlenmeyer flask filled with distilled water, keep the water temperature at 80-85°C, and heat in a water bath on a heating type magnetic stirrer for 15 minutes.
3)将步骤1)称取的活性物质GeO2用氢氟酸溶液溶解,倒入步骤2)溶液中,充分搅拌。3) Dissolve the active substance GeO 2 weighed in step 1) with hydrofluoric acid solution, pour it into the solution in step 2), and stir well.
4)将步骤1)称取的CsCO3粉末在300℃温度下烘干30min,倒入步骤3)溶液中,充分搅拌。4) Dry the CsCO 3 powder weighed in step 1) at 300° C. for 30 minutes, pour it into the solution in step 3), and stir thoroughly.
5)15min后将步骤3)溶液倒入塑料培养皿中,自然风干,研磨,即形成所述钎焊铝及其合金用的低熔点中温铝钎剂。5) After 15 minutes, pour the solution of step 3) into a plastic petri dish, air-dry naturally, and grind to form the low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys.
实施例1:Example 1:
本发明的钎焊铝及其合金用的低熔点中温铝钎剂组分以分析纯级的Al(OH)3粉末、CsCO3粉末、GeO2粉末和浓度10%氢氟酸溶液为制备原料,各元素总含量的质量百分比含量分别为:元素铝(Al):9.18%;元素铯(Cs):62.41%;元素氟(F):28.31%;元素锗(Ge):0.10%。The low-melting-point medium-temperature aluminum flux component used for brazing aluminum and alloys thereof of the present invention is to analyze pure grade Al(OH) Powder, CsCO Powder, GeO Powder and concentration 10 % hydrofluoric acid solution are raw materials for preparation, The mass percentages of the total content of each element are: elemental aluminum (Al): 9.18%; elemental cesium (Cs): 62.41%; elemental fluorine (F): 28.31%; elemental germanium (Ge): 0.10%.
制备方法包括以下步骤:The preparation method comprises the following steps:
1)按所述质量百分比计算、称量上述原材料的Al(OH)3粉末、CsCO3粉末、GeO2粉末和10%浓度氢氟酸溶液。1) Calculate and weigh the Al(OH) 3 powder, CsCO3 powder, GeO2 powder and 10% concentration hydrofluoric acid solution of the above-mentioned raw materials according to the calculation of the mass percentage.
2)将步骤1)称取的Al(OH)3粉末放入盛有蒸馏水的塑料锥形瓶,水温保持在80~85℃,在加热型磁力搅拌器上水浴加热15min。2) Put the Al(OH) 3 powder weighed in step 1) into a plastic Erlenmeyer flask filled with distilled water, keep the water temperature at 80-85°C, and heat in a water bath on a heating type magnetic stirrer for 15 minutes.
3)将步骤1)称取的活性物质GeO2用氢氟酸溶液溶解,倒入步骤2)溶液中,充分搅拌。3) Dissolve the active substance GeO 2 weighed in step 1) with hydrofluoric acid solution, pour it into the solution in step 2), and stir thoroughly.
4)将步骤1)称取的CsCO3粉末在300℃温度下烘干30min,倒入步骤3)溶液中,充分搅拌。4) Dry the CsCO 3 powder weighed in step 1) at 300° C. for 30 minutes, pour it into the solution in step 3), and stir thoroughly.
5)15min后将步骤3)溶液倒入塑料培养皿中,自然风干,研磨,即形成所述钎焊铝及其合金用的低熔点中温铝钎剂。5) After 15 minutes, pour the solution of step 3) into a plastic petri dish, air-dry naturally, and grind to form the low-melting-point medium-temperature aluminum flux for brazing aluminum and its alloys.
所述中温铝钎剂物相组分经XRD测定为CsAlF4、Cs2AlF5和Cs2GeF6,钎剂熔化的固、液相线经DSC测定为470.8~479.6℃。The phase components of the medium-temperature aluminum brazing flux are determined by XRD to be CsAlF 4 , Cs2AlF 5 and Cs 2 GeF 6 , and the solidus and liquidus lines of the molten flux are determined to be 470.8-479.6° C. by DSC.
实施例2:Example 2:
本发明的钎焊铝及其合金用的低熔点中温铝钎剂组分以分析纯级的Al(OH)3粉末、CsCO3粉末、GeO2粉末和浓度10%氢氟酸溶液为制备原料,各元素总含量的质量百分比含量分别为:元素铝(Al):8.82%;元素铯(Cs):59.97%;元素氟(F):27.21%;元素锗(Ge):4.00%。The low-melting-point medium-temperature aluminum flux component used for brazing aluminum and alloys thereof of the present invention is to analyze pure grade Al(OH) Powder, CsCO Powder, GeO Powder and concentration 10 % hydrofluoric acid solution are raw materials for preparation, The mass percentages of the total content of each element are: elemental aluminum (Al): 8.82%; elemental cesium (Cs): 59.97%; elemental fluorine (F): 27.21%; elemental germanium (Ge): 4.00%.
制备方法为:与实施例1制备方法相同。The preparation method is: the same as the preparation method of Example 1.
所述中温铝钎剂物相组分经XRD测定为以CsAlF4和Cs2GeF6为主相,钎剂熔化的固、液相线经DSC测定为432.5~438.4℃。The phase components of the medium-temperature aluminum flux are determined by XRD to be CsAlF 4 and Cs 2 GeF 6 as the main phases, and the solid and liquidus lines of the flux are determined to be 432.5-438.4° C. by DSC.
实施例3:Example 3:
本发明的钎焊铝及其合金用的低熔点中温铝钎剂组分以分析纯级的Al(OH)3粉末、CsCO3粉末、GeO2粉末和浓度10%氢氟酸溶液为制备原料,各元素总含量的质量百分比含量分别为:元素铝(Al):8.45%;元素铯(Cs):57.47%;元素氟(F):26.08%;元素锗(Ge):8.00%。The low-melting-point medium-temperature aluminum flux component used for brazing aluminum and alloys thereof of the present invention is to analyze pure grade Al(OH) Powder, CsCO Powder, GeO Powder and concentration 10 % hydrofluoric acid solution are raw materials for preparation, The mass percentages of the total content of each element are: elemental aluminum (Al): 8.45%; elemental cesium (Cs): 57.47%; elemental fluorine (F): 26.08%; elemental germanium (Ge): 8.00%.
制备方法为:与实施例1制备方法相同。The preparation method is: the same as the preparation method of Example 1.
所述中温铝钎剂物相组分经XRD测定为以CsAlF4和Cs2GeF6为主相,钎剂熔化的固、液相线经DSC测定为434.6~446.6℃。The phase components of the medium-temperature aluminum flux are determined by XRD to be CsAlF 4 and Cs 2 GeF 6 as the main phases, and the solid and liquidus lines of the flux are measured to be 434.6-446.6° C. by DSC.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610065943.1A CN105499827A (en) | 2016-02-01 | 2016-02-01 | Low-melting-point intermediate-temperate aluminum brazing flux for brazing aluminum and aluminum alloy, and preparation method of low-melting-point intermediate-temperate aluminum brazing flux |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610065943.1A CN105499827A (en) | 2016-02-01 | 2016-02-01 | Low-melting-point intermediate-temperate aluminum brazing flux for brazing aluminum and aluminum alloy, and preparation method of low-melting-point intermediate-temperate aluminum brazing flux |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105499827A true CN105499827A (en) | 2016-04-20 |
Family
ID=55708331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610065943.1A Pending CN105499827A (en) | 2016-02-01 | 2016-02-01 | Low-melting-point intermediate-temperate aluminum brazing flux for brazing aluminum and aluminum alloy, and preparation method of low-melting-point intermediate-temperate aluminum brazing flux |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105499827A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111039314A (en) * | 2019-12-27 | 2020-04-21 | 湖南有色郴州氟化学有限公司 | Preparation method of medium-temperature brazing material cesium fluoroaluminate |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101346209A (en) * | 2005-12-22 | 2009-01-14 | 凯密特尔有限责任公司 | Amorphous caesium aluminium fluoride complex, its production and use |
JP2009220174A (en) * | 2008-02-22 | 2009-10-01 | Nisshin Steel Co Ltd | Flux composition |
CN102513730A (en) * | 2012-01-04 | 2012-06-27 | 天津大学 | Aluminum-magnesium deoxidized welding wire used for carbon dioxide arc welding and preparation method thereof |
CN102935558A (en) * | 2012-12-04 | 2013-02-20 | 郑州机械研究所 | Self-brazing material for welding aluminum-copper member |
JP2013146755A (en) * | 2012-01-19 | 2013-08-01 | Sumitomo Light Metal Ind Ltd | Aluminum alloy brazing sheet and method for manufacturing the same, and method for brazing aluminum-made heat exchanger |
CN103612029A (en) * | 2013-10-25 | 2014-03-05 | 天津大学 | Intermediate-temperature aluminum brazing flux for brazing of high-magnesium aluminum alloy and preparation method |
WO2014128880A1 (en) * | 2013-02-21 | 2014-08-28 | 住友軽金属工業株式会社 | Aluminum alloy brazing sheet, method for producing same, and method for brazing heat exchanger formed of aluminum |
CN104191111A (en) * | 2014-08-15 | 2014-12-10 | 郑州机械研究所 | Aluminum-silicon seamless flux-cored wire containing germanium and hafnium and preparing method thereof |
-
2016
- 2016-02-01 CN CN201610065943.1A patent/CN105499827A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101346209A (en) * | 2005-12-22 | 2009-01-14 | 凯密特尔有限责任公司 | Amorphous caesium aluminium fluoride complex, its production and use |
JP2009220174A (en) * | 2008-02-22 | 2009-10-01 | Nisshin Steel Co Ltd | Flux composition |
CN102513730A (en) * | 2012-01-04 | 2012-06-27 | 天津大学 | Aluminum-magnesium deoxidized welding wire used for carbon dioxide arc welding and preparation method thereof |
JP2013146755A (en) * | 2012-01-19 | 2013-08-01 | Sumitomo Light Metal Ind Ltd | Aluminum alloy brazing sheet and method for manufacturing the same, and method for brazing aluminum-made heat exchanger |
CN102935558A (en) * | 2012-12-04 | 2013-02-20 | 郑州机械研究所 | Self-brazing material for welding aluminum-copper member |
WO2014128880A1 (en) * | 2013-02-21 | 2014-08-28 | 住友軽金属工業株式会社 | Aluminum alloy brazing sheet, method for producing same, and method for brazing heat exchanger formed of aluminum |
CN103612029A (en) * | 2013-10-25 | 2014-03-05 | 天津大学 | Intermediate-temperature aluminum brazing flux for brazing of high-magnesium aluminum alloy and preparation method |
CN104191111A (en) * | 2014-08-15 | 2014-12-10 | 郑州机械研究所 | Aluminum-silicon seamless flux-cored wire containing germanium and hafnium and preparing method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111039314A (en) * | 2019-12-27 | 2020-04-21 | 湖南有色郴州氟化学有限公司 | Preparation method of medium-temperature brazing material cesium fluoroaluminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101146645B (en) | Flux powder for brazing aluminum material and process for producing the flux powder | |
JPH03226396A (en) | Brazing flux | |
JPH0551398B2 (en) | ||
CN102717207B (en) | Medium-temperature non-corrosive aluminum brazing flux and preparation method thereof | |
CN114260613B (en) | Brazing flux for brazing aluminum and aluminum alloy and preparation method thereof | |
CN102423834A (en) | High-activity brazing flux suitable for stepped brazing of magnesium-containing aluminum alloy and preparation method thereof | |
CN101486137B (en) | Insoluble non-corrosion aluminum flux and preparation method thereof | |
JP2005512813A5 (en) | ||
CN104889605B (en) | A kind of flux for brazing magnesium and magnesium alloy and its application | |
CN102862002B (en) | Al-Si-Zn-Ge low-melting-point aluminum-based brazing filler metal and preparation method thereof | |
CN103170758A (en) | Aluminum base brazing filler metal including scandium and strontium and preparation method thereof | |
CN104708232A (en) | Composite brazing flux suitable for copper and aluminum dissimilar metal brazing | |
CN105499827A (en) | Low-melting-point intermediate-temperate aluminum brazing flux for brazing aluminum and aluminum alloy, and preparation method of low-melting-point intermediate-temperate aluminum brazing flux | |
CN103567656A (en) | Brazing material for aluminum alloy | |
CN100496868C (en) | Novel non-corrosion fluoride solder and preparation method | |
CN102642097A (en) | Low-silver lead-free solder alloy | |
CN105618961B (en) | A kind of caesium rubidium brazing flux containing zinc fluoroborate | |
CN112372177A (en) | High-wettability brazing filler metal and preparation method thereof | |
CN105142857B (en) | Solder flux composition and brazing sheet | |
CN106001999A (en) | Soldering flux used for soldering of rare earth magnesium alloy and preparation method | |
US20190099845A1 (en) | Low melting point potassium aluminum fluoride flux agent | |
CN108436324A (en) | A kind of medium temperature paste aluminium alloy brazing filler metal and preparation method thereof | |
CN103567588A (en) | Aluminum alloy brazing method | |
CN103567584A (en) | Aluminum alloy brazing method and brazing filler metal material | |
CN111039314A (en) | Preparation method of medium-temperature brazing material cesium fluoroaluminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160420 |
|
WD01 | Invention patent application deemed withdrawn after publication |