CN105490805A - 一种基于扩展卡尔曼滤波降低qkd系统误码率的系统及方法 - Google Patents

一种基于扩展卡尔曼滤波降低qkd系统误码率的系统及方法 Download PDF

Info

Publication number
CN105490805A
CN105490805A CN201510824790.XA CN201510824790A CN105490805A CN 105490805 A CN105490805 A CN 105490805A CN 201510824790 A CN201510824790 A CN 201510824790A CN 105490805 A CN105490805 A CN 105490805A
Authority
CN
China
Prior art keywords
photon
phase
quantum state
branch road
qkd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510824790.XA
Other languages
English (en)
Other versions
CN105490805B (zh
Inventor
韩子英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou Yinglie Intellectual Property Operation Co ltd
Original Assignee
Shanghai Feixun Data Communication Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Feixun Data Communication Technology Co Ltd filed Critical Shanghai Feixun Data Communication Technology Co Ltd
Priority to CN201510824790.XA priority Critical patent/CN105490805B/zh
Publication of CN105490805A publication Critical patent/CN105490805A/zh
Application granted granted Critical
Publication of CN105490805B publication Critical patent/CN105490805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法,采用扩展卡尔曼滤波算法来实时获取相位漂移参数值,利用相位与电压的关系,将最终的电压差通过反馈链路送达接收端的相位调制器,从而控制相位调制器相位的变化,达到实时的主动相位补偿。本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法减少了获取相位漂移参数的运算量和运行时间,加快了相位漂移参数曲线的收敛速度,实现了实时获取相位漂移参数,收敛速度快,效率高;提高了QKD系统的稳定性,降低了误码率;只采用数学方法就可求得相位漂移参数,不需要增加硬件和软件设置,且计算量小;实现了QKD系统的长距离传输。

Description

一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法
技术领域
本发明涉及量子通信的技术领域,特别是涉及一种基于扩展卡尔曼滤波降低量子密钥分发(QuantumKeyDistribution,QKD)系统误码率的方法及系统。
背景技术
量子通信以量子物理学与密码学为基础,结合海森堡测不准原理和不可克隆定理等基本特性,因其容量大、安全性高、对窃听行为可检测等优点为信息的安全传输提供了新的思路,成为一种新兴的通信技术。而对于量子通信的误码问题,主要有两个来源:一个是由于窃听者的窃听行为造成的;另一个是系统的不稳定性造成误码,属于量子密钥分发技术上的问题。
现有解决误码率的技术方案主要包括以下两种:
(1)首先在主动相位补偿的阶段,窃听者通过调节插入在长程光纤中相位调制器改变发送端发送的单光子波包之间的相位差,使发送者的四个工作点的量子态变成非标准BB84状态;其次在量子密钥分发阶段,窃听者对发送端发送给接收端的量子态进行截获测量并重发。但是,该方法主要是从窃听行为的安全性考虑,并没有解决相位漂移问题,且只采集了四个特征性的工作点,没有做到大量数据验证,结果的精准度不能得到保证。
(2)首先进行相位估计,利用求互相关方式计算相位漂移的角度;其次进行相位补偿,根据估计的相位漂移值,对数据进行相位补偿。但是,该方法用互相关性求相位漂移角度,每次至少需要计算完一组数据才可以得出相位差,实时性差,效率低,且运行时间长,导致精确度低,不适合进行长距离传输。
QKD系统是一种新兴的通信技术,已经广泛应用于军事、电子商务等领域。但QKD系统在信息传输过程中,容易受到外界环境的影响,尤其是相位漂移问题,严重影响系统的稳定性和抗干扰性,使得信息传输产生较大的误码率。
现有技术中,已有多种技术方案来解决QKD系统相位漂移的问题。如申请号为201410179045.X,发明名称为《一种基于单向量子密钥分发系统主动相位补偿的攻击方法》公开一种基于单向量子密钥分发系统主动相位补偿的攻击方法,包括两部分:第一部分,在主动相位补偿的阶段,Eve通过在量子信道中插入相位调制器,对其进行选择性相位调制,以改变Alice发送的量子态所携带的相位信息,使其变成非标准BB84状态;第二部分,在量子密钥分发阶段Eve做攻击,Eve截获Alice发送给Bob的量子态,并选择测量算子M0进行半正定算子POVM测量,在得到测量结果后,以α:β的比例随机的发送标准的BB84状态0和给Bob,其中α+β=1。再如,申请号为201410567665.0、发明名称为《一种量子密钥分发系统相位补偿方法》公开一种量子密钥分发系统相位补偿方法,包括步骤如下:步骤A:相位估计步骤,是指利用求互相关方式计算相位漂移的角度;步骤B:相位补偿步骤,是指根据步骤A所估计的相位漂移值,对数据进行相位补偿。
然而,上述现有的解决QKD系统相位漂移方案中,若采集的数据点不够,则没有说服力,而且会产生更大的误码率;若采集的数据点足够多,则计算量大,每次都需对一组数据进行计算结束,才可得出相位漂移值,导致得出相位漂移结果的时间长,实时性差,不能将结果实时反馈给系统,增大了系统的误差。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法,利用扩展卡尔曼滤波算法来实时获取相位漂移参数,利用相位与电压的关系,将最终的电压差通过反馈链路送达接收端相位调制器,从而控制相位调制器相位的变化,达到实时的主动相位补偿,实时性好,收敛速度快,适合于高精度要求的动态系统。
为实现上述目的及其他相关目的,本发明提供一种利用卡尔曼滤波降低QKD系统误码率的系统,包括发送端和接收端;所述发送端包括准单光子源生成器、第一相位调制器、第一偏振分束器和第二偏振分束器;所述准单光子源生成器用于生成准单光子源,所述第一偏振分束器用于将单光子脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第一相位调制器用于对第一光子支路的第一光量子态进行相位编码调制;所述第二偏振分束器用于将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;所述接收端包括第二相位调制器、第三偏振分束器、第四偏振分束器、第一单光子探测器、第二单光子探测器和扩展卡尔曼滤波模块;所述第三偏振分束器用于将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第二相位调制器用于对第二光子支路的第二光量子态进行相位编码调制;所述第四偏振分束器用于将第一光子支路的第一光量子态和第二光子支路的调制后的第二光量子态进行相干合成,并将输出的光子送入所述第一单光子探测器或所述第二单光子探测器;所述第一单光子探测器和所述第二单光子探测器用于探测输出的单光子数,从而得到QKD系统的测量值;所述扩展卡尔曼滤波模块用于根据对所述第一单光子探测器和所述第二单光子探测器输出的单光子数和所述第二相位调制器的调制电压进行实时采样,实时获取相位漂移参数,并反馈至所述第二相位调制器。
于本发明一实施例中,经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。
同时,本发明还提供一种基于扩展卡尔曼滤波降低QKD系统误码率的方法,包括以下步骤:
步骤S1、通过准单光子源生成器生成准单光子源;
步骤S2、通过第一偏振分束器将光脉冲序列分解为两个正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第一相位调制器对第一光子支路的第一光量子态进行相位编码调制;通过第二偏振分束器将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;
步骤S3、通过第三偏振分束器将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第二相位调制器对第二光子支路的第二光量子态进行相位编码调制;通过第四偏振分束器将第一光子支路的第一光量子态和第二光子支路调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器或第二单光子探测器;
步骤S4、以至少一个调制周期的相位范围对第二相位调制器的调制电压进行逐点扫描,从最小电压一直扫描到最大电压,在扫描的每个调制电压上都进行N个光脉冲的计数累计,并记录该调制电压点对应的光子累计数值;当完成一个调制周期上的所有电压点的扫描后,得到一组电压单光子数;
步骤S5、根据电压单光子数和QKD系统的干涉输出方程得到系统方程和量测方程,再利用扩展卡尔曼滤波算法进行计算,以得到某时刻的相位漂移参数;
步骤S6、若则将相位漂移参数值通过反馈链路送达接收端的第二相位调制器,以进行相位漂移的实时主动补偿;若不作处理。
于本发明一实施例中,所述步骤S2中,设定第一相位调制器的调制电压值固定为0V,对应的相位为0。
于本发明一实施例中,所述步骤S3中,经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。
于本发明一实施例中,所述步骤S5中,QKD系统的干涉输出方程为:
其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值。
于本发明一实施例中,所述步骤S5中,
所述系统方程为:
所述量测方程:
其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值,为相位漂移参数,V为调制电压。
于本发明一实施例中,所述步骤S5中,进行扩展卡尔曼滤波计算时,需对系统方程和量测方程进行线性化,以得到系统矩阵和量测矩阵;
所述系统矩阵为 F = ∂ f ∂ x = 1 0 0 0 1 0 0 0 1
所述量测矩阵为
其中:
于本发明一实施例中,所述步骤S5中,进行扩展卡尔曼滤波计算时,根据系统方程、量测方程、系统矩阵和量测矩阵,利用如下公式计算实时相位漂移参数
预测方程: x ^ ( k | k - 1 ) = F k x ^ k - 1
预测协方差方程: Q ( k | k - 1 ) = F K Q ( k | k - 1 ) F k T
卡尔曼增益: K k = Q ( k | k - 1 ) H k T [ H K Q ( k | k - 1 ) H k T + R k ] - 1
滤波方程: x ^ ( k | k ) = x ^ ( k | k - 1 ) + K k [ z k - H K x ^ ( k | k - 1 ) ]
滤波协方差:Q(k|k)=[I-KkHk]Q(k|k-1)[I-KkHk]T+KkRkKk T
于本发明一实施例中,所述步骤S6中,进行相位漂移补偿时,通过控制第二相位调制器上的调制电压来获取相位变化值其中:
其中,Vhalf为第二相位调制器的半波电压,Vi为外加调制电压。
如上所述,本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法,具有以下有益效果:
(1)减少了获取相位漂移参数的运算量和运行时间,加快了相位漂移参数曲线的收敛速度,实现了实时获取相位漂移参数,收敛速度快,效率高;
(2)提高了QKD系统的稳定性,降低了误码率;
(3)只采用数学方法就可求得相位漂移参数,不需要增加硬件和软件设置,且计算量小;
(4)实现了QKD系统的长距离传输。
附图说明
图1显示为本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统的通信模型结构示意图;
图2显示为本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统的结构示意图;
图3显示为本发明的利用卡尔曼滤波降低QKD系统误码率的方法的流程图;
图4显示为扩展卡尔曼滤波的原理示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法采用扩展卡尔曼滤波算法来实时获取相位漂移参数值,利用相位与电压的关系,将最终的电压差通过反馈链路送达接收端的相位调制器,从而控制相位调制器相位的变化,达到实时的主动相位补偿。
卡尔曼滤波算法是一个自回归过程,给定初始值后,就可以根据QKD系统的测量值实时的得出相位漂移参数,且运行时间短,精确度高,对效率也有很大提升,通过反馈链路实时反馈给对应的相位调制器,从而降低系统的误码率,增强系统稳定性。
图1所示即为本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统的通信模型示意图。其中,信源即信息发送方,表示用户或第三方所产生的随机量子比特集合;前处理系统包含产生单光子源的量子态发生器和将消息变换成量子比特的量子调制器;信道是传输量子信号的量子信道与传输附加信息的经典信道组成的混合信道;后处理系统包含将量子比特转换为消息的量子译码器和量子态检测器;卡尔曼滤波算法用于实时获取相位漂移参数,将相位漂移结果反馈给接收端的控制系统,信宿为消息的接收者。
参照图2,本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统包括发送端和接收端。
发送端包括由半导体激光器LD和可调光衰减器A组成的准单光子源生成器、第一相位调制器PM1、第一偏振分束器PBS2和第二偏振分束器PBS2。由半导体激光器LD和可调光衰减器A组成的准单光子源生成器用于生成准单光子源,第一偏振分束器用于将单光子脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路L1和第二光子支路L2;第一相位调制器PM1用于对第一光子支路L1的第一光量子态进行相位编码调制;第二偏振分束器PBS2用于将第一光子支路L1的调制后的第一光量子态和第二光子支路L2的第二光量子态相干合成为脉冲序列,并传送至光纤传输。
接收端包括第二相位调制器PM2、第三偏振分束器PBS3、第四偏振分束器PBS4、第一单光子探测器D1、第二单光子探测器D2和扩展卡尔曼滤波模块。第三偏振分束器PBS3用于将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路L1和第二光子支路L2;第二相位调制器PM2用于对第二光子支路L2的第二光量子态进行相位编码调制;第四偏振分束器PBS4用于将第一光子支路L1的第一光量子态和第二光子支路L2调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器D1或第二单光子探测器D2;第一单光子探测器D1和第二单光子探测器D2用于探测输出的单光子数,从而得到QKD系统的测量值;扩展卡尔曼滤波模块用于对第一单光子探测器D1和第二单光子探测器D2输出的单光子数和第二相位调制器的调制电压进行实时采样,实时获取相位漂移参数,并反馈至第二相位调制器PM2,以降低QKD系统误码率。
需要说明的是,经过第四偏振分束器PBS4相干合成后,两个光量子态之间将产生相位差。此相位差将决定输出的光子是进入第一单光子探测器D1还是第二单光子探测器D2中。若相位差在0~π之间,则输出的光子进入第一单光子探测器D1,若相位差在-π~0之间,则输出的光子进入第二单光子探测器D2。
在不使用扩展卡尔曼滤波时,QKD系统的工作流程如下:首先,发送端Alice通过半导体激光器LD和可调光衰减器A产生准单光子源,通过偏振分束器将光脉冲序列分解为两个正交的单光子支路,即支路1和支路2;接着,支路1通过第一相位调制器PM1进行调制,即用调制电压脉冲将编码序列加载到这条支路上,则第一相位调制器PM1将相位增加这由发送端控制;另一条支路2则不需要调制;然后,支路1和支路2通过光纤传输到接收端Bob后,支路1不再进行调制,支路2通过第二相位调制器PM2进行调制,第二相位调制器PM2将相位增加这由接收端控制;最后将两条支路进行相干合成,将输出的光子打在第一单光子探测器D1或第二单光子探测器D2上。
也就是说,在接收端Bob处,相互干涉支路的路径分别为:支路1:LD—A—PBS1—L1—PM1—PBS2—光纤—PBS3—M2—PBS4;光路2:LD—A—PBS1—M1—PBS2—光纤—PBS3—L2—PM2—PBS4,以上是一次单光子密钥分发的过程。
在理想情况下,只需发送端和接收端的相位调制器PM1、PM2相位差和单光子探测器D1、D2最终输出的单光子数即得到干涉结果。但在实际情况下,外部环境温度的变化,会导致光纤长度产生变化,引起单光子干涉仪臂长产生不对称。此时两路正交偏振的光子脉冲走的路程也不再相同,QKD系统不可避免会发生扰动,产生新的相位差。QKD系统的干涉对比度随之降低,导致系统稳定性变差,引起误码。这个额外的相位差即称为相位漂移。
因此,为改善相位漂移,QKD系统中通过扩展卡尔曼滤波模块进行数据采样,实时获取相位漂移参数,并反馈至第二相位调制器,以对QKD系统进行补偿,从而克服相位漂移带来的误差。
扩展卡尔曼滤波适用于对实时性要求较高的系统,分为时间更新和量测更新两个阶段,主要由五个核心方程实现。本发明将扩展卡尔曼滤波运用于QKD系统,进行采样完成后,可根据扩展卡尔曼滤波递推算法的特性,实时的获取相位漂移参数,以克服QKD系统相位漂移造成的误码问题。
参照图3,本发明的利用卡尔曼滤波降低QKD系统误码率的方法包括下步骤:
步骤S1、通过由半导体激光器和可调光衰减器组成的准单光子源生成器生成准单光子源。
具体地,所生成的准单光子源即为QKD系统的信源部分。
步骤S2、通过第一偏振分束器将光脉冲序列分解为两个正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第一相位调制器对第一光子支路的第一光量子态进行相位编码调制;通过第二偏振分束器将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输。
其中,采用第一相位调制器进行调制时,用调制电压脉冲将编码序列加载到第一光子支路上,将发送端的第一相位调制器PM1调制电压固定为V1,此时对应相位作为接收端的参考相位,并设定V1=0,需要说明的是,相位偏移量是这是一个过程量,是由扫描点处相位减去初始相位得到的,而相位是一个参考相位,就是上述的初始相位。将设置为0V,可以减少计算,使扫描点后数据经卡尔曼滤波过得到的相位值就是我们要求得相位偏移参数是
步骤S3、通过第三偏振分束器将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第二相位调制器对第二光子支路的第二光量子态进行相位编码调制;通过第四偏振分束器将第一光子支路的第一光量子态和第二光子支路调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器或第二单光子探测器。
其中,在光纤传输过程中,由于环境变化导致单光子干涉仪的臂长不对称,故出现了噪声干扰。
步骤S4、以至少一个调制周期的相位范围对第二相位调制器的调制电压进行逐点扫描,从最小电压Nmin一直扫描到最大电压Nmax,在扫描的每个调制电压Vi上都进行N个光脉冲的计数累计,并记录该调制电压点对应的光子累计数值,;当完成一个调制周期上的所有电压点的扫描后,得到一组电压单光子数。
步骤S5、根据电压单光子数和QKD系统的干涉输出方程进行数学建模得到系统方程和量测方程,再利用扩展卡尔曼滤波算法进行计算,以得到某时刻的相位漂移参数。
具体地,在相位调制器PM1、PM2产生相位差和环境影响产生的相位漂移共同作用下,得出如下的干涉输出结果:
其中,Nout是单光子输出计数值,Nmax是周期(0~2π)内最大单光子输出值,Nmin是周期(0~2π)内最小单光子输出值。公式(1)即为干涉输出方程。
通过控制相位调制器上的调制电压来获取相位变化值二者关系为:
其中,Vhalf为相位调制器半波电压,Vi为外加调制电压。
相位漂移导致的系统误码率表示为:
可见,误码率由Nmax、Nmin共同决定。
因此,基于QKD系统,由于干涉输出方程已知,只需对其N个随机调制电压的相位点进行扫描,得出每个点对应的单光子输出计数值和相位调制器的调制电压V,即可得出扩展卡尔曼滤波算法需要的测量值,再进行数学建模以得到系统方程和量测方程,从而求得扩展卡尔曼滤波算法过程中需要的所有条件。因为扩展卡尔曼是递推算法,所以给定初值就可用软件编程,实时获取相位漂移参数,且其运行时间可达到微秒级别。
如图4所示,卡尔曼滤波是一个自回归的估计算法,主要分为两个阶段:时间更新(预测)和量测更新(修正)。其中,Xk为系统状态,Zk为已知的量测序列,Vk为均值为0,Rk是量测噪声方差。对于此QKD系统而言,有三个待估计值,分别为Nmax、Nmin则系统状态向量为一个矩阵,
图4中为K-1时刻的状态估计值,通过时间更新阶段后,得到K-1时刻对K时刻的预测估计值,即图4中的Zk为量测状态向量Nout,而对应的量测控制量为调制电压V。
因系统为动态系统,且为逐点进行扫描,则对其预测过程为当前时刻的值等于前一时刻的值,首先对其进行建模过程:
系统方程f为:
量测方程h为:
对于此系统而言:系统状态向量为:量测状态向量为:Z=Nout,量测控制量为:V
因其量测方程为非线性方程,首先对其线性化,即在K-1时刻对Nout进行泰勒级数展开,并取其前两项,可得到系统矩阵F和量测矩阵H。
系统Jacobian矩阵 F = ∂ f ∂ x = 1 0 0 0 1 0 0 0 1 - - - ( 6 )
量测Jacobian矩阵
其中:
将已知采样数据值结合公式4、5、6、7代入扩展卡尔曼滤波的5个核心方程(8)-(12):
预测方程: x ^ ( k | k - 1 ) = F k x ^ k - 1 - - - ( 8 )
预测协方差方程: Q ( k | k - 1 ) = F K Q ( k | k - 1 ) F k T - - - ( 9 )
卡尔曼增益: K k = Q ( k | k - 1 ) H k T [ H K Q ( k | k - 1 ) H k T + R k ] - 1 - - - ( 10 )
滤波方程: x ^ ( k | k ) = x ^ ( k | k - 1 ) + K k [ z k - H K x ^ ( k | k - 1 ) ] - - - ( 11 )
滤波协方差:Q(k|k)=[I-KkHk]Q(k|k-1)[I-KkHk]T+KkRkKk T(12)
可得出最终的值,将值通过反馈链路送达接收端的第二相位调制器PM2,从而控制相位调制器相位的变化,达到实时相位补偿,从而降低系统误码率。
步骤S6、若则将相位漂移参数值φh通过反馈链路送达接收端的第二相位调制器PM2,以进行相位漂移的实时主动补偿;若不作处理。
具体地,若则说明有相位漂移问题的存在,需将相位漂移参数值通过反馈链路送达接收端的第二相位调制器PM2,经电压控制第二相位调制器PM2及其半波电压来调制相位变化,完成实时主动补偿,从而降低系统误码率。若则说明光纤传输过程中未出现相位漂移问题。
综上所述,本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法减少了获取相位漂移参数的运算量和运行时间,加快了相位漂移参数曲线的收敛速度,实现了实时获取相位漂移参数,收敛速度快,效率高;提高了QKD系统的稳定性,降低了误码率;只采用数学方法就可求得相位漂移参数,不需要增加硬件和软件设置,且计算量小;实现了QKD系统的长距离传输。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种基于扩展卡尔曼滤波降低QKD系统误码率的系统,其特征在于:包括发送端和接收端;
所述发送端包括准单光子源生成器、第一相位调制器、第一偏振分束器和第二偏振分束器;所述准单光子源生成器用于生成准单光子源,所述第一偏振分束器用于将单光子脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第一相位调制器用于对第一光子支路的第一光量子态进行相位编码调制;所述第二偏振分束器用于将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;
所述接收端包括第二相位调制器、第三偏振分束器、第四偏振分束器、第一单光子探测器、第二单光子探测器和扩展卡尔曼滤波模块;所述第三偏振分束器用于将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第二相位调制器用于对第二光子支路的第二光量子态进行相位编码调制;所述第四偏振分束器用于将第一光子支路的第一光量子态和第二光子支路的调制后的第二光量子态进行相干合成,并将输出的光子送入所述第一单光子探测器或所述第二单光子探测器;所述第一单光子探测器和所述第二单光子探测器用于探测输出的单光子数,从而得到QKD系统的测量值;所述扩展卡尔曼滤波模块用于根据对所述第一单光子探测器和所述第二单光子探测器输出的单光子数和所述第二相位调制器的调制电压进行实时采样,实时获取相位漂移参数,并反馈至所述第二相位调制器。
2.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的系统,其特征在于:经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。
3.一种基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:包括以下步骤:
步骤S1、通过准单光子源生成器生成准单光子源;
步骤S2、通过第一偏振分束器将光脉冲序列分解为两个正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第一相位调制器对第一光子支路的第一光量子态进行相位编码调制;通过第二偏振分束器将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;
步骤S3、通过第三偏振分束器将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第二相位调制器对第二光子支路的第二光量子态进行相位编码调制;通过第四偏振分束器将第一光子支路的第一光量子态和第二光子支路调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器或第二单光子探测器;
步骤S4、以至少一个调制周期的相位范围对第二相位调制器的调制电压进行逐点扫描,从最小电压一直扫描到最大电压,在扫描的每个调制电压上都进行N个光脉冲的计数累计,并记录该调制电压点对应的光子累计数值;当完成一个调制周期上的所有电压点的扫描后,得到一组电压单光子数;
步骤S5、根据电压单光子数和QKD系统的干涉输出方程得到系统方程和量测方程,再利用扩展卡尔曼滤波算法进行计算,以得到某时刻的相位漂移参数;
步骤S6、若则将相位漂移参数值通过反馈链路送达接收端的第二相位调制器,以进行相位漂移的实时主动补偿;若不作处理。
4.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S2中,设定第一相位调制器的调制电压值固定为0V,对应的相位为0。
5.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S3中,经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。
6.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S5中,QKD系统的干涉输出方程为:
其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值。
7.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S5中,
所述系统方程为:
所述量测方程:
其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值,为相位漂移参数,V为调制电压。
8.根据权利要求7所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S5中,进行扩展卡尔曼滤波计算时,需对系统方程和量测方程进行线性化,以得到系统矩阵和量测矩阵;
所述系统矩阵为 F = ∂ f ∂ x = 1 0 0 0 1 0 0 0 1
所述量测矩阵为
其中:
9.根据权利要求8所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S5中,进行扩展卡尔曼滤波计算时,根据系统方程、量测方程、系统矩阵和量测矩阵,利用如下公式计算实时相位漂移参数
预测方程: x ^ ( k | k - 1 ) = F k x ^ k - 1
预测协方差方程: Q ( k | k - 1 ) = F K Q ( k | k - 1 ) F k T
卡尔曼增益: K k = Q ( k | k - 1 ) H k T [ H K Q ( k | k - 1 ) H k T + R k ] - 1
滤波方程: x ^ ( k | k ) = x ^ ( k | k - 1 ) + K k [ z k - H K x ^ ( k | k - 1 ) ]
滤波协方差: Q ( k | k ) = [ I - K k H k ] Q ( k | k - 1 ) [ I - K k H k ] T + K k R k K k T .
10.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S6中,进行相位漂移补偿时,通过控制第二相位调制器上的调制电压来获取相位变化值其中:
其中,Vhalf为第二相位调制器的半波电压,Vi为外加调制电压。
CN201510824790.XA 2015-11-24 2015-11-24 一种基于扩展卡尔曼滤波降低qkd系统误码率的系统及方法 Active CN105490805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510824790.XA CN105490805B (zh) 2015-11-24 2015-11-24 一种基于扩展卡尔曼滤波降低qkd系统误码率的系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510824790.XA CN105490805B (zh) 2015-11-24 2015-11-24 一种基于扩展卡尔曼滤波降低qkd系统误码率的系统及方法

Publications (2)

Publication Number Publication Date
CN105490805A true CN105490805A (zh) 2016-04-13
CN105490805B CN105490805B (zh) 2018-09-28

Family

ID=55677553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510824790.XA Active CN105490805B (zh) 2015-11-24 2015-11-24 一种基于扩展卡尔曼滤波降低qkd系统误码率的系统及方法

Country Status (1)

Country Link
CN (1) CN105490805B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540284A (zh) * 2018-06-01 2018-09-14 北京大学 一种连续变量量子密钥分发后处理外差探测相位补偿方法
CN108667527A (zh) * 2018-04-11 2018-10-16 中国人民解放军战略支援部队信息工程大学 一种单光子探测器探测效率失配度的检测装置及方法
CN108737089A (zh) * 2018-04-23 2018-11-02 全球能源互联网研究院有限公司 量子通信系统发送端的单光子水平检测系统、方法及装置
CN110445610A (zh) * 2019-08-26 2019-11-12 上海循态信息科技有限公司 连续变量量子密钥分发系统的偏振追踪方法、系统及介质
CN111082938A (zh) * 2020-03-25 2020-04-28 北京中创为南京量子通信技术有限公司 一种提高量子密钥分发系统成码率的方法及装置
WO2020155905A1 (zh) * 2019-02-01 2020-08-06 华为技术有限公司 一种量子通信方法、装置及系统
WO2020238224A1 (zh) * 2019-05-31 2020-12-03 南京邮电大学 一种基于机器学习的量子通信系统的主动反馈控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868520A (zh) * 2012-08-28 2013-01-09 上海交通大学 连续变量量子密钥分发系统及其相位补偿方法
US20130315211A1 (en) * 2012-05-25 2013-11-28 University Of Southern California Airsync: enabling distributed multiuser mimo with full multiplexing gain
CN103929300A (zh) * 2014-04-29 2014-07-16 华南师范大学 一种基于单向量子密钥分发系统主动相位补偿的攻击方法
CN104301101A (zh) * 2014-10-22 2015-01-21 上海交通大学 一种量子密钥分发系统相位补偿方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315211A1 (en) * 2012-05-25 2013-11-28 University Of Southern California Airsync: enabling distributed multiuser mimo with full multiplexing gain
CN102868520A (zh) * 2012-08-28 2013-01-09 上海交通大学 连续变量量子密钥分发系统及其相位补偿方法
CN103929300A (zh) * 2014-04-29 2014-07-16 华南师范大学 一种基于单向量子密钥分发系统主动相位补偿的攻击方法
CN104301101A (zh) * 2014-10-22 2015-01-21 上海交通大学 一种量子密钥分发系统相位补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘佳: "相位编码QKD中的相位补偿方法研究", 《中国优秀硕士学位论文全文库信息科技辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667527A (zh) * 2018-04-11 2018-10-16 中国人民解放军战略支援部队信息工程大学 一种单光子探测器探测效率失配度的检测装置及方法
CN108737089A (zh) * 2018-04-23 2018-11-02 全球能源互联网研究院有限公司 量子通信系统发送端的单光子水平检测系统、方法及装置
CN108540284A (zh) * 2018-06-01 2018-09-14 北京大学 一种连续变量量子密钥分发后处理外差探测相位补偿方法
CN108540284B (zh) * 2018-06-01 2020-11-20 北京大学 一种连续变量量子密钥分发后处理外差探测相位补偿方法
WO2020155905A1 (zh) * 2019-02-01 2020-08-06 华为技术有限公司 一种量子通信方法、装置及系统
US11476950B2 (en) 2019-02-01 2022-10-18 Huawei Technologies Co., Ltd. Quantum communication method, apparatus, and system
WO2020238224A1 (zh) * 2019-05-31 2020-12-03 南京邮电大学 一种基于机器学习的量子通信系统的主动反馈控制方法
US11817911B2 (en) 2019-05-31 2023-11-14 Nanjing University Of Posts And Telecommunications Active feedback control method for quantum communication system based on machine learning
CN110445610A (zh) * 2019-08-26 2019-11-12 上海循态信息科技有限公司 连续变量量子密钥分发系统的偏振追踪方法、系统及介质
CN110445610B (zh) * 2019-08-26 2021-11-30 上海循态量子科技有限公司 连续变量量子密钥分发系统的偏振追踪方法、系统及介质
CN111082938A (zh) * 2020-03-25 2020-04-28 北京中创为南京量子通信技术有限公司 一种提高量子密钥分发系统成码率的方法及装置

Also Published As

Publication number Publication date
CN105490805B (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN105490805A (zh) 一种基于扩展卡尔曼滤波降低qkd系统误码率的系统及方法
US20220182152A1 (en) Active feedback control method for quantum communication system based on machine learning
CN103780378B (zh) 一种连续变量量子密钥分配系统侦听方法
CN102916807B (zh) 连续变量量子密钥分发系统的偏振补偿实现方法
CN102868520B (zh) 连续变量量子密钥分发系统及其相位补偿方法
CN106254071B (zh) 一种量子密钥分发的实时相位补偿系统和方法
CN107508668B (zh) 连续变量量子密钥分发关键参数实时监控方法
CN104301101A (zh) 一种量子密钥分发系统相位补偿方法
CN107872316A (zh) 一种改进的基于衰减激光光源的被动式诱骗态qkd系统
CN112887091A (zh) 一种本地本振的四态连续变量量子密钥分发方法及系统
Seike et al. Fork rate-based analysis of the longest chain growth time interval of a pow blockchain
Marshall et al. Device-independent quantum cryptography for continuous variables
CN114422119A (zh) 基于随机调制实现测量样本去相关的大气光信道密钥提取方法
CN104407485A (zh) 一种基于角位置纠缠的量子关联成像方法
US11989080B2 (en) Quantum bit error rate minimization method
CN112887092A (zh) 一种本地本振的四态量子密钥分发方法及系统
Shahverdiev et al. Chaos synchronization regimes in multiple-time-delay semiconductor lasers
Yamamori et al. Experimental demonstration of intensity-modulation/direct-detection secret key distribution
CN113259104B (zh) 一种高抗噪性四态调制零差测量量子密钥分发方法和系统
CN111970287B (zh) 往返式连续变量量子密钥分配噪声补偿方法及其系统
Lovic et al. Quantified effects of the laser-seeding attack in quantum key distribution
Vukics et al. Nonideal teleportation in coherent-state basis
Holloway et al. Optimal pair-generation rate for entanglement-based quantum key distribution
Han et al. Practical decoy-state quantum random number generator with weak coherent sources
CN114511070B (zh) 一种适用于双场量子密钥分发系统的零相位电压估计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201216

Address after: 313105 Jincun Village, Lushan Township, Changxing County, Huzhou City, Zhejiang Province

Patentee after: Changxing Lushan golden Heron Incubator Co.,Ltd.

Address before: 201616 No. 3666 Sixian Road, Songjiang District, Shanghai

Patentee before: Phicomm (Shanghai) Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230105

Address after: 313000 room 1019, Xintiandi commercial office, Yishan street, Wuxing District, Huzhou, Zhejiang, China

Patentee after: Huzhou YingLie Intellectual Property Operation Co.,Ltd.

Address before: 313105 Jincun Village, Lushan Township, Changxing County, Huzhou City, Zhejiang Province

Patentee before: Changxing Lushan golden Heron Incubator Co.,Ltd.