CN105490572B - A kind of neutral balance strategy process based on dynamic control parameter - Google Patents

A kind of neutral balance strategy process based on dynamic control parameter Download PDF

Info

Publication number
CN105490572B
CN105490572B CN201510838853.7A CN201510838853A CN105490572B CN 105490572 B CN105490572 B CN 105490572B CN 201510838853 A CN201510838853 A CN 201510838853A CN 105490572 B CN105490572 B CN 105490572B
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510838853.7A
Other languages
Chinese (zh)
Other versions
CN105490572A (en
Inventor
易灵芝
陈宇
黄鹤
刘仲范
林舒
任旭亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201510838853.7A priority Critical patent/CN105490572B/en
Publication of CN105490572A publication Critical patent/CN105490572A/en
Application granted granted Critical
Publication of CN105490572B publication Critical patent/CN105490572B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention discloses a kind of harmonic wave observer algorithm of the neutral balance strategy applied to distributed new in grid-connected.It comprises the following steps:Inversion output capacitance voltage u is measured by voltage-current sensorCInput capacitance voltage Uc1,Uc2With output current iout;By uCIt is passed through harmonic voltage observation module;Harmonic voltage is observed into module results and iLInput neutral point voltage balance module obtains dynamic control parameterλ;WillλGoing out to input SVPWM modules control control power circuit makes neutral point voltage balance.The technical effects of the invention are that:It has studied a kind of single-phase full bridge Conergy NPC neutral balance strategies of the harmonic wave observer algorithm theoretical based on Luenberger state observations.Reduce by an inductive current sensor, cost reduces.Inverter side electric current can be accurately estimated in real time, solve single-phase full bridge ConergyNPC midpoint potential imbalance problems.

Description

dynamic control parameter-based midpoint balance strategy method
Technical Field
The invention relates to a harmonic observer algorithm applied to a midpoint balance strategy in distributed new energy grid connection, in particular to the midpoint balance strategy and the harmonic observer algorithm.
Background
The three-level inverter (NPC) has the advantages of low output voltage harmonic content, small EMI (electro-magnetic interference), small switching loss, small filter inductance and the like. Since the conventional diode-type NPC uses a clamp diode, loss and cost increase; the loss degrees of the inner and outer switching tubes of the single-phase bridge arm are different, the heating of devices is not uniform, the integration and miniaturization are difficult, and the single-phase bridge arm is not suitable for low-voltage, low-power, high-efficiency and low-cost occasions of distributed energy. In single-phase grid-connected application, power calculation and current loop control are realized on a grid side and an inverter side through current sensors, and cost is increased and reliability is influenced by excessive sensors. According to the node current law, the information of the inverter side current is synthesized by the network side current and the filter capacitor current, harmonic information in the filter capacitor is obtained, and the inverter side current can be estimated.
Disclosure of Invention
In order to solve the problems of frequency spectrum leakage and barrier effect existing in a single harmonic component fast Fourier transform algorithm, the real-time response performance is poor, the accuracy requirements of a Kelman filter and a least square algorithm on a mathematical model are high, and the calculated amount is large. The improved digital phase-locked loop needs to be stabilized through a plurality of periodic phase-locked loops, dynamic performance is affected, and the like, and a single-phase full-bridge Conergy NPC neutral-point balance strategy based on dynamic control parameters is researched; and then, a harmonic observer algorithm based on a Luenberger state observation theory is introduced in detail, the current at the side of the inverter is accurately estimated in real time, and the harmonic observer algorithm is used for solving the problem of neutral point potential imbalance of the single-phase full-bridge ConergyNPC.
The technical scheme for solving the technical problems is as follows: measuring inversion output capacitance voltage U by voltage and current sensorCInput capacitor voltage Uc1,Uc2And an output current ioutWill U isCThe harmonic voltage observation module is introduced to obtain output voltage Ud, and the output voltages Ud and i of the harmonic voltage observation module are usedLObtaining dynamic control parameters by an input midpoint voltage balancing moduleλAnd controlling the power circuit by the control parameter lambda through a single-phase SVPWM (space vector pulse width modulation) strategy so as to realize midpoint voltage balance.
The invention has the technical effects that: a single-phase full-bridge Conergy NPC midpoint balance strategy based on a harmonic observer algorithm of a Luenberger state observation theory is researched. And one inductive current sensor is omitted, so that the cost is reduced. The inverter side current can be accurately estimated in real time, and the problem of point potential imbalance of the single-phase full-bridge ConergyNPC is solved.
Drawings
Fig. 1 is a simplified single-phase full-bridge energy NPC control model according to the present invention.
Fig. 2 is a single-phase full-bridge energy NPC switching model.
FIG. 3 is a drawing of a division of the α - β coordinate system.
Fig. 4 shows the SVPWM synthesis rule.
Detailed Description
The invention will be described in further detail below with reference to the accompanying drawings: as shown in FIG. 1, the output capacitor voltage U is first sampledCInput capacitor voltage Uc1,Uc2And an output current ioutIs a step of;
SVPWM modulation strategy: defining the switching vector as (A) as shown in FIG. 2S a, S b) Which are distributed in 5 fixed positions on α coordinate axes of α - β coordinate system, and the whole coordinate system is divided into 4 regions (see fig. 3), whereinV refFor the inverter input voltage reference vector, the phase angle is theta, and the dashed circle representsV refA trajectory along a counterclockwise rotation within the α - β coordinate system;V inis composed ofV refProjection on α coordinate axis (see FIG. 4), in order to reduce fluctuation of midpoint potential, switching vectors (1,0) and (0, -1) have the same action time, switching vectors (0,1) and (-1,0) have the same action time, and S is prohibited in the same switching periodxSwitching directly between 1 and-1. The SVPWM strategy adopts a 5-vector synthesis method, and the vector time corresponding to the 5-vector synthesis sequence isThe vector synthesis is accomplished by the switching function in table 1.
In practical application, balance capacitor(Uc1、Uc2Voltage of dc side capacitor C1, C2), midpoint potential fluctuationThe switching function and the output phase current of the two bridge arms are determined:
(1)
the switching vectors (1,0) and (0, -1) are a pair of complementary vectors which have a sum of the times of action T in a switching cyclea. Let T be the acting time of vectors (1,0) and (0,1)a+=TaAnd/2, setting the action time of vectors (0, -1) and (-1,0) as Ta-=Ta/2. According to the characteristics of 4 switching vectors in the table 1 and the formula (1), dynamic control parameters are introducedλAnd neutral point potential balance is realized. The relation between the action time and the switching vector is as follows:
(2)
reference value for fluctuation of midpoint potentialSubstituting equation (2) for equation (1) to estimate T in the next switching periodaTime allocation of (2):
(3)
samplingC 1C 2Upper voltage and inverter side output currenti aCan accurately estimateλ
(4)
Will be provided withλThe parameter is substituted into the formula (2), and the unbalance of the midpoint potential at the moment is compensated through single-phase SVPWM modulation.
The estimation of the dynamic control parameter lambda needs to obtain the current i of the output side of the inverter in real timeaNumerical values. In FIG. 1, ia(t) can be expressed as:
(5)
in the formula (5)Can not be directly obtained, a harmonic observer algorithm is designed in the text, the harmonic information in each order in the input signal is observed in real time, the orthogonal signal of each harmonic is generated at the same time, and i is finisheda(t) observation.
When the inverter works in a steady state, the voltage u of the output capacitorc(t) can be decomposed into the following formula (6) by Fourier series, wherein ucm(t) represents m times of fundamental waveIs given (m =0,1,2,3, …)),
amExpressed as magnitude of component signal
(6)。
According to the characteristics of the signal to be observed, the spatial state expression of ucm (t) is set as the formula
(7) Xm (t) is a state vector, where xm1(t) = ucm (t),(ii) a ym (t) is an output value, the space vector model of ucm (t) meets the visual condition, Am is a system matrix, Cm is an output matrix,
(7)
discretizing the formula (7) according to a formula (8) to obtain a discrete model ucm (kT) of ucm (T), wherein the formula (9) is shown, and the sampling period is T.
(8)
(9)。
According to the formulas (5) and (9), uc (kT) can be formed by overlapping ucm (kT) models, the spatial expression of the uc (kT) models is shown as a formula (10), x (kT) is a state vector and consists of N xm (kT), and the size of the state vector is shown as(ii) a y (kT) is an output value; ad a system matrix of uc (kT) of sizeC is an output matrix of size
(10)。
According to the observer design principle, the corresponding observer of equation (6)The expression of the spatial state is shown as formula (11),is a feedback matrix;is a state estimate of xm (kt),as an estimate of ucm (kt),is an estimate of the ucm (kT) quadrature value;is an output value
(11)。
Discrete observer for input signal uc (t) according to design idea of progressive observationDesigned as a closed-loop observer of which N areSub-modules for estimation of harmonics, feedback values thereofHarmonic waves in the input signalThe sum of the estimated values is then calculated,is defined as formula (12). In the formulaFor the feedback matrix, it is composed of NComposition is carried out;a state estimate of x (kT);as an estimate of the input value uc (kT)
(12)。
Wherein,to progressive errorIs shown asInA progressive speed approaching ucm (t); according to the pole arrangement theory, to satisfyThe ideal pole of the characteristic equation is defined asWhereinFor the distance of the ideal pole from the center circle of the z-domainThe parameters of (3) adjust the convergence speed, observation bandwidth and precision of the observer.Is the equation (13)
(13)
The characteristic equation of the formula (15) in the Z domain is the formula (14), where E isZ isThe number of z is 2N,(14)
the desired characteristic polynomial is defined as:
(15)
the coefficients of equation (14) and equation (15) are equal, and a matrix is determinedThe parameter (c) of (c).
TABLE 15 vector-synthesized single-phase SVPWM strategy
Table1five vector single-phase SVPWM strategy
Description of the tables:
region 1: dividing rules:
the synthesis sequence is as follows:
the synthesis time is as follows:
region 2: dividing rules:
the synthesis sequence is as follows:
the synthesis time is as follows:
region 3: dividing rules:
the synthesis sequence is as follows:
the synthesis time is as follows:
region 4: dividing rules:
the synthesis sequence is as follows:
the synthesis time is as follows:

Claims (2)

1. A midpoint balance strategy method based on dynamic control parameters comprises the following steps:
a detection module for measuring the voltage U of the inverter output capacitor via a voltage/current sensorCInput capacitor voltage Uc1、Uc2And an output current iout
Will measure the voltage UCThe harmonic observer is led in to obtain an inductive current ia
Will input the capacitor voltage Uc1、Uc2Output current ioutHarmonic observer inductanceStream iaAfter the input signal is input to a midpoint voltage balancing module, a dynamic control parameter lambda is obtained through calculation;
controlling a power circuit by the control parameter lambda through a single-phase SVPWM (space vector pulse width modulation) strategy so as to realize midpoint voltage balance;
implementing i by the harmonic observera(t) the method of observation is as follows:
observer design principle, single-phase full-bridge Conergy NPC mathematical model corresponding observerThe expression of space state is shown as formula (1) < CHEM >mIs a feedback matrix;is xm(kT) of the estimated value of the state,is ucm(kT) of the estimated value of (kT),is ucm(kT) an estimate of the quadrature value;is an output value;
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>m</mi> <mi>d</mi> </mrow> </msub> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>l</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>C</mi> <mi>x</mi> <mo>(</mo> <mrow> <mi>k</mi> <mi>T</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>C</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>m</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mi>T</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>m</mi> <mi>d</mi> </mrow> </msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>b</mi> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mi>C</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>(</mo> <mrow> <mi>k</mi> <mi>T</mi> </mrow> <mo>)</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mi>T</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
wherein C is an output matrix with the size of 1 × 2N; a. themdIs a system matrix;
according to the design idea of progressive observation, input signal uc(t) discrete observerDesigned as a kind of closed-loop observer,is defined as formula (2), wherein l is a feedback matrix consisting of N lmComposition is carried out;a state estimate of x (kT);is an estimate of the input value uc (kT);
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>a</mi> </msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>l</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mi>T</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mi>T</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>d</mi> </msub> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>+</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>l</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>l</mi> <mi>N</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>(</mo> <mrow> <mi>k</mi> <mi>T</mi> </mrow> <mo>)</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mi>T</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> <mtd> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> <mtd> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
wherein A isdUc (kT) system matrix;to progressive errorWhich is represented asInApproaches to ucm(t) a progressive speed; according to the pole arrangement theory, to satisfyThe ideal pole of the characteristic equation is defined asWherein a ismT is the distance between the ideal pole and the center circle of the z-domain, and a is controlledmThe parameter of T adjusts the convergence speed, observation bandwidth and precision of the observer,is the equation (3):
<mrow> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>d</mi> </msub> <mo>-</mo> <mi>l</mi> <mo>&amp;CenterDot;</mo> <mi>C</mi> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
the characteristic equation of the formula (5) in the Z domain is the formula (4), wherein E is a 2N × 2N identity matrix, and Z isThe number of z is 2N:
fd(z)=|zE-Ad+l·C| (4)
the desired characteristic polynomial is defined as:
<mrow> <msubsup> <mi>f</mi> <mi>d</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>01</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>02</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>11</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mn>...</mn> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mi>N</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mrow> <mi>N</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
the coefficients of equation (4) and equation (5) are equal, so that the parameter of l can be determined, and the inductor current i can be completed by equation (6)a(t) observation;
<mrow> <msub> <mi>i</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>i</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
the relation between the lambda and the action time of the switching vector is as follows:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mo>+</mo> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
wherein the action time of the vectors (1,0) and (0,1) is Ta+The vectors (0, -1) and (-1,0) have a duration of action Ta-
In the next switching cycle TaTime allocation of (2):
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mi>&amp;Delta;U</mi> <mo>*</mo> </msup> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>U</mi> <mo>=</mo> <msup> <mi>&amp;Delta;U</mi> <mo>*</mo> </msup> <mo>-</mo> <mfrac> <mn>1</mn> <mi>C</mi> </mfrac> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>S</mi> <mi>a</mi> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>S</mi> <mi>b</mi> </msub> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>a</mi> </msub> <mo>=</mo> <msup> <mi>&amp;Delta;U</mi> <mo>*</mo> </msup> <mo>-</mo> <mfrac> <mn>1</mn> <mi>C</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mo>+</mo> </mrow> </msub> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mo>-</mo> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mi>i</mi> <mi>a</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mo>-</mo> </mrow> </msub> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
wherein (S)a,Sb) As a switching vector, Δ U*Is a midpoint potential fluctuation reference value, and delta U is a midpoint potential fluctuation value which is only formed by switching functions of two bridge arms and an output phase current iaDetermining:
<mrow> <mi>&amp;Delta;</mi> <mi>U</mi> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>c</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>c</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>C</mi> </mfrac> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msup> <msub> <mi>S</mi> <mi>a</mi> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>S</mi> <mi>b</mi> </msub> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>a</mi> </msub> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
wherein U isc1、Uc2Is the voltage of the DC side capacitors C1 and C2, balance the capacitor C1=C2=C;
<mrow> <mi>&amp;lambda;</mi> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>C</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msup> <mi>&amp;Delta;U</mi> <mo>*</mo> </msup> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>U</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>i</mi> <mi>a</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Sample C1、C2Upper voltage and harmonic observer inductive current iaThe lambda value can be accurately estimated through the formula (10), and the unbalance of the midpoint potential at the moment is compensated through single-phase SVPWM modulation.
2. The method of claim 1, wherein the SVPWM modulation scheme is implemented as follows:
when U is turneddc/2<Uin≤UdcThe synthesis sequence is (1,0) → (1, -1) → (0, -1) → (1, -1) → (1,0), and the synthesis time is
Ta=(2(Udc-Vin)/Udc)*Ts
Tb=Ts-T;
When 0 < Uin≤UdcAt the time of/2, the synthesis sequence is (1,0) → (0,0) → (0, -1) → (0,0) → (1,0), and the synthesis time is
Ta=(2*Vin/Udc)*Ts
Tb=Ts-Ta
when-Udc/2<UinThe synthesis sequence is (0,1) → (0,0) → (-1,0) → (0,0) → (0,1) at a time of ≤ 0, and the synthesis time is
Ta=(-2*Vin/Udc)*Ts
Tb=Ts-Ta
when-Udc≤Uin≤-UdcAt the time of/2, the synthesis sequence is (0,1) → (-1,1) → (-1,0) → (-1,1) → (0,1), and the synthesis time is
Ta=(2*(Vin+Udc)/Udc)*Ts
Tb=Ts-Ta
CN201510838853.7A 2015-11-27 2015-11-27 A kind of neutral balance strategy process based on dynamic control parameter Active CN105490572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510838853.7A CN105490572B (en) 2015-11-27 2015-11-27 A kind of neutral balance strategy process based on dynamic control parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510838853.7A CN105490572B (en) 2015-11-27 2015-11-27 A kind of neutral balance strategy process based on dynamic control parameter

Publications (2)

Publication Number Publication Date
CN105490572A CN105490572A (en) 2016-04-13
CN105490572B true CN105490572B (en) 2018-03-30

Family

ID=55677358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510838853.7A Active CN105490572B (en) 2015-11-27 2015-11-27 A kind of neutral balance strategy process based on dynamic control parameter

Country Status (1)

Country Link
CN (1) CN105490572B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4282066A1 (en) * 2021-11-22 2023-11-29 Huawei Technologies Co., Ltd. Controller for controlling a balancer circuit
CN113949259B (en) * 2021-12-21 2022-03-01 浙江日风电气股份有限公司 NPC three-level shutdown control method, device and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214874B2 (en) * 2012-07-31 2015-12-15 Yashomani Y. Kolhatkar Intelligent level transition systems and methods for transformerless uninterruptible power supply

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于观测器的单相逆变器控制技术研究;龚旭等;《中国计量学院学报 》;20090331;第20卷(第1期);第41-45,70页 *
考虑中点电压不平衡的中点箝位型三电平逆变器空间矢量调制方法;姜卫东等;《中国电机工程学报》;20081025;第28卷(第30期);第20-26页 *
采用扰动观测器的偏差解耦控制方法;李春鹏等;《中国电机工程学报》;20151120;第35卷(第22期);第5859-5868页 *

Also Published As

Publication number Publication date
CN105490572A (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN106532685A (en) Generalized impedance criterion calculation method for stability analysis of grid-connected inverter and application
CN103326611B (en) A kind of prediction direct Power Control method of three-phase voltage source type PWM converter
CN105790270B (en) Suppress the method and device of subsynchronous resonance by double-fed fan rotor side converter
CN102998527B (en) Passband type first-harmonic, harmonic wave, DC component detection method
CN102013698B (en) Novel control method of double-feed wind-driven generator converter
CN106936134B (en) Active damping control device and control system of three-phase voltage source type current converter
CN103647467B (en) A kind of based on VSC multiple-objection optimization direct Power Control method under the unbalanced power grid of particle cluster algorithm
CN111654052B (en) Flexible direct current converter modeling device and method based on dynamic phasor method
CN104993494B (en) Motor simulator based on four-quadrant power electronic converter and method
CN103762921B (en) A kind of multi objective control method based on DFIG under the unbalanced power grid of particle cluster algorithm
CN106452263B (en) DFIG is based on the sliding moding structure direct Power Control method for expanding active power under a kind of unbalanced power grid
CN109449941A (en) Voltage source operating mode active filter control method based on virtual impedance control
CN105406741B (en) PWM rectifier Fuzzy Sliding Mode Control Approach during a kind of three-phase power grid voltage imbalance
CN107546994A (en) A kind of multi-electrical level inverter grid-connected system and method
CN105490572B (en) A kind of neutral balance strategy process based on dynamic control parameter
CN106329566B (en) Inverter alternating voltage sensorless control method when network voltage asymmetry
CN113098033B (en) Self-adaptive virtual inertia control system and method based on flexible direct current power transmission system
CN106451573A (en) Multivariable feedback control type three-phase LCL networking converter and method
CN109951093B (en) Hybrid parameter-based midpoint voltage control system and method
CN105140924A (en) Nonlinear controller design method of mixed type active power filter
CN103094916A (en) Three-phase three-wire system interphase balance method based on electric power active power filter
CN111969643B (en) Differential flat control method for MMC-HVDC (multi-media voltage direct current) supplying power to passive network under asymmetric fault
CN103973151A (en) Decoupling control method for three-phase pulse width modulation (PWM) grid-connected inverter under inductance imbalanc condition
Abulizi et al. Research of current control strategies for doubly-fed wind power generation system
CN110571829B (en) Three-phase three-wire system converter power oscillation suppression method based on Fermat point

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant