CN105489720A - 一种氮化镓基led外延结构 - Google Patents

一种氮化镓基led外延结构 Download PDF

Info

Publication number
CN105489720A
CN105489720A CN201610003586.6A CN201610003586A CN105489720A CN 105489720 A CN105489720 A CN 105489720A CN 201610003586 A CN201610003586 A CN 201610003586A CN 105489720 A CN105489720 A CN 105489720A
Authority
CN
China
Prior art keywords
layer
gan
temperature
type
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610003586.6A
Other languages
English (en)
Inventor
冯雅清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610003586.6A priority Critical patent/CN105489720A/zh
Publication of CN105489720A publication Critical patent/CN105489720A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及一种氮化镓基LED外延结构,属于氮化物半导体发光器件的外延生长技术领域。一种氮化镓基LED外延结构,包括在衬底层上依次生长的GaN缓冲层、uGaN层、n型GaN:Si层、InGaN/GaN多量子阱层、p型AlGaN电子阻挡层和p型GaN:Mg层,其特征在于,在InGaN/GaN多量子阱层和p型AlGaN电子阻挡层之间插入一层厚度为5-100nm的低温p型InAlGaN层。本发明通过在InGaN/GaN多量子阱层和p型AlGaN电子阻挡层之间插入一层低温p型InAlGaN层,其生长温度为600-900℃,不会使在其之前生长的InGaN/GaN多量子阱层遭到破坏,从而避免了影响发光二极管的发光效率。

Description

一种氮化镓基LED外延结构
技术领域
本发明涉及氮化物半导体发光器件的外延生长技术领域,特别涉及一种氮化镓基LED外延结构。
背景技术
随着半导体发光芯片发光效率的提升和制造成本的下降,半导体发光芯片已被广泛应用于背光、显示和照明等领域。
为了使LED能够应用于不同的领域,特别是环境恶劣的户外照明,对LED的可靠性,特别是以反向击穿电压为特征的抗静电能力提出了更高的要求。目前,LED的发光效率尽管己远大于其它光源的发光效率,但仍低于其理论最高值。显而易见,如果能通过改善LED芯片用的外延结构来提升其发光效率和抗静电能力有其广宽的实用价值和显著的社会效益和经济效益。
目前,氮化镓基LED外延结构主要是采用M℃VD技术生长在各种衬底表面。通常采用的结构如图1所示,为在外延衬底11表面依次生长的GaN缓冲层12、uGaN层13、n型GaN层14、InGaN/GaN多量子阱层15、p型AlGaN电子阻挡层16以及p型GaN层17。
如何实现高质量的p型AlGaN电子阻挡层的生长,将直接影响到外延层材料的质量和器件的性能。按照目前的LED生长技术存在反向击穿电压低和发光强度没有显著增强的缺陷。主要原因表现为:p型AlGaN电子阻挡层须在1000℃以上生长,而活性发光层InGaN/GaN多量子阱的生长温度为700℃至850℃,因此当活性发光层生长结束后温度升高到1000℃以上时,会使其低温生长的多量子阱结构遭到破坏,从而影响发光二极管的发光效率;再次,由于p型AlGaN的生长温度较高,加之Mg在高温下扩散系数增加很快,因此在p型AlGaN电子阻挡层高温生长的过程中,Mg将不可避免地向位于其下的InGaN/GaN多量子阱有源区中扩散,这又必将对发光二极管产生严重的影响。显而易见,通常采用的氮化镓基LED外延结构存在本质的缺陷。
发明内容
本发明的目的在于针对上述问题,提供了一种氮化镓基LED外延结构,能够显著提高LED芯片的反向击穿电压和发光效率。
本发明的目的是这样实现的:
一种氮化镓基LED外延结构,包括在衬底层上依次生长的GaN缓冲层、uGaN层、n型GaN:Si层、InGaN/GaN多量子阱层、p型AlGaN电子阻挡层和p型GaN:Mg层,其特征在于,在InGaN/GaN多量子阱层和p型AlGaN电子阻挡层之间插入一层厚度为5-100nm的低温p型InAlGaN层。
其中,所述低温p型InAlGaN层中铟铝合计组份含量不超过50%。
其中,所述低温p型InAlGaN层在氮化镓基LED外延结构中的掺杂浓度为1019-1021cm-3
其中,所述低温p型InAlGaN层的生长方法为:
在InGaN/GaN多量子阱层生长结束后,生长一层厚度为5-100nm的低温p型InAlGaN层,生长温度在600-900℃之间,反应腔压力在10-200Torr之间,载气流量为5-40升/分钟,氨气流量为100-600摩尔/分钟,三甲基镓流量为80-400微摩尔/分钟,三甲基铟流量为400-600微摩尔/分钟,三甲基铝流量为20-100微摩尔/分钟,二茂镁流量为为0.5-5微摩尔/分钟,生长时间为1-10分钟。
本发明的有益效果为:在InGaN/GaN多量子阱层和p型AlGaN电子阻挡层之间插入一层低温p型InAlGaN层,其生长温度为600-900℃,不会使在其之前生长的InGaN/GaN多量子阱层遭到破坏,从而避免了影响发光二极管的发光效率;而且低温p型InAlGaN层中的铟、铝还可以起到提高发光二极管的发光强度的作用,进一步保证了发光二极管的发光效率。
附图说明
图1为传统的氮化镓基LED外延结构示意图。
图2为本发明中的氮化镓基LED外延结构示意图。
具体实施方式
下面结合具体实施例和附图,进一步阐述本发明。
如图2所示,一种氮化镓基LED外延结构,包括在衬底层21上依次生长的GaN缓冲层22、uGaN层23、n型GaN:Si层24、InGaN/GaN多量子阱层25、p型AlGaN电子阻挡层27和p型GaN:Mg层28,并且在InGaN/GaN多量子阱层25和p型AlGaN电子阻挡层27之间还插入了一层厚度为5-100nm的低温p型InAlGaN层26。具体为:在InGaN/GaN多量子阱层25的最后两个量子阱结构上,先于低温下生长一层厚度为5-100nm的p型InAlGaN层26,然后在该p型InAlGaN层26上生长p型AlGaN电子阻挡层27。
其中,低温p型InAlGaN层26中铟铝合计组份含量不超过50%,且该低温p型InAlGaN层26在氮化镓基LED外延结构中的掺杂浓度为1019-1021cm-3
本发明中所述的氮化镓基LED外延结构,可以采用美国Veeco公司的M℃VDK300设备进行生长,具体以(0001)向蓝宝石(Al203)作衬底,利用高纯NH3作N源,高纯H2和N2的混合气体作载气,三甲基镓或三乙基镓作Ga源,三甲基铟作In源,三甲基铝作Al源,n型掺杂剂为硅烷,p型掺杂剂为二茂镁。
一种氮化镓基LED外延结构的生长方法具体包括如下步骤:
步骤一,在衬底层21上生长一层GaN缓冲层22,生长温度为500℃-800℃,反应腔压力为200-500Torr,载气流量为10-30升/分钟,三甲基镓流量为20-250微摩尔/分钟,氨气流量为20-80摩尔/分钟,生长时间为1-10分钟;
步骤二,在GaN缓冲层22生长结束后,生长一层uGaN层23,生长温度为950-1180℃,反应腔压力为76-250Torr,载气流量为5-20升/分钟,三甲基镓流量为80-400微摩尔/分钟,氨气流量为200-800摩尔/分钟,生长时间为20-60分钟;
步骤四,在uGaN层23生长结束后,生长一层n型GaN:Si层24,生长温度为950-1150℃,反应腔压力为76-250Torr,载气流量为5-20升/分钟,三甲基镓流量为80-400微摩尔/分钟,氨气流量为200-800摩尔/分钟,硅烷流量为0.2-2.0纳摩尔/分钟,时间为10-40分钟;
步骤五:在n型GaN:Si层24生长结束后,生长InGaN/GaN多量子阱层25,所述InGaN/GaN多量子阱层25包括4至15个周期数的依次交叠的InGaN阱层和GaN垒层;所述InGaN阱层的生长温度为700-850℃,反应腔压力为100-500Torr,载气流量为5-20升/分钟,氨气流量为200-800摩尔/分钟,三甲基镓流量为0.1-1.0微摩尔/分钟,三甲基铟流量为10-50微摩尔/分钟,时间为0.1-5分钟;所述GaN垒层的生长温度为700-900℃,反应腔压力为100-500Torr,载气流量为5-20升/分钟,氨气流量为200-800摩尔/分钟,三甲基镓流量为0.1-1.0微摩尔/分钟,硅烷流量为0.2-2.0纳摩尔/分钟;
步骤六,在InGaN/GaN多量子阱层生长结束后,生长一层厚度为5-100nm低温p型InAlGaN层26,生长温度在600-900℃之间,反应腔压力在10-200Torr之间,载气流量为5-40升/分钟,氨气流量为100-600摩尔/分钟,三甲基镓流量为80-400微摩尔/分钟,三甲基铟流量为400-600微摩尔/分钟,三甲基铝流量为20-100微摩尔/分钟,二茂镁流量为为0.5-5微摩尔/分钟,生长时间为1-10分钟;
步骤七,在低温p型InAlGaN层26生长结束后,生长一层p型AlGaN电子阻挡层27,生长温度为700-1000℃,反应腔压力为50-200Torr,载气流量为5-20升/分钟,氨气流量为100-400摩尔/分钟,三甲基铝流量为20-100微摩尔/分钟,三甲基镓流量为80-200微摩尔/分钟,二茂镁流量为150-400纳摩尔/分钟,时间为1-10分钟;
步骤八:在p型AlGaN电子阻挡层27生长结束后,生长一层p型GaN:Mg层28,生长温度为950-1100℃,反应腔压力为200-500Torr,载气流量为5-20升/分钟,氨气流量为200-800摩尔/分钟,三甲基镓流量为80-400微摩尔/分钟,二茂镁流量为为0.5-5微摩尔/分钟,时间为10-50分钟。
与传统的氮化镓基LED外延结构相比,本发明具有结构简单、生长方便,发光强度大,反向击穿电压高等特点。非常适用于制造发光效率高、反向击穿电高的氮化镓基LED外延片。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (4)

1.一种氮化镓基LED外延结构,包括在衬底层上依次生长的GaN缓冲层、uGaN层、n型GaN:Si层、InGaN/GaN多量子阱层、p型AlGaN电子阻挡层和p型GaN:Mg层,其特征在于,在InGaN/GaN多量子阱层和p型AlGaN电子阻挡层之间插入一层厚度为5-100nm的低温p型InAlGaN层。
2.根据权利要求1所述的一种氮化镓基LED外延结构,其特征在于,所述低温p型InAlGaN层中铟铝合计组份含量不超过50%。
3.根据权利要求1所述的一种氮化镓基LED外延结构,其特征在于,所述低温p型InAlGaN层在氮化镓基LED外延结构中的掺杂浓度为1019-1021cm-3
4.根据权利要求1所述的一种氮化镓基LED外延结构,其特征在于,所述低温p型InAlGaN层的生长方法为:
在InGaN/GaN多量子阱层生长结束后,生长一层厚度为5-100nm的低温p型InAlGaN层,生长温度在600-900℃之间,反应腔压力在10-200Torr之间,载气流量为5-40升/分钟,氨气流量为100-600摩尔/分钟,三甲基镓流量为80-400微摩尔/分钟,三甲基铟流量为400-600微摩尔/分钟,三甲基铝流量为20-100微摩尔/分钟,二茂镁流量为为0.5-5微摩尔/分钟,生长时间为1-10分钟。
CN201610003586.6A 2016-01-04 2016-01-04 一种氮化镓基led外延结构 Pending CN105489720A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610003586.6A CN105489720A (zh) 2016-01-04 2016-01-04 一种氮化镓基led外延结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610003586.6A CN105489720A (zh) 2016-01-04 2016-01-04 一种氮化镓基led外延结构

Publications (1)

Publication Number Publication Date
CN105489720A true CN105489720A (zh) 2016-04-13

Family

ID=55676579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610003586.6A Pending CN105489720A (zh) 2016-01-04 2016-01-04 一种氮化镓基led外延结构

Country Status (1)

Country Link
CN (1) CN105489720A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140131734A1 (en) * 2011-09-29 2014-05-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
CN104064643A (zh) * 2014-06-24 2014-09-24 湘能华磊光电股份有限公司 Led的p型外延层、其制作方法及包括其的led外延片
CN104638074A (zh) * 2015-02-04 2015-05-20 映瑞光电科技(上海)有限公司 高亮度GaN基LED外延结构及其制作方法
CN205452329U (zh) * 2016-01-04 2016-08-10 冯雅清 一种氮化镓基led外延结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140131734A1 (en) * 2011-09-29 2014-05-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
CN104064643A (zh) * 2014-06-24 2014-09-24 湘能华磊光电股份有限公司 Led的p型外延层、其制作方法及包括其的led外延片
CN104638074A (zh) * 2015-02-04 2015-05-20 映瑞光电科技(上海)有限公司 高亮度GaN基LED外延结构及其制作方法
CN205452329U (zh) * 2016-01-04 2016-08-10 冯雅清 一种氮化镓基led外延结构

Similar Documents

Publication Publication Date Title
CN101834248B (zh) 氮化镓系发光二极管
CN108461592B (zh) 一种发光二极管外延片及其制造方法
CN100530722C (zh) 发光二极管器件结构及其制作方法
CN103811601B (zh) 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法
CN103515495B (zh) 一种GaN基发光二极管芯片的生长方法
CN105449051B (zh) 一种采用MOCVD技术在GaN衬底或GaN/Al2O3复合衬底上制备高亮度同质LED的方法
CN102664145A (zh) 采用金属有机化合物气相外延技术生长非对称电子储蓄层高亮度发光二极管的方法
CN102969416A (zh) 一种氮化物led外延片及其生长方法
CN102005513A (zh) 具有低温p型GaN层的氮化镓系发光二极管
CN103413877B (zh) 外延结构量子阱应力释放层的生长方法及其外延结构
CN103824909A (zh) 一种提高GaN基LED发光亮度的外延方法
CN102064254A (zh) 高质量氮化镓系发光二极管
CN102709424A (zh) 一种提高发光二极管发光效率的方法
CN103560190A (zh) 阻挡电子泄漏和缺陷延伸的外延生长方法及其结构
CN101257081A (zh) 一种双波长单芯片发光二极管
CN105405939A (zh) 一种发光二极管及其制造方法
CN104576852A (zh) 一种GaN基LED外延结构的发光量子阱应力调控方法
KR101047652B1 (ko) 발광소자 및 그 제조방법
CN103996769A (zh) Led外延层结构、生长方法及具有该结构的led芯片
CN103337571B (zh) 改善GaN基外延片内波长集中度的外延结构及生长方法
CN104319317A (zh) 一种可有效提高p-GaN空穴注入层质量的外延生产方法
CN104377278B (zh) 一种p型GaN低阻值欧姆接触层的制备方法
CN205452329U (zh) 一种氮化镓基led外延结构
CN105336825A (zh) 一种led外延生长方法
CN102779737B (zh) 一种提高gan基led发光效率的外延生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160413

RJ01 Rejection of invention patent application after publication