CN105486675A - Laser Raman Detection Method for Quantitative Analysis of Carbon Isotopic Composition of CO2 Gas - Google Patents
Laser Raman Detection Method for Quantitative Analysis of Carbon Isotopic Composition of CO2 Gas Download PDFInfo
- Publication number
- CN105486675A CN105486675A CN201511018657.1A CN201511018657A CN105486675A CN 105486675 A CN105486675 A CN 105486675A CN 201511018657 A CN201511018657 A CN 201511018657A CN 105486675 A CN105486675 A CN 105486675A
- Authority
- CN
- China
- Prior art keywords
- gas
- laser raman
- peak area
- calculate
- raman
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 101
- 239000000203 mixture Substances 0.000 title claims abstract description 33
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000001514 detection method Methods 0.000 title claims abstract description 27
- 238000004445 quantitative analysis Methods 0.000 title claims description 8
- 230000000155 isotopic effect Effects 0.000 title description 2
- 239000007789 gas Substances 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 24
- 238000010606 normalization Methods 0.000 claims description 10
- 238000011002 quantification Methods 0.000 claims description 8
- 238000013139 quantization Methods 0.000 abstract description 9
- 238000004458 analytical method Methods 0.000 abstract description 8
- 230000001066 destructive effect Effects 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 abstract description 3
- 238000001237 Raman spectrum Methods 0.000 description 19
- 239000012530 fluid Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000033558 biomineral tissue development Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 238000010905 molecular spectroscopy Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
本发明提供了一种定量分析CO2气体碳同位素组成的激光拉曼检测方法,包括以下步骤:一、计算12CO2的拉曼量化因子F12CO2;二、计算13CO2的拉曼量化因子F13CO2;三、根据公式C[12CO2]/C[13CO2]=(A12CO2/A13CO2)×(F13CO2/F12CO2)计算出CO2气体中12CO2和13CO2的摩尔比C[12CO2]/C[13CO2]。本发明对不同比例12CO2/N2混合气体和13CO2/N2混合气体进行显微激光拉曼测试分析,采用的显微激光拉曼光谱法具有高精度、原位、无损和快速等特点,利用显微激光拉曼光谱法能够定量分析CO2碳同位素的组成,具有广泛的应用前景。
The invention provides a laser Raman detection method for quantitatively analyzing the carbon isotope composition of CO2 gas, comprising the following steps: 1. Calculating the Raman quantization factor F12CO2 of 12 CO2; 2. Calculating the Raman quantization factor of 13 CO2 F 13CO2 ; 3. According to the formula C [12CO2] /C [13CO2] = (A 12CO2 /A 13CO2 )×(F 13CO2 /F 12CO2 ), calculate the molar ratio C of 12 CO 2 and 13 CO 2 in the CO 2 gas [ 12CO2] /C [13CO2] . The present invention performs microscopic laser Raman testing and analysis on 12 CO 2 /N 2 mixed gas and 13 CO 2 /N 2 mixed gas in different proportions, and the microscopic laser Raman spectrometry adopted has high precision, in-situ, non-destructive and fast and other characteristics, the use of micro-laser Raman spectroscopy can quantitatively analyze the composition of carbon isotopes of CO 2 , which has broad application prospects.
Description
技术领域technical field
本发明属于光谱分析技术领域,具体涉及一种定量分析CO2气体碳同位素组成的激光拉曼检测方法。The invention belongs to the technical field of spectral analysis, and in particular relates to a laser Raman detection method for quantitatively analyzing the carbon isotope composition of CO2 gas.
背景技术Background technique
拉曼光谱是一项重要的现代分子光谱技术,已广泛应用于物理、化学、材料、石油、生物、环境、地质、天体等领域。显微激光拉曼光谱(LRM)是将入射激光通过显微镜聚焦到样品上,在不受周围物质干扰情况下,准确获得所照样品微区的有关化学成分、晶体结构、分子相互作用以及分子取向等信息。激光拉曼光谱逐渐成为地球科学基础研究中的一项重要分析手段。Raman spectroscopy is an important modern molecular spectroscopy technology, which has been widely used in physics, chemistry, materials, petroleum, biology, environment, geology, astronomy and other fields. Microlaser Raman spectroscopy (LRM) is to focus the incident laser light on the sample through a microscope, and accurately obtain the relevant chemical composition, crystal structure, molecular interaction and molecular orientation of the illuminated sample micro-region without interference from surrounding substances. and other information. Laser Raman spectroscopy has gradually become an important analysis method in the basic research of earth science.
流体包裹体是矿物在结晶生长过程中被捕获并保存在矿物晶体缺陷中的原始地质流体,通过研究矿物流体包裹体的成分和性质,可以了解成岩成矿物化条件、流体成分、物质来源和地质作用等。CO2是流体包裹体中一种重要的挥发性组分,CO2的稳定性同位素有12CO2和13CO2。流体包裹体中CO2气体碳同位素组成特征在研究地壳和上地幔中矿物起源及流体演化等方面具有重要的地质意义,并且为研究矿床的成矿作用、油气运聚和成藏、地质流体演化及构造动力学等提供了重要信息。Fluid inclusions are the original geological fluids in which minerals are captured and preserved in the defects of mineral crystals during the crystal growth process. By studying the composition and properties of mineral fluid inclusions, we can understand the conditions of diagenesis and mineralization, fluid composition, material sources and geological conditions. function etc. CO 2 is an important volatile component in fluid inclusions, and the stable isotopes of CO 2 are 12 CO 2 and 13 CO 2 . The carbon isotopic composition characteristics of CO 2 gas in fluid inclusions are of great geological significance in the study of the origin of minerals and fluid evolution in the crust and upper mantle, and provide a basis for the study of mineralization of deposits, oil and gas migration and accumulation, and evolution of geological fluids. and tectonic dynamics provide important information.
目前在对包裹体同位素进行分析测试时,传统方法是用热爆法、研磨法、压碎法等打开包裹体,然后通过质谱仪分析包裹体释放出的CO2碳同位素。但是用这种方法得到的是矿物在不同期次、不同成因来源下的CO2碳同位素混合结果,不能得到矿物中代表某特定成岩成矿阶段的单个流体包裹体CO2碳同位素的组成。但是,显微激光拉曼光谱法具有高精度、原位、无损和快速等特点。因此,利用显微激光拉曼光谱法定量分析单个流体包裹体CO2碳同位素的组成具有很好的应用前景。At present, when analyzing and testing the isotope of inclusions, the traditional method is to open the inclusions by thermal explosion, grinding, crushing, etc., and then analyze the carbon isotopes of CO 2 released from the inclusions by mass spectrometry. However, this method is used to obtain the CO 2 carbon isotope mixing results of minerals in different stages and different genetic sources, and cannot obtain the CO 2 carbon isotope composition of a single fluid inclusion in a mineral that represents a specific diagenetic ore-forming stage. However, microlaser Raman spectroscopy has the characteristics of high precision, in situ, non-destructive and fast. Therefore, the use of microlaser Raman spectroscopy to quantitatively analyze the composition of CO2 carbon isotopes in individual fluid inclusions has a good application prospect.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种定量分析CO2气体碳同位素组成的激光拉曼检测方法。该方法采用的显微激光拉曼光谱法具有高精度、原位、无损和快速等特点,因此,该方法能够利用显微激光拉曼光谱法定量分析单个流体包裹体CO2碳同位素的组成,具有很好的应用前景。The technical problem to be solved by the present invention is to provide a laser Raman detection method for quantitatively analyzing the carbon isotope composition of CO2 gas in view of the above-mentioned deficiencies in the prior art. The micro-laser Raman spectroscopy used in this method has the characteristics of high precision, in-situ, non-destructive and fast. Therefore, this method can quantitatively analyze the composition of CO 2 carbon isotopes in individual fluid inclusions by using micro-laser Raman spectroscopy. It has a good application prospect.
为解决上述技术问题,本发明采用的技术方案是:一种定量分析CO2气体碳同位素组成的激光拉曼检测方法,其特征在于,该方法包括以下步骤:In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is: a kind of quantitative analysis CO The laser Raman detection method of gas carbon isotope composition is characterized in that, the method comprises the following steps:
步骤一、计算12CO2的拉曼量化因子F12CO2,具体方法为:Step 1. Calculating the Raman quantification factor F 12CO2 of 12 CO 2 , the specific method is:
步骤101、采用气体混合配比器将12CO2和N2按不同体积比混合均匀,得到一系列不同配比的12CO2/N2混合气体;Step 101, using a gas mixing proportioner to uniformly mix 12 CO 2 and N 2 in different volume ratios to obtain a series of 12 CO 2 /N 2 mixed gases with different proportions;
步骤102、采用显微激光拉曼光谱仪对步骤101中各种配比的12CO2/N2混合气体分别进行显微激光拉曼检测,得到N2的特征峰ν[N2]以及12CO2的费米共振二重特征峰ν- [12CO2]和ν+ [12CO2],然后分别计算出各种配比条件下ν- [12CO2]处的峰面积A- [12CO2]、ν+ [12CO2]处的峰面积A+ [12CO2]以及ν[N2]处的峰面积A1 [N2];所述ν- [12CO2]、ν+ [12CO2]和ν[N2]的单位均为cm-1;Step 102: Use a microscopic laser Raman spectrometer to perform microscopic laser Raman detection on the 12 CO 2 /N 2 mixed gas in step 101 in various ratios, and obtain the characteristic peak ν [N2] of N 2 and 12 CO 2 Fermi resonance double characteristic peaks ν - [12CO2] and ν + [12CO2] , and then calculate the peak areas A - [12CO2] and ν + [12CO2 ] at ν - [12CO2] under various ratio conditions The peak area A + [12CO2] at the place and the peak area A1 [ N2] at the v [N2] place; The unit of described v-[12CO2] , v + [12CO2] and v [N2] is cm -1 ;
步骤103、根据步骤102中所述A- [12CO2]和A+ [12CO2]计算出各种配比条件下12CO2特征峰的峰面积A[12CO2],所述A[12CO2]=A- [12CO2]+A+ [12CO2],然后根据所述A[12CO2]计算出各种配比条件下12CO2与N2的特征峰峰面积比K1,所述K1=[A[12CO2]/Σ12CO2)/A1 [N2];所述Σ12CO2为12CO2的相对拉曼散射截面标准化因子;Step 103, according to A- [12CO2] and A + [12CO2] described in step 102, calculate the peak area A [12CO2] of the 12CO2 characteristic peak under various proportioning conditions, and the A [12CO2] =A- [12CO2] +A + [12CO2] , then calculate the characteristic peak area ratio K 1 of 12 CO 2 and N 2 under various proportioning conditions according to the A [12CO2] , the K 1 = [A [12CO2 ] /Σ 12CO2 )/A 1 [N2] ; said Σ 12CO2 is 12 CO 2 relative Raman scattering cross section normalization factor;
步骤104、以步骤103中所述K1作为纵坐标,以12CO2和N2的摩尔比C[12CO2]/C[N2]作为横坐标投图并进行线性拟合,计算出拟合直线的斜率,得到F12CO2;Step 104, take K1 described in step 103 as the ordinate, and use the molar ratio C [ 12CO2 ] /C [N2] of 12CO2 and N2 as the abscissa to project a graph and perform linear fitting to calculate the fitted straight line The slope of F 12CO2 is obtained;
步骤二、计算13CO2的拉曼量化因子F13CO2,具体方法为:Step 2. Calculating the Raman quantification factor F 13CO2 of 13 CO 2 , the specific method is:
步骤201、采用气体混合配比器将13CO2和N2按不同体积比混合均匀,得到一系列不同配比的13CO2/N2混合气体;Step 201, using a gas mixing proportioner to uniformly mix 13 CO 2 and N 2 in different volume ratios to obtain a series of 13 CO 2 /N 2 mixed gases with different proportions;
步骤202、采用显微激光拉曼光谱仪对步骤201中各种配比的13CO2/N2混合气体分别进行显微激光拉曼检测,得到N2的特征峰ν[N2]以及13CO2的费米共振二重特征峰ν- [13CO2]和ν+ [13CO2],然后分别计算出各种配比条件下ν- [13CO2]处的峰面积A- [13CO2]、ν+ [13CO2]处的峰面积A+ [13CO2]以及ν[N2]处的峰面积A2 [N2];所述ν- [12CO2]和ν+ [12CO2]单位均为cm-1;Step 202: Use a microscopic laser Raman spectrometer to perform microscopic laser Raman detection on the various ratios of 13 CO 2 /N 2 mixed gases in step 201, and obtain the characteristic peaks of N 2 ν [N2] and 13 CO 2 Fermi resonance double characteristic peaks ν - [13CO2] and ν + [13CO2] , and then calculate the peak areas A - [13CO2] and ν + [13CO2 ] at ν - [13CO2] under various ratio conditions The peak area A + [13CO2] at the place and the peak area A2 [ N2 ] at the ν [N2] place; the units of ν- [12CO2] and ν + [12CO2] are cm -1 ;
步骤203、根据步骤202中所述A- [13CO2]和A+ [13CO2]计算出各种配比条件下13CO2特征峰的峰面积A[13CO2],所述A[13CO2]=A- [13CO2]+A+ [13CO2],然后根据所述A[13CO2]计算出各种配比条件下13CO2与N2的特征峰峰面积比K2,所述K2=[A[13CO2]/Σ13CO2)/A2 [N2];所述Σ13CO2为13CO2的相对拉曼散射截面标准化因子;Step 203, according to A- [13CO2] and A + [13CO2] described in step 202, calculate the peak area A [13CO2] of the characteristic peak of 13 CO2 under various proportioning conditions, the A [13CO2] = A- [13CO2] +A + [13CO2] , and then calculate the characteristic peak area ratio K 2 of 13 CO 2 and N 2 under various proportioning conditions according to the A [13CO2] , the K 2 = [A [13CO2 ] /Σ 13CO2 )/A 2 [N2] ; said Σ 13CO2 is 13 CO 2 relative Raman scattering cross section normalization factor;
步骤204、以步骤203中所述K2作为纵坐标,以13CO2和N2的摩尔比C[13CO2]/C[N2]作为横坐标投图并进行线性拟合,计算出拟合直线的斜率,得到F13CO2;Step 204, taking K2 mentioned in step 203 as the ordinate, and taking the molar ratio C [ 13CO2 ] /C [N2] of 13CO2 and N2 as the abscissa to project a graph and perform linear fitting to calculate the fitted straight line The slope of F 13CO2 is obtained;
步骤三、采用显微激光拉曼光谱仪对由12CO2和13CO2混合而成的CO2气体进行显微激光拉曼检测,得到CO2气体中12CO2特征峰的峰面积A12CO2以及13CO2特征峰的峰面积A13CO2,然后根据公式C[12CO2]/C[13CO2]=(A12CO2/A13CO2)×(F13CO2/F12CO2)计算出CO2气体中12CO2和13CO2的摩尔比C[12CO2]/C[13CO2]。Step 3, using a microscopic laser Raman spectrometer to perform microscopic laser Raman detection on the CO 2 gas mixed with 12 CO 2 and 13 CO 2 to obtain the peak area A 12CO 2 of the characteristic peak of 12 CO 2 in the CO 2 gas and The peak area A 13CO2 of the characteristic peak of 13 CO 2 , and then calculate the 12 CO 2 and 13 The molar ratio of CO 2 C [12CO2] /C [13CO2] .
上述的定量分析CO2气体碳同位素组成的激光拉曼检测方法,其特征在于,步骤102中所述ν- [12CO2]=1287cm-1,所述ν+ [12CO2]=1390cm-1,所述ν[N2]=2332cm-1。The aforementioned laser Raman detection method for quantitatively analyzing the carbon isotope composition of CO 2 gas is characterized in that in step 102, ν - [12CO2] = 1287cm -1 , said ν + [12CO2] = 1390cm -1 , said ν [N2] = 2332 cm -1 .
上述的定量分析CO2气体碳同位素组成的激光拉曼检测方法,其特征在于,步骤103中所述Σ12CO2=1.49。The above-mentioned laser Raman detection method for quantitatively analyzing the carbon isotope composition of CO 2 gas is characterized in that Σ 12CO2 = 1.49 in step 103.
上述的定量分析CO2气体碳同位素组成的激光拉曼检测方法,其特征在于,步骤202中所述ν- [13CO2]=1267cm-1,所述ν+ [13CO2]=1372cm-1。The above-mentioned laser Raman detection method for quantitatively analyzing the carbon isotope composition of CO 2 gas is characterized in that in step 202, ν - [13CO2] = 1267cm -1 , and ν + [13CO2] = 1372cm -1 .
上述的定量分析CO2气体碳同位素组成的激光拉曼检测方法,其特征在于,步骤203中所述Σ13CO2=1.437。The aforementioned laser Raman detection method for quantitatively analyzing the carbon isotope composition of CO 2 gas is characterized in that Σ 13CO2 = 1.437 in step 203 .
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明通过制备不同比例的12CO2/N2和13CO2/N2混合物样品并进行显微激光拉曼测试分析,气体的拉曼特征峰峰面积比与其摩尔分数比成正比例关系,拟合直线的斜率被认为是拉曼量化因子。CO2气体碳同位素摩尔分数比可根据拉曼峰峰面积比和拉曼量化因子比的乘积求出。本发明由于采用的显微激光拉曼光谱法具有高精度、原位、无损和快速等特点,因此,利用显微激光拉曼光谱法能够定量分析单个流体包裹体CO2碳同位素的组成,具有广泛的应用前景。The present invention prepares samples of 12 CO 2 /N 2 and 13 CO 2 /N 2 mixtures in different proportions and conducts microscopic laser Raman test and analysis. The slope of the combined line is considered as the Raman quantization factor. The carbon isotope mole fraction ratio of CO 2 gas can be obtained from the product of Raman peak area ratio and Raman quantization factor ratio. Because the micro-laser Raman spectroscopy adopted by the present invention has the characteristics of high precision, in-situ, non-destructive and fast, etc., the micro-laser Raman spectroscopy can be used to quantitatively analyze the composition of CO2 carbon isotopes in a single fluid inclusion, which has the advantages of Wide application prospects.
下面结合附图和实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明12CO2与N2的特征峰峰面积比K1与摩尔比C[12CO2]/C[N2]的拟合直线图。Figure 1 is a fitting line diagram of the characteristic peak area ratio K 1 and the molar ratio C [12CO2] /C [N2] of 12 CO 2 and N 2 in the present invention.
图2为本发明13CO2与N2的特征峰峰面积比K2与摩尔比C[13CO2]/C[N2]的拟合直线图。Fig. 2 is a fitting line diagram of the characteristic peak area ratio K 2 and the molar ratio C [13CO2] /C [N2] of 13 CO 2 and N 2 in the present invention.
具体实施方式detailed description
本发明通过显微激光拉曼光谱分析和线性拟合的方法对CO2气体中碳同位素的组成进行定量分析。本发明定量分析CO2气体碳同位素组成的激光拉曼检测方法包括以下步骤:The invention quantitatively analyzes the composition of the carbon isotope in the CO2 gas through the method of microscopic laser Raman spectrum analysis and linear fitting. The present invention quantitatively analyzes CO The laser Raman detection method of gas carbon isotope composition comprises the following steps:
步骤一、计算12CO2的拉曼量化因子F12CO2,具体方法为:Step 1. Calculating the Raman quantification factor F 12CO2 of 12 CO 2 , the specific method is:
步骤101、采用气体混合配比器将12CO2和N2按不同体积比混合均匀,得到一系列不同配比的12CO2/N2混合气体;Step 101, using a gas mixing proportioner to uniformly mix 12 CO 2 and N 2 in different volume ratios to obtain a series of 12 CO 2 /N 2 mixed gases with different proportions;
步骤102、采用显微激光拉曼光谱仪分别对步骤101中各种配比的12CO2/N2混合气体进行显微激光拉曼检测,得到N2的特征峰ν[N2]以及12CO2的费米共振二重特征峰ν- [12CO2]和ν+ [12CO2],然后分别计算出各种配比条件下ν- [12CO2]处的峰面积A- [12CO2]、ν+ [12CO2]处的峰面积A+ [12CO2]以及ν[N2]处的峰面积A1 [N2];所述ν- [12CO2]、ν+ [12CO2]和ν[N2]的单位均为cm-1;Step 102: Use a microscopic laser Raman spectrometer to perform microscopic laser Raman detection on the various ratios of 12 CO 2 /N 2 mixed gases in step 101, and obtain the characteristic peak ν [N2] of N 2 and 12 CO 2 Fermi resonance double characteristic peaks ν - [12CO2] and ν + [12CO2] , and then calculate the peak areas A - [12CO2] and ν + [12CO2 ] at ν - [12CO2] under various ratio conditions The peak area A + [12CO2] at the place and the peak area A1 [ N2] at the v [N2] place; The unit of described v-[12CO2] , v + [12CO2] and v [N2] is cm -1 ;
步骤103、根据步骤102中所述A- [12CO2]和A+ [12CO2]计算出各种配比条件下12CO2特征峰的峰面积A[12CO2],所述A[12CO2]=A- [12CO2]+A+ [12CO2],然后根据所述A[12CO2]计算出各种配比条件下12CO2与N2的特征峰峰面积比K1,所述K1=[A[12CO2]/Σ12CO2)/A1 [N2];所述Σ12CO2为12CO2的相对拉曼散射截面标准化因子;Step 103, according to A- [12CO2] and A + [12CO2] described in step 102, calculate the peak area A [12CO2] of the 12CO2 characteristic peak under various proportioning conditions, and the A [12CO2] =A- [12CO2] +A + [12CO2] , then calculate the characteristic peak area ratio K 1 of 12 CO 2 and N 2 under various proportioning conditions according to the A [12CO2] , the K 1 = [A [12CO2 ] /Σ 12CO2 )/A 1 [N2] ; said Σ 12CO2 is 12 CO 2 relative Raman scattering cross section normalization factor;
步骤104、以步骤103中所述K1作为纵坐标,以12CO2和N2的摩尔比C[12CO2]/C[N2]作为横坐标投图并进行线性拟合,计算出拟合直线的斜率,得到F12CO2;Step 104, take K1 described in step 103 as the ordinate, and use the molar ratio C [ 12CO2 ] /C [N2] of 12CO2 and N2 as the abscissa to project a graph and perform linear fitting to calculate the fitted straight line The slope of F 12CO2 is obtained;
步骤二、计算13CO2的拉曼量化因子F13CO2,具体方法为:Step 2. Calculating the Raman quantification factor F 13CO2 of 13 CO 2 , the specific method is:
步骤201、采用气体混合配比器将13CO2和N2按不同体积比混合均匀,得到一系列不同配比的13CO2/N2混合气体;Step 201, using a gas mixing proportioner to uniformly mix 13 CO 2 and N 2 in different volume ratios to obtain a series of 13 CO 2 /N 2 mixed gases with different proportions;
步骤202、采用显微激光拉曼光谱仪分别对步骤201中各种配比的13CO2/N2混合气体进行显微激光拉曼检测,得到N2的特征峰ν[N2]以及13CO2的费米共振二重特征峰ν- [13CO2]和ν+ [13CO2],然后分别计算出各种配比条件下ν- [13CO2]处的峰面积A- [13CO2]、ν+ [13CO2]处的峰面积A+ [13CO2]以及ν[N2]处的峰面积A2 [N2];所述ν- [12CO2]和ν+ [12CO2]单位均为cm-1;Step 202, using a micro-laser Raman spectrometer to perform micro-laser Raman detection on the 13 CO 2 /N 2 mixed gas in step 201 in various ratios, and obtain the characteristic peak ν [N2] of N 2 and 13 CO 2 Fermi resonance double characteristic peaks ν - [13CO2] and ν + [13CO2] , and then calculate the peak areas A - [13CO2] and ν + [13CO2 ] at ν - [13CO2] under various ratio conditions The peak area A + [13CO2] at the place and the peak area A2 [ N2 ] at the ν [N2] place; the units of ν- [12CO2] and ν + [12CO2] are cm -1 ;
步骤203、根据步骤202中所述A- [13CO2]和A+ [13CO2]计算出各种配比条件下13CO2特征峰的峰面积A[13CO2],所述A[13CO2]=A- [13CO2]+A+ [13CO2],然后根据所述A[13CO2]计算出各种配比条件下13CO2与N2的特征峰峰面积比K2,所述K2=[A[13CO2]/Σ13CO2)/A2 [N2];所述Σ13CO2为13CO2的相对拉曼散射截面标准化因子;Step 203, according to A- [13CO2] and A + [13CO2] described in step 202, calculate the peak area A [13CO2] of the characteristic peak of 13 CO2 under various proportioning conditions, the A [13CO2] = A- [13CO2] +A + [13CO2] , and then calculate the characteristic peak area ratio K 2 of 13 CO 2 and N 2 under various proportioning conditions according to the A [13CO2] , the K 2 = [A [13CO2 ] /Σ 13CO2 )/A 2 [N2] ; said Σ 13CO2 is 13 CO 2 relative Raman scattering cross section normalization factor;
步骤204、以步骤203中所述K2作为纵坐标,以13CO2和N2的摩尔比C[13CO2]/C[N2]作为横坐标投图并进行线性拟合,计算出拟合直线的斜率,得到F13CO2;Step 204, taking K2 mentioned in step 203 as the ordinate, and taking the molar ratio C [ 13CO2 ] /C [N2] of 13CO2 and N2 as the abscissa to project a graph and perform linear fitting to calculate the fitted straight line The slope of F 13CO2 is obtained;
步骤三、采用显微激光拉曼光谱仪对由12CO2和13CO2混合而成的CO2气体进行显微激光拉曼检测,得到CO2气体中12CO2特征峰的峰面积A12CO2以及13CO2特征峰的峰面积A13CO2,然后根据公式C[12CO2]/C[13CO2]=(A12CO2/A13CO2)×(F13CO2/F12CO2)计算出CO2气体中12CO2和13CO2的摩尔比C[12CO2]/C[13CO2]。Step 3, using a microscopic laser Raman spectrometer to perform microscopic laser Raman detection on the CO 2 gas mixed with 12 CO 2 and 13 CO 2 to obtain the peak area A 12CO 2 of the characteristic peak of 12 CO 2 in the CO 2 gas and The peak area A 13CO2 of the characteristic peak of 13 CO 2 , and then calculate the 12 CO 2 and 13 The molar ratio of CO 2 C [12CO2] /C [13CO2] .
具体实施过程中,在进行12CO2/N2混合气体显微激光拉曼检测时:对不同配比的12CO2/N2混合气体进行激光拉曼光谱分析,能够在谱图上发现:在CO2的拉曼光谱中出现两条强特征谱线,这是CO2的费米共振二重峰,频率分别在1287cm-1和1390cm-1(即ν- [12CO2]和ν+ [12CO2])。在频率为2332cm-1处有一峰的强度非常强,这是N2的特征峰(即ν[N2])。During the specific implementation process, when performing microscopic laser Raman detection of 12 CO 2 /N 2 mixed gas: the laser Raman spectrum analysis is performed on 12 CO 2 /N 2 mixed gas with different ratios, and it can be found on the spectrum: Two strong characteristic lines appear in the Raman spectrum of CO 2 , which are the double peaks of the Fermi resonance of CO 2 , and the frequencies are respectively at 1287cm -1 and 1390cm -1 ( i.e. ] ). There is a very strong peak at the frequency of 2332cm -1 , which is the characteristic peak of N 2 (ie ν [N2] ).
具体实施过程中,对12CO2/N2混合气体进行显微激光拉曼光谱特征峰分析时:拉曼谱带的出峰位置、形状及强度仅取决于分子本身在振动过程中分子极化率的改变。因此,每一种具有拉曼活性的物质都有其特定的拉曼光谱特征,根据物质的特征拉曼光谱可以辨认出物质种类,这就是拉曼光谱定性分析的基本原理。Σj是相对拉曼散射截面标准化因子,国际上规定N2的Σj值为1,在本实验室仪器条件下经过多次试验得到12CO2的Σj值为1.49。分子的拉曼特征峰峰面积与其对应的相对拉曼散射截面标准化因子Σ的比值是A/Σ,这个比值与分子的相对摩尔浓度成正比,即:(Aa/Σa)/(Ab/Σb)=(Ca/Cb)·(Fa/Fb),其中A、C、F分别为拉曼特征峰峰面积、摩尔分数、拉曼量化因子。表1列出了12CO2/N2混合气体在不同配比条件下的拉曼光谱数据。将1287cm-1(ν- [12CO2]),1390cm-1(ν+ [12CO2])和2332cm-1(ν[N2])处的特征峰峰面积分别记为A- [12CO2],A+ [12CO2]和A1 [N2]。In the specific implementation process, when analyzing the characteristic peaks of the microscopic laser Raman spectrum of the 12 CO 2 /N 2 mixed gas: the peak position, shape and intensity of the Raman band only depend on the molecular polarization of the molecule itself during the vibration process rate change. Therefore, every substance with Raman activity has its specific Raman spectrum characteristics. According to the characteristics of the substance, the Raman spectrum can identify the type of substance, which is the basic principle of qualitative analysis of Raman spectroscopy. Σ j is the normalization factor of the relative Raman scattering cross-section, and the value of Σ j for N 2 is 1 according to the international standard, and the value of Σ j for 12 CO 2 is 1.49 after many experiments under the conditions of the laboratory equipment. The ratio of the Raman characteristic peak area of a molecule to its corresponding relative Raman scattering cross section normalization factor Σ is A/Σ, which is proportional to the relative molar concentration of the molecule, namely: (A a /Σ a )/(A b /Σ b )=(C a /C b )·(F a /F b ), where A, C, and F are the Raman characteristic peak peak area, mole fraction, and Raman quantization factor, respectively. Table 1 lists the Raman spectrum data of 12 CO 2 /N 2 mixed gas under different ratio conditions. With 1287cm -1 (ν - [12CO2] ), 1390cm -1 (ν + [12CO2] ) and 2332cm -1 (ν [N2] ) characteristic peak peak area is recorded as A - [12CO2] , A + [ 12CO2] and A 1 [N2] .
表112CO2/N2混合气体的拉曼光谱数据Table 1 Raman spectrum data of 12 CO 2 /N 2 mixed gases
具体实施过程中,通过拟合直线获得拉曼量化因子F12CO2时:12CO2的拉曼光谱出现费米振动双峰,当以12CO2与N2特征峰峰面积比K1作为纵坐标,以摩尔比C[13CO2]/C[N2]作为横坐标进行投图(如图1所示)时,得到了过零点的直线方程:y=1.16349x,并且相关系数R2为0.99919。拟合直线的斜率即F12CO2,其值为1.16349。During the specific implementation process, when the Raman quantification factor F 12CO2 is obtained by fitting a straight line: the Raman spectrum of 12 CO 2 appears Fermi vibration double peaks, when the characteristic peak area ratio K 1 of 12 CO 2 and N 2 is used as the ordinate , when the molar ratio C [13CO2] /C [N2] is used as the abscissa to project the graph (as shown in Figure 1), the linear equation of the zero-crossing point is obtained: y=1.16349x, and the correlation coefficient R2 is 0.99919 . The slope of the fitted line is F 12CO2 , and its value is 1.16349.
具体实施过程中,在进行13CO2/N2混合气体显微激光拉曼检测时,对不同配比的13CO2/N2混合气体进行激光拉曼光谱分析,能够在谱图上发现:在CO2的拉曼光谱中出现两条强特征谱线,这是CO2的费米共振二重峰,频率分别在1267cm-1和1372cm-1(即ν- [13CO2]和ν+ [13CO2])。在频率为2332cm-1处有一峰的强度非常强,这是N2的特征峰(即ν[N2])。During the specific implementation process, when performing microscopic laser Raman detection of 13 CO 2 /N 2 mixed gas, the laser Raman spectrum analysis of 13 CO 2 /N 2 mixed gas with different ratios can be found on the spectrum: Two strong characteristic lines appear in the Raman spectrum of CO 2 , which are the Fermi resonance doublets of CO 2 , and the frequencies are respectively at 1267cm -1 and 1372cm -1 (that is, ν - [13CO2] and ν + [13CO2 ] ). There is a very strong peak at the frequency of 2332cm -1 , which is the characteristic peak of N 2 (ie ν [N2] ).
具体实施过程中,对13CO2/N2混合气体进行显微激光拉曼光谱特征峰分析时:拉曼谱带的出峰位置、形状及强度仅取决于分子本身在振动过程中分子极化率的改变。因此,每一种具有拉曼活性的物质都有其特定的拉曼光谱特征,根据物质的特征拉曼光谱可以辨认出物质种类,这就是拉曼光谱定性分析的基本原理。Σj是相对拉曼散射截面标准化因子,国际上规定N2的Σj值为1,经过计算分析得到13CO2的Σj值为1.437。分子的拉曼特征峰峰面积与其对应的相对拉曼散射截面标准化因子Σ的比值是A/Σ,这个比值与分子的相对摩尔浓度成正比,即:(Aa/Σa)/(Ab/Σb)=(Ca/Cb)·(Fa/Fb),其中A、C、F分别为拉曼特征峰峰面积、摩尔分数、拉曼量化因子。表2列出了13CO2/N2混合气体摩尔比分别为0、0.166、0.8、1和1.5的拉曼光谱数据。将1267cm-1(ν- [13CO2]),1372cm-1(ν+ [13CO2])和2332cm-1(ν[N2])处的特征峰峰面积分别记为A- [13CO2],A+ [13CO2]和A2 [N2]。In the specific implementation process, when analyzing the characteristic peaks of the microscopic laser Raman spectrum of the 13 CO 2 /N 2 mixed gas: the peak position, shape and intensity of the Raman band only depend on the molecular polarization of the molecule itself during the vibration process rate change. Therefore, every substance with Raman activity has its specific Raman spectrum characteristics. According to the characteristics of the substance, the Raman spectrum can identify the type of substance, which is the basic principle of qualitative analysis of Raman spectroscopy. Σ j is the normalization factor of the relative Raman scattering cross-section, and the value of Σ j for N 2 is set to be 1 internationally. After calculation and analysis, the value of Σ j for 13 CO 2 is 1.437. The ratio of the Raman characteristic peak area of a molecule to its corresponding relative Raman scattering cross section normalization factor Σ is A/Σ, which is proportional to the relative molar concentration of the molecule, namely: (A a /Σ a )/(A b /Σ b )=(C a /C b )·(F a /F b ), where A, C, and F are the Raman characteristic peak peak area, mole fraction, and Raman quantization factor, respectively. Table 2 lists the Raman spectrum data of 13 CO 2 /N 2 mixed gas molar ratios of 0, 0.166, 0.8, 1 and 1.5, respectively. With 1267cm -1 (ν - [13CO2] ), 1372cm -1 (ν + [13CO2] ) and 2332cm -1 (ν [N2] ) The characteristic peak peak area is recorded as A - [13CO2] , A + [ 13CO2] and A2[ N2 ] .
表213CO2/N2混合气体的拉曼光谱数据Table 2 Raman spectrum data of 13 CO 2 /N 2 mixed gases
具体实施过程中,通过拟合直线获得拉曼量化因子F13CO2时,13CO2的拉曼光谱出现费米振动双峰,当以13CO2费米共振二重峰峰面积之和与N2峰面积比值K2作为纵坐标,摩尔比C[13CO2]/C[N2]作为横坐标进行投图(如图2所示)时,得到了过零点的直线方程:y=1.61086x且相关系数R2=0.99975。拟合的直线方程斜率即F13CO2,其值为1.61086。In the specific implementation process, when the Raman quantization factor F 13CO2 is obtained by fitting a straight line, the Raman spectrum of 13 CO 2 appears Fermi vibration doublets, when the sum of the peak areas of the 13 CO 2 Fermi resonance doublets and the N 2 When the peak area ratio K is used as the ordinate, and the molar ratio C [13CO2] /C [N2] is used as the abscissa to project the graph (as shown in Figure 2), the linear equation of the zero-crossing point is obtained: y=1.61086x and the correlation coefficient R 2 =0.99975. The slope of the fitted straight line equation is F 13CO2 , and its value is 1.61086.
具体实施过程中,根据公式C[12CO2]/C[13CO2]=(A12CO2/A13CO2)×(F13CO2/F12CO2)计算出混合气体中12CO2和13CO2的摩尔比C[12CO2]/C[13CO2]时:具体来说,已知拉曼量化因子F13CO2和F12CO2分别等于1.61086和1.16349,它们的比率F13CO2/F12CO2为1.3845,是个常数。因此,若能用显微激光拉曼光谱法测出13CO2和12CO2的拉曼特征峰峰面积值,则摩尔比C12CO2/C13CO2可根据A12CO2/A13CO2和F13CO2/F12CO2的乘积得出。During the specific implementation process, the molar ratio C [12CO2 of 12 CO 2 and 13 CO 2 in the mixed gas is calculated according to the formula C [12CO2] /C [13CO2] = (A 12CO2 /A 13CO2 )×(F 13CO2 /F 12CO2 ) ] /C [13CO2] : Specifically, the known Raman quantization factors F 13CO2 and F 12CO2 are respectively equal to 1.61086 and 1.16349, and their ratio F 13CO2 /F 12CO2 is 1.3845, which is a constant. Therefore, if the Raman characteristic peak area values of 13 CO 2 and 12 CO 2 can be measured by micro-laser Raman spectroscopy, the molar ratio C 12CO2 /C 13CO2 can be calculated according to A 12CO2 /A 13CO2 and F 13CO2 /F The product of 12CO2 is obtained.
下面利用本发明研究结果对CO2气体中碳同位素的组成进行定量分析进行实例说明。In the following, the quantitative analysis of the composition of carbon isotopes in CO 2 gas will be illustrated by using the research results of the present invention.
实施例1Example 1
在实验室制备了12CO2/13CO2混合型CO2人造包裹体,已知CO2人造包裹体中12CO2与13CO2的摩尔比C[12CO2]/C[13CO2]=1,接着根据公式C[12CO2]/C[13CO2]=(A12CO2/A13CO2)×(F13CO2/F12CO2),估算人造包裹体中12CO2与13CO2的摩尔比,并比较相对误差。在摩尔比为1的12CO2/13CO2人造包裹体的拉曼光谱图中,能够明显的看到出峰位置在1267cm-1(ν- [13CO2]),1372cm-1(ν+ [13CO2]),1287cm-1(ν- [12CO2])和1390cm-1(ν+ [12CO2])处的峰,它们是12CO2和13CO2的拉曼特征峰,特征峰的峰面积为A- [13CO2]、A+ [13CO2]、A- [12CO2]、A+ [12CO2],峰面积之和A- [12CO2]+A+ [12CO2]与A- [13CO2]+A+ [13CO2]分别记为A12CO2、A13CO2。表3中列出了人造包裹体中12CO2和13CO2的费米二重峰峰面积值以及用公式估算出的摩尔比。经过计算,人造包裹体的摩尔比为1.03542,它们的相对误差是3.54%。这就表明当F13CO2和F12CO2分别为1.61086和1.16349时,如果采用显微激光拉曼光谱法测出13CO2和12CO2的拉曼特征峰峰面积值,就可根据A12CO2/A13CO2和F13CO2/F12CO2的乘积估算出CO2的摩尔比C[12CO2]/C[13CO2],因此可以建立起定量分析CO2气体碳同位素激光拉曼测试方法。 12 CO 2 / 13 CO 2 mixed-type CO 2 artificial inclusions were prepared in the laboratory. It is known that the molar ratio of 12 CO 2 to 13 CO 2 in the CO 2 artificial inclusions is C [12CO2] / C [13CO2] = 1, Then, according to the formula C [12CO2] /C [13CO2] = (A 12CO2 /A 13CO2 )×(F 13CO2 /F 12CO2 ), estimate the molar ratio of 12 CO 2 to 13 CO 2 in the artificial inclusions, and compare the relative errors. In the Raman spectrum of 12 CO 2 / 13 CO 2 artificial inclusions with a molar ratio of 1, it can be clearly seen that the peak positions are at 1267cm -1 (ν - [13CO2] ), 1372cm -1 (ν + [ 13CO2] ), the peaks at 1287cm -1 (ν - [12CO2] ) and 1390cm -1 (ν + [12CO2] ), they are the Raman characteristic peaks of 12 CO 2 and 13 CO 2 , and the peak areas of the characteristic peaks are A - [13CO2] , A + [13CO2] , A - [12CO2] , A + [12CO2] , the sum of the peak areas A - [12CO2] +A + [12CO2] and A - [13CO2] +A + [13CO2 ] are respectively recorded as A 12CO2 and A 13CO2 . Table 3 lists the Fermi doublet peak area values of 12 CO 2 and 13 CO 2 in artificial inclusions and the molar ratio estimated by the formula. After calculation, the molar ratio of artificial inclusions is 1.03542, and their relative error is 3.54%. This shows that when F 13CO2 and F 12CO2 are 1.61086 and 1.16349 respectively, if the Raman characteristic peak area values of 13 CO 2 and 12 CO 2 are measured by micro-laser Raman spectroscopy, it can be calculated according to A 12CO2 /A The product of 13CO2 and F 13CO2 /F 12CO2 can estimate the molar ratio C [12CO2] /C [13CO2] of CO 2 , so a quantitative analysis of CO 2 gas carbon isotope laser Raman test method can be established.
表3实施例1包裹体样品检测数据Table 3 Examination data of inclusion samples in Example 1
实施例2Example 2
在实验室制备了12CO2/13CO2混合型CO2人造包裹体,已知12CO2与13CO2的摩尔比C[12CO2]/C[13CO2]=2,接着根据公式C[12CO2]/C[13CO2]=(A12CO2/A13CO2)×(F13CO2/F12CO2),估算人造包裹体中12CO2与13CO2的摩尔比,并比较相对误差。在摩尔比为2的12CO2/13CO2人造包裹体的拉曼光谱图中能够明显的看到出峰位置在1267cm-1(ν- [13CO2]),1372cm-1(ν+ [13CO2]),1287cm-1(ν- [12CO2])和1390cm-1(ν+ [12CO2])处的峰,它们是12CO2和13CO2的拉曼特征峰,记特征峰的峰面积为A- [13CO2]、A+ [13CO2]、A- [12CO2]、A+ [12CO2],峰面积之和A- [12CO2]+A+ [12CO2]与A- [13CO2]+A+ [13CO2]分别记为A12CO2、A13CO2。表4中列出了人造包裹体中12C和13C的费米二重峰峰面积值以及用公式估算出的摩尔比。经过计算,人造包裹体的摩尔比分别为1.93855,它们的相对误差是-1.53%。这就表明当F13CO2和F12CO2分别为1.61086和1.16349时,如果采用显微激光拉曼光谱法测出13CO2和12CO2的拉曼特征峰峰面积值,就可根据A12CO2/A13CO2和F13CO2/F12CO2的乘积估算出CO2的摩尔比C[12CO2]/C[13CO2],因此可以建立起定量分析CO2气体碳同位素激光拉曼测试方法。 12 CO 2 / 13 CO 2 mixed-type CO 2 artificial inclusions were prepared in the laboratory, and the molar ratio of 12 CO 2 to 13 CO 2 was known to be C [12CO2] / C [13CO2] = 2, and then according to the formula C [12CO2 ] /C [13CO2] = (A 12CO2 /A 13CO2 )×(F 13CO2 /F 12CO2 ), estimate the molar ratio of 12 CO 2 to 13 CO 2 in artificial inclusions, and compare the relative errors. In the Raman spectrum of 12 CO 2 / 13 CO 2 artificial inclusions with a molar ratio of 2, it can be clearly seen that the peak positions are at 1267cm -1 (ν - [13CO2] ), 1372cm -1 (ν + [13CO2 ] ), the peaks at 1287cm -1 (ν - [12CO2] ) and 1390cm -1 (ν + [12CO2] ), they are the Raman characteristic peaks of 12 CO 2 and 13 CO 2 , and the peak area of the characteristic peaks is A - [13CO2] , A + [13CO2] , A - [12CO2] , A + [12CO2] , the sum of the peak areas A - [12CO2] +A + [12CO2] and A - [13CO2] +A + [13CO2 ] are respectively recorded as A 12CO2 and A 13CO2 . Table 4 lists the Fermi doublet peak area values of 12 C and 13 C in the artificial inclusions and the molar ratio estimated by the formula. After calculation, the molar ratio of artificial inclusions is 1.93855, and their relative error is -1.53%. This shows that when F 13CO2 and F 12CO2 are 1.61086 and 1.16349 respectively, if the Raman characteristic peak area values of 13 CO 2 and 12 CO 2 are measured by micro-laser Raman spectroscopy, it can be calculated according to A 12CO2 /A The product of 13CO2 and F 13CO2 /F 12CO2 can estimate the molar ratio C [12CO2] /C [13CO2] of CO 2 , so a quantitative analysis of CO 2 gas carbon isotope laser Raman test method can be established.
表4实施例2包裹体样品检测数据Table 4 Examination data of inclusion samples in Example 2
综上所述,本发明是对制备的不同比例12CO2/N2和13CO2/N2混合气体样品进行显微激光拉曼检测分析,气体的拉曼特征峰峰面积比与其摩尔比成正比例关系,拟合方程的斜率被认为是拉曼量化因子。CO2气体碳同位素摩尔比可根据拉曼峰峰面积比和拉曼量化因子比的乘积求出。本发明由于采用的显微激光拉曼光谱法具有高精度、原位、无损和快速等特点,因此,利用显微激光拉曼光谱法能够定量分析单个流体包裹体CO2碳同位素的组成,具有很好的应用前景。To sum up, the present invention is to perform microscopic laser Raman detection and analysis on the prepared mixed gas samples with different ratios of 12 CO 2 /N 2 and 13 CO 2 /N 2 , and the Raman characteristic peak area ratio of the gas to its molar ratio In direct proportion, the slope of the fitted equation is considered as the Raman quantification factor. The carbon isotope molar ratio of CO 2 gas can be calculated from the product of Raman peak area ratio and Raman quantization factor ratio. Because the micro-laser Raman spectroscopy adopted by the present invention has the characteristics of high precision, in-situ, non-destructive and fast, etc., the micro-laser Raman spectroscopy can be used to quantitatively analyze the composition of CO2 carbon isotopes in a single fluid inclusion, which has the advantages of Very good application prospects.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent changes made to the above embodiments according to the technical essence of the invention still belong to the protection scope of the technical solution of the invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511018657.1A CN105486675B (en) | 2015-12-29 | 2015-12-29 | Quantitative analysis CO2The LR laser raman detection method of gas carbon isotope composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511018657.1A CN105486675B (en) | 2015-12-29 | 2015-12-29 | Quantitative analysis CO2The LR laser raman detection method of gas carbon isotope composition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105486675A true CN105486675A (en) | 2016-04-13 |
CN105486675B CN105486675B (en) | 2018-07-03 |
Family
ID=55673798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511018657.1A Expired - Fee Related CN105486675B (en) | 2015-12-29 | 2015-12-29 | Quantitative analysis CO2The LR laser raman detection method of gas carbon isotope composition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105486675B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108235733A (en) * | 2017-12-29 | 2018-06-29 | 深圳达闼科技控股有限公司 | Substance identification and cloud system based on Raman spectrum |
CN108593628A (en) * | 2018-07-31 | 2018-09-28 | 陕西中医药大学 | A kind of LR laser raman detection method of quantitative analysis artemislnin content |
CN109596596A (en) * | 2018-12-21 | 2019-04-09 | 黑龙江科技大学 | Multicomponent Gas Hydrate quantitative analysis method based on Raman spectroscopy |
CN112697768A (en) * | 2020-12-03 | 2021-04-23 | 重庆大学 | Component competition analysis method for coal bed gas purification process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129394A (en) * | 1997-03-24 | 1999-02-02 | General Electric Co <Ge> | Production of low-cost diamond anvil modified by engineering method in regard to isotope |
CN2558989Y (en) * | 2002-08-21 | 2003-07-02 | 中国科学院大连化学物理研究所 | Test device for measuring gas component concentration by spontaneous Raman scattering technique |
US20120236882A1 (en) * | 2011-03-15 | 2012-09-20 | Lawrence Livermore National Security, Llc | Method and system for suppression of stimulated raman scattering in laser materials |
CN203216849U (en) * | 2013-05-12 | 2013-09-25 | 长安大学 | Gas composition online analysis device |
CN104267018A (en) * | 2014-10-27 | 2015-01-07 | 武汉四方光电科技有限公司 | Method for processing gas concentration signal in Raman gas analyzer |
-
2015
- 2015-12-29 CN CN201511018657.1A patent/CN105486675B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129394A (en) * | 1997-03-24 | 1999-02-02 | General Electric Co <Ge> | Production of low-cost diamond anvil modified by engineering method in regard to isotope |
CN2558989Y (en) * | 2002-08-21 | 2003-07-02 | 中国科学院大连化学物理研究所 | Test device for measuring gas component concentration by spontaneous Raman scattering technique |
US20120236882A1 (en) * | 2011-03-15 | 2012-09-20 | Lawrence Livermore National Security, Llc | Method and system for suppression of stimulated raman scattering in laser materials |
CN203216849U (en) * | 2013-05-12 | 2013-09-25 | 长安大学 | Gas composition online analysis device |
CN104267018A (en) * | 2014-10-27 | 2015-01-07 | 武汉四方光电科技有限公司 | Method for processing gas concentration signal in Raman gas analyzer |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108235733A (en) * | 2017-12-29 | 2018-06-29 | 深圳达闼科技控股有限公司 | Substance identification and cloud system based on Raman spectrum |
CN108593628A (en) * | 2018-07-31 | 2018-09-28 | 陕西中医药大学 | A kind of LR laser raman detection method of quantitative analysis artemislnin content |
CN109596596A (en) * | 2018-12-21 | 2019-04-09 | 黑龙江科技大学 | Multicomponent Gas Hydrate quantitative analysis method based on Raman spectroscopy |
CN112697768A (en) * | 2020-12-03 | 2021-04-23 | 重庆大学 | Component competition analysis method for coal bed gas purification process |
Also Published As
Publication number | Publication date |
---|---|
CN105486675B (en) | 2018-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106198488B (en) | A kind of ature of coal quick determination method based on Raman spectrum analysis | |
Goodale et al. | pXRF: a study of inter-instrument performance | |
Pöschl | Aerosol particle analysis: challenges and progress. | |
CN105486675B (en) | Quantitative analysis CO2The LR laser raman detection method of gas carbon isotope composition | |
Lupoi et al. | Assessment of thermal maturity trends in Devonian–Mississippian source rocks using Raman spectroscopy: limitations of peak-fitting method | |
Gazulla et al. | Nitrogen determination by SEM‐EDS and elemental analysis | |
CN103529012B (en) | A kind of Raman spectrum quantitative being applicable to carbon source in blast furnace dust | |
Utry et al. | Mass specific optical absorption coefficient of HULIS aerosol measured by a four-wavelength photoacoustic spectrometer at NIR, VIS and UV wavelengths | |
US11592398B2 (en) | Augmented Raman analysis of a gas mixture | |
Ferguson et al. | The dependence of the measured surface energy of graphene on nanosheet size | |
CN105241912B (en) | Low-field nuclear magnetic resonance measures the method and device of the shale content of organic matter | |
Li et al. | Development and application of the multi-wavelength cavity ring-down aerosol extinction spectrometer | |
Wu et al. | The visible spectroscopy of iron oxide minerals in dust particles from ice cores on the Tibetan Plateau | |
Liu et al. | A New Quantitative Approach for Element‐Mineral Determination Based on “EDS (Energy Dispersive Spectroscopy) Method” | |
CN106442474A (en) | Cement raw meal three moduli measuring method based on partial least squares | |
Delarue et al. | Can NanoSIMS probe quantitatively the geochemical composition of ancient organic-walled microfossils? A case study from the early Neoproterozoic Liulaobei Formation | |
CN105651757B (en) | A method for measuring carbon isotope value δ13C of CO2 gas | |
CN104897704A (en) | Method for quantitatively analyzing components in shale | |
Martin et al. | Elemental analysis of environmental and biological samples using laser‐induced breakdown spectroscopy and pulsed Raman spectroscopy | |
CN103868783B (en) | A kind of inclusion thin slice heat treatment method being applicable to micro laser Raman spectroscopy and analyzing | |
Liu et al. | A source dilution sampling system for characterization of engine emissions under transient or steady-state operation | |
Costantini et al. | Comparison of semiquantification experimental methodologies using micro‐Raman spectroscopy: palme software as an alternative tool for the study of salt efflorescence | |
RU2646427C1 (en) | Method for determining indexes of homogeneity of disperse material by the spectral method and method for determining the scale boundaries of homogeneity of disperse material by the spectral method | |
CN206095945U (en) | SERS detection device to aquatic contaminant detection | |
CN105181624A (en) | Scattering analogy-based terahertz spectroscopy quantitative analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Jiajia Inventor after: Wu Xiaoli Inventor after: Wang Yongwei Inventor after: Li Rongxi Inventor after: Dong Hui Inventor after: Wang Zhihai Inventor after: Zhao Bangsheng Inventor after: Wang Ning Inventor after: Cheng Jinghua Inventor after: Qin Xiaoli Inventor after: Li Delu Inventor before: Li Rongxi Inventor before: Wu Xiaoli Inventor before: Wang Yongwei Inventor before: Li Jiajia Inventor before: Dong Hui Inventor before: Wang Zhihai Inventor before: Zhao Bangsheng Inventor before: Wang Ning Inventor before: Cheng Jinghua Inventor before: Qin Xiaoli Inventor before: Li Delu |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180703 Termination date: 20191229 |
|
CF01 | Termination of patent right due to non-payment of annual fee |