CN105465267A - Method for designing intelligent vibration isolation control system of flexible buoyant raft - Google Patents

Method for designing intelligent vibration isolation control system of flexible buoyant raft Download PDF

Info

Publication number
CN105465267A
CN105465267A CN201510830731.3A CN201510830731A CN105465267A CN 105465267 A CN105465267 A CN 105465267A CN 201510830731 A CN201510830731 A CN 201510830731A CN 105465267 A CN105465267 A CN 105465267A
Authority
CN
China
Prior art keywords
data obtained
output
power supply
limit switch
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510830731.3A
Other languages
Chinese (zh)
Other versions
CN105465267B (en
Inventor
杨靖宇
张杜江
顾明铖
崔轩鸣
张靖宇
刘智奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aerospace University
Original Assignee
Shenyang Aerospace University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aerospace University filed Critical Shenyang Aerospace University
Priority to CN201510830731.3A priority Critical patent/CN105465267B/en
Publication of CN105465267A publication Critical patent/CN105465267A/en
Application granted granted Critical
Publication of CN105465267B publication Critical patent/CN105465267B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/30Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
    • B63H21/302Mounting of propulsion plant or unit, e.g. for anti-vibration purposes with active vibration damping

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明的目的是提供一种柔性浮筏智能隔振控制系统设计方法,包括步骤1:根据柔性浮筏隔振系统结构图确定传感器、步进电机、步进电机驱动器、非自锁限位开关及其电源和电机减速器组合体的配置数量、装配位置;步骤2:传感器、步进电机、步进电机驱动器、电机减速器组合体、非自锁限位开关及其电源的选型:步骤3:传感器、步进电机、步进电机驱动器、驱动电源、电机减速器组合体、非自锁限位开关及其电源、Dspace接线与安装:步骤4:设计MATLAB/Simulink控制算法,设置相关通道:步骤5:将MATLAB/Simulink控制算法下载到Dspace硬件当中,在线运行与监测。避免了现有技术中易产生控制溢出,观测溢出以及智能化控制器设计复杂的问题。<!-- 2 -->

The purpose of the present invention is to provide a design method for a flexible floating raft intelligent vibration isolation control system, including step 1: determine the sensor, stepping motor, stepping motor driver, and non-self-locking limit switch according to the structural diagram of the flexible floating raft vibration isolation system The configuration quantity and assembly position of its power supply and motor reducer assembly; Step 2: Selection of sensors, stepper motors, stepper motor drivers, motor reducer assemblies, non-self-locking limit switches and their power supplies: Step 3: Sensor, stepper motor, stepper motor driver, drive power supply, motor reducer assembly, non-self-locking limit switch and its power supply, Dspace wiring and installation: Step 4: Design MATLAB/Simulink control algorithm and set related channels : Step 5: Download the MATLAB/Simulink control algorithm to the Dspace hardware, and run and monitor it online. The problems of control overflow, observation overflow and intelligent controller design complexity in the prior art are avoided. <!-- 2 -->

Description

一种柔性浮筏智能隔振控制系统设计方法A Design Method for Intelligent Vibration Isolation Control System of Flexible Floating Raft

技术领域technical field

本发明属于隔振系统技术领域,特别是涉及一种柔性浮筏智能隔振控制系统设计方法。The invention belongs to the technical field of vibration isolation systems, in particular to a design method for a flexible floating raft intelligent vibration isolation control system.

背景技术Background technique

潜艇的声隐身能力是关系其生命力和战斗力的重要因素之一,因此降低潜艇的振动噪声水平是一件非常重要的工作。浮筏是目前广泛应用于各国潜艇的一种减振降噪设备,它能显著地降低艇内设备的高频段振动向艇体的传递,但在低频段的减振效果以及智能化、通用化方面却不甚理想。目前,公知的浮筏隔振系统的动力学建模方法中主要有多刚体动力学建模方法、有限元动力学建模方法、阻抗综合建模分析方法、模态阻抗综合建模分析方法、基于四端参数的矩阵建模分析方法等,多刚体建模方法的基本思想是将设备、筏体及基础处理为没有弹性和阻尼的刚体,将隔振器处理为无质量的弹性阻尼元件,由于其物理概念清晰,建模分析方便,计算规模相对较小,而且更重要的是它反映了系统的主要特征,具有很强的工程实用价值。有限元建模方法基于考虑筏体的弹性影响,将筏体视为弹性体进行有限元划分,设备仍作为刚体处理,与多刚体力学建模方法相比,展宽了系统频带,提供了更丰富的高频信息。阻抗综合建模方法是基于两个子系统在连接点处的阻抗与外力关系满足叠加原理这一基本思想来分析问题的,其基本方法是将构成系统的各组成部分单独考虑,用机械阻抗来描述其各自的特性,再通过各部分连接点处的连接关系综合得到整个系统的阻抗方程,从而获得系统的动力学问题的解。模态阻抗综合建模方法在以往阻抗分析方法的基础上,采用模态坐标代替物理坐标,将各物理量用模态量表示,通过由模态坐标表示的部件阻抗矩阵叠加得到系统矩阵,这样可以方便地根据求得的系统模态坐标解来计算系统任意点的动力响应。基于结构四端参数来分析隔振系统的结构动力学实际上是一种传递矩阵分析方法,对每一子结构用导纳矩阵来描述其特性,然后通过各子结构的特性矩阵运算得到整个系统的解。The acoustic stealth ability of a submarine is one of the important factors related to its vitality and combat effectiveness, so reducing the vibration and noise level of a submarine is a very important task. Floating raft is a kind of vibration and noise reduction equipment widely used in submarines in various countries. It can significantly reduce the transmission of high-frequency vibration of equipment in the boat to the hull. It's not ideal. At present, the known dynamic modeling methods of floating raft vibration isolation systems mainly include multi-rigid body dynamic modeling methods, finite element dynamic modeling methods, impedance comprehensive modeling and analysis methods, modal impedance comprehensive modeling and analysis methods, The basic idea of the multi-rigid body modeling method is to treat the equipment, raft and foundation as rigid bodies without elasticity and damping, and treat the vibration isolator as a massless elastic damping element based on the matrix modeling analysis method of four-terminal parameters. Because of its clear physical concept, convenient modeling and analysis, relatively small calculation scale, and more importantly, it reflects the main characteristics of the system, so it has strong engineering practical value. The finite element modeling method is based on the consideration of the elastic influence of the raft body. The raft body is regarded as an elastic body for finite element division, and the equipment is still treated as a rigid body. Compared with the multi-rigid body mechanical modeling method, the system frequency band is widened and more abundant high-frequency information. The impedance comprehensive modeling method is based on the basic idea that the relationship between the impedance and the external force of the two subsystems at the connection point satisfies the superposition principle to analyze the problem. The basic method is to consider each component of the system separately and describe it with mechanical impedance. Their respective characteristics, and then through the connection relationship at the connection points of each part, the impedance equation of the whole system is synthesized, so as to obtain the solution of the dynamic problem of the system. Based on the previous impedance analysis method, the modal impedance comprehensive modeling method uses modal coordinates instead of physical coordinates, expresses each physical quantity with modal quantities, and obtains the system matrix by superimposing the component impedance matrix represented by the modal coordinates, which can It is convenient to calculate the dynamic response of any point of the system according to the obtained system modal coordinate solution. Analyzing the structural dynamics of the vibration isolation system based on the four-terminal parameters of the structure is actually a method of transfer matrix analysis. For each substructure, the admittance matrix is used to describe its characteristics, and then the entire system is obtained through the operation of the characteristic matrix of each substructure. solution.

现有浮筏隔振系统并未实现智能化通用型宽频带性设计,浮筏隔振系统包含构型设计、动力学建模、控制系统设计三个部分,现有的建模方法使得隔振主动控制系统中易产生控制溢出,观测溢出以及不易实现智能控制器设计复杂等问题,因此限制了主动隔振技术在实际工程中的应用。为了实现柔性浮筏隔振系统智能化通用型宽频带控制,首先提出新的浮筏隔振系统构型,其次建立柔性浮筏隔振系统动力学模型,最后建模问题是首要解决的问题。考虑到控制的实时性,所建的动力学模型要结构简单、维数低、便于宽频带控制。The existing floating raft vibration isolation system has not realized the intelligent general-purpose wide-band design. The floating raft vibration isolation system includes three parts: configuration design, dynamic modeling, and control system design. The existing modeling method makes the vibration isolation In the active control system, it is easy to produce control overflow, observation overflow and difficult to realize the complex design of intelligent controller, which limits the application of active vibration isolation technology in actual engineering. In order to realize the intelligent general-purpose broadband control of the flexible floating raft vibration isolation system, a new floating raft vibration isolation system configuration is proposed first, and then the dynamic model of the flexible floating raft vibration isolation system is established. Finally, the modeling problem is the primary problem to be solved. Considering the real-time nature of control, the dynamic model should be simple in structure, low in dimension, and convenient for broadband control.

发明内容Contents of the invention

本发明为了克服现有技术存在的缺陷,本发明的目的是提供一种柔性浮筏智能隔振控制系统设计方法。In order to overcome the defects of the prior art, the purpose of the present invention is to provide a design method for an intelligent vibration isolation control system of a flexible floating raft.

本发明所采用的技术解决方案包括如下步骤:The technical solution adopted in the present invention comprises the steps:

步骤1:根据柔性浮筏隔振系统结构图确定传感器、步进电机、步进电机驱动器、非自锁限位开关及其电源和电机减速器组合体的配置数量、装配位置:Step 1: Determine the configuration quantity and assembly position of sensors, stepper motors, stepper motor drivers, non-self-locking limit switches and their power supply and motor reducer assemblies according to the structural diagram of the flexible floating raft vibration isolation system:

所述的传感器应粘接在筏架底面。The sensor should be bonded to the bottom surface of the raft.

所述的非自锁限位开关在步进电机丝杠的左端与右端各设置一个,在电机减速器组合体上方的弹簧导杆上端和下端各设置一个。The non-self-locking limit switches are provided one at the left end and the right end of the lead screw of the stepping motor, and one at the upper end and the lower end of the spring guide rod above the motor reducer assembly.

步骤2:传感器、步进电机、步进电机驱动器、电机减速器组合体、非自锁限位开关及其电源的选型:Step 2: Selection of sensor, stepper motor, stepper motor driver, motor reducer assembly, non-self-locking limit switch and its power supply:

传感器选型依据:选择IEPE压电加速度振动传感器,其性能指标如下:电缆接头为BNC接头、外壳材料为不锈钢、横向灵敏度应小于5%、幅值线性应小于1%、激励电压为18Vdc~28Vdc、激励电流为2~10mA、输出电压信号为±10V、输出阻抗为100Ω、灵敏度大于等于50mV/g、频响范围Hz(±10%)为0.2~4k、量程为大于等于±10g、温度范围为-40~+121℃、重量小于30克;Sensor type selection basis: IEPE piezoelectric acceleration vibration sensor is selected, and its performance indicators are as follows: the cable connector is BNC connector, the shell material is stainless steel, the lateral sensitivity should be less than 5%, the amplitude linearity should be less than 1%, and the excitation voltage is 18Vdc~28Vdc , The excitation current is 2~10mA, the output voltage signal is ±10V, the output impedance is 100Ω, the sensitivity is greater than or equal to 50mV/g, the frequency response range Hz (±10%) is 0.2~4k, the measuring range is greater than or equal to ±10g, and the temperature range The temperature is -40~+121℃, and the weight is less than 30 grams;

步进电机选型依据:步距角小于等于1.8°、温升小于80℃、环境温度-40~+121℃、径向间隙小于0.02毫米、轴向间隙小于0.08毫米、静转矩大于0.39N.m;步进电机驱动器选型依据:工作温度-40~+45℃、湿度要求为不能结露,不能有水珠、禁止有可燃气体和导电灰尘,其他性能指标需与步进电机相配套;Stepper motor selection basis: step angle less than or equal to 1.8°, temperature rise less than 80°C, ambient temperature -40~+121°C, radial clearance less than 0.02mm, axial clearance less than 0.08mm, static torque greater than 0.39N.m ;Basis for selection of stepper motor driver: working temperature -40~+45℃, humidity requirements: no condensation, no water droplets, no combustible gas and conductive dust, other performance indicators must be matched with the stepper motor;

电机减速器组合体选型依据:额定电压大于12V、空载转速大于等于237rpm、负载转速大于等于165rpm、负载扭矩0.3kg.cm、功率大于0.5W;Motor reducer combination selection basis: rated voltage greater than 12V, no-load speed greater than or equal to 237rpm, load speed greater than or equal to 165rpm, load torque 0.3kg.cm, power greater than 0.5W;

非自锁限位开关选型依据:额定工作电压小于等于24V,其外形几何尺寸不得大于电机减速去组合体上端弹簧内径;Non-self-locking limit switch selection basis: the rated working voltage is less than or equal to 24V, and its geometrical dimensions shall not be greater than the inner diameter of the spring at the upper end of the motor deceleration assembly;

非自锁限位开关电源选型依据:直流电源,额定工作电压小于等于24V;Non-self-locking limit switch power supply selection basis: DC power supply, rated working voltage is less than or equal to 24V;

步骤3:传感器、步进电机、步进电机驱动器、驱动电源、电机减速器组合体、非自锁限位开关及其电源、Dspace接线与安装:Step 3: Sensor, stepper motor, stepper motor driver, drive power supply, motor reducer assembly, non-self-locking limit switch and its power supply, Dspace wiring and installation:

传感器的接线与安装:每个传感器与DspaceAD通道相连;Wiring and installation of sensors: each sensor is connected to DspaceAD channel;

电源的接线与安装:驱动电源与步进电机驱动器相连接;Wiring and installation of the power supply: the drive power supply is connected to the stepper motor driver;

直流减速电机的接线与安装:电机减速器组合体直接与DspaceDA通道相连;非自锁限位开关接线与安装:与配套电源形成并联回路;Wiring and installation of DC geared motor: the motor reducer assembly is directly connected to the DspaceDA channel; wiring and installation of non-self-locking limit switch: form a parallel circuit with the supporting power supply;

步骤4:设计MATLAB/Simulink控制算法,设置相关通道:Step 4: Design the MATLAB/Simulink control algorithm and set the relevant channels:

仿真模型采用模块化设计,模块数量的多少取决于,浮筏隔振系统模块数量的多少,其中,如图5单个模块控制算法流程如下:The simulation model adopts a modular design, and the number of modules depends on the number of modules of the floating raft vibration isolation system. Among them, as shown in Figure 5, the control algorithm flow of a single module is as follows:

步骤4.1:Step 4.1:

步骤4.1.1:将上限位开关1收集到的数据与下限位开关1收集到的数据进行与运算;Step 4.1.1: Perform an AND operation on the data collected by the upper limit switch 1 and the data collected by the lower limit switch 1;

步骤4.1.2:将步骤4.1.1得到的数据与0进行比较运算;Step 4.1.2: compare the data obtained in step 4.1.1 with 0;

步骤4.1.3:将步骤4.1.2得到的数据与0进行异或运算;Step 4.1.3: XOR the data obtained in step 4.1.2 with 0;

步骤4.2:将传感器1收集的数据与0进行比较,如果大于等于0,则输出1,否则输出0;Step 4.2: Compare the data collected by sensor 1 with 0, if it is greater than or equal to 0, output 1, otherwise output 0;

步骤4.3:Step 4.3:

步骤4.3.1:将右限位开关1和左位开关1收集到的数据进行或运算;Step 4.3.1: OR the data collected by the right limit switch 1 and the left limit switch 1;

步骤4.3.2:将步骤4.3.1得到的数据与0进行比较运算;Step 4.3.2: compare the data obtained in step 4.3.1 with 0;

步骤4.3.3:将步骤4.3.2得到的数据与0进行异或运算;Step 4.3.3: XOR the data obtained in step 4.3.2 with 0;

步骤4.4:将方波脉冲信号与1进行与运算;Step 4.4: AND the square wave pulse signal with 1;

步骤4.5:将1与1进行与运算;Step 4.5: AND operation of 1 and 1;

步骤4.6:Step 4.6:

步骤4.6.1:将步骤4.1.3得到的数据与步骤4.2得到的数据进行与运算;Step 4.6.1: Perform an AND operation on the data obtained in step 4.1.3 and the data obtained in step 4.2;

步骤4.6.2:将步骤4.6.1得到的数据与0进行比较,如果大于0,则输出1,否则输出-1;Step 4.6.2: Compare the data obtained in step 4.6.1 with 0, if it is greater than 0, output 1, otherwise output -1;

步骤4.6.3:将步骤4.6.2得到的数据转化为double类型,通过输出通道1进行输出;Step 4.6.3: convert the data obtained in step 4.6.2 into double type, and output it through output channel 1;

步骤4.7:Step 4.7:

步骤4.7.1:将步骤4.2得到的数据与步骤4.3.3得到的数据进行与运算;Step 4.7.1: performing an AND operation on the data obtained in step 4.2 and the data obtained in step 4.3.3;

步骤4.7.2:将步骤4.7.1得到的数据通过BIT#24通道进行输出;Step 4.7.2: Output the data obtained in step 4.7.1 through the BIT#24 channel;

步骤4.8:步骤4.4得到的数据通过BIT#25通道进行输出;Step 4.8: The data obtained in step 4.4 is output through the BIT#25 channel;

步骤4.9:步骤4.5得到的数据通过BIT#26通道和BIT#27通道进行输出;步骤5:将MATLAB/Simulink控制算法下载到Dspace硬件当中,在线运行与监测。Step 4.9: The data obtained in step 4.5 is output through the BIT#26 channel and BIT#27 channel; Step 5: Download the MATLAB/Simulink control algorithm to the Dspace hardware for online operation and monitoring.

与现有技术相比,本发明所具有的有益效果为:充分利用当前科技平台,实现浮筏控制系统智能化,使得浮筏隔振控制系统执行效率高,在工程实践中简单易行,便于产业化推广。Compared with the prior art, the present invention has the beneficial effects of: making full use of the current technology platform to realize the intelligentization of the floating raft control system, making the floating raft vibration isolation control system highly efficient, simple and easy to implement in engineering practice, and convenient Industrialization promotion.

附图说明Description of drawings

图1为本发明的宽频带柔性浮筏隔振系统的结构示意图;Fig. 1 is the structural representation of broadband flexible floating raft vibration isolation system of the present invention;

图2为本发明的宽频带柔性浮筏隔振系统的结构示意图;Fig. 2 is the structural representation of broadband flexible floating raft vibration isolation system of the present invention;

图3为本发明的宽频带柔性浮筏隔振系统的结构爆炸图;Fig. 3 is the structural exploded diagram of broadband flexible floating raft vibration isolation system of the present invention;

图4为本发明的宽频带柔性浮筏隔振系统的结构爆炸图;Fig. 4 is the structural explosion diagram of broadband flexible floating raft vibration isolation system of the present invention;

图5是单个模块系统方法流程图;Fig. 5 is a flow chart of a single module system method;

图6是系统接线图;Fig. 6 is a system wiring diagram;

图7是4个模块系统方法流程图。Figure 7 is a flow chart of the 4 module system method.

具体实施方式detailed description

如图1-图4所示,一种柔性浮筏智能隔振系统,包括筏架(1)、固定底板(2)、弹簧导杆(3)、可移动支撑弹簧(4)、四角顶杆(5)、侧面顶杆(6)、四角隔振弹簧(7)、侧面弹簧(8)、顶端滑槽(9)、底端滑槽(10)、顶端滑块(11)、底端滑块(12)、电机减速器组合体(13)、丝杠(14)、步进电机(15)、传感器和非自锁限位开关,其中设置于上方的筏架(1)和设置于下方固定底板(2)用于固连它们中间的零部件,在所述筏架(1)和所述固定底板(2)间设置有弹簧导杆(3),所述弹簧导杆(3)内嵌于所述可移动支撑弹簧(4)中,在所述筏架(1)和所述固定底板(2)的四边分别设置有四角顶杆(5)、侧面顶杆(6),所述四角隔振弹簧(7)内嵌于该四角顶杆(5)中,所述侧面弹簧(8)内嵌于该侧面顶杆(6)中,所述筏架(1)的底面设置有顶端滑槽(9),同时在所述固定底板(2)的上面对应位置上设置有底端滑槽(10),所述可移动支撑弹簧(4)的上端设置有凹形顶端滑块(11),该顶端滑块(11)内嵌在所述凹形的顶端滑槽(9)中,所述可移动支撑弹簧(4)的下端连接所述电机减速器组合体(13),所述电机减速器组合体(13)下端设置有凸形底端滑块(12),该底端滑块(12)内嵌于所述底端滑槽(10)中,该底端滑块(12)中间设置有供所述丝杠(14)螺纹连接的圆孔,所述丝杠(14)一端与所述步进电机(15)相连,所述的非自锁限位开关分别设置在步进电机丝杠的左端与右端和电机减速器组合体上方的弹簧导杆上端和下端。As shown in Figures 1-4, a flexible floating raft intelligent vibration isolation system includes a raft frame (1), a fixed bottom plate (2), a spring guide rod (3), a movable support spring (4), and a four-corner push rod (5), side push rod (6), four-corner vibration isolation spring (7), side spring (8), top chute (9), bottom chute (10), top slider (11), bottom slider block (12), motor reducer assembly (13), lead screw (14), stepper motor (15), sensor and non-self-locking limit switch, wherein the raft frame (1) arranged on the top and the raft (1) arranged on the bottom The fixed bottom plate (2) is used to fix the parts in the middle of them, and a spring guide rod (3) is arranged between the raft (1) and the fixed bottom plate (2), and the spring guide rod (3) Embedded in the movable support spring (4), the four sides of the raft frame (1) and the fixed bottom plate (2) are respectively provided with four corner push rods (5) and side push rods (6). The four-corner vibration isolation spring (7) is embedded in the four-corner push rod (5), the side spring (8) is embedded in the side push rod (6), and the bottom surface of the raft frame (1) is provided with a top A chute (9), while a bottom chute (10) is provided on the upper corresponding position of the fixed base plate (2), and a concave top slide block (11) is provided on the upper end of the movable supporting spring (4). ), the top slider (11) is embedded in the concave top chute (9), the lower end of the movable support spring (4) is connected to the motor reducer assembly (13), the The lower end of the motor reducer assembly (13) is provided with a convex bottom slider (12), the bottom slider (12) is embedded in the bottom chute (10), the bottom slider (12 ) is provided with a round hole for the threaded connection of the lead screw (14), one end of the lead screw (14) is connected with the stepper motor (15), and the non-self-locking limit switches are respectively arranged in the step Enter the left end and the right end of the motor lead screw and the upper and lower ends of the spring guide rod above the motor reducer assembly.

还包括轴承支座(16)、联轴器(17)和固定支架(18),所述轴承支座(16)设置在所述丝杠(14)的末端,所述联轴器(17)设置在所述弹簧导杆(3)的下端,用于连接所述丝杠(14)与所述弹簧导杆(3),使之共同旋转以传递扭矩,所述固定支架(18)将所述底端滑槽(10)、步进电机(15)、轴承支座(16)固定在所述固定底板(2)上,保持其稳定性。Also comprise bearing support (16), coupling (17) and fixed support (18), described bearing support (16) is arranged on the end of described leading screw (14), described coupling (17) It is arranged at the lower end of the spring guide rod (3), and is used to connect the screw (14) and the spring guide rod (3) so that they rotate together to transmit torque, and the fixed bracket (18) connects the Described bottom end chute (10), stepper motor (15), bearing support (16) are fixed on the described fixed base plate (2), keep its stability.

还包括直角支架(19)、套筒(20),所述直角支架(19)和套筒(20)用于固定并连接所述四角顶杆(5)及侧面顶杆(6)。It also includes a right-angle bracket (19), a sleeve (20), and the right-angle bracket (19) and the sleeve (20) are used for fixing and connecting the quadrangular push rod (5) and the side push rod (6).

所述顶端滑块(11)与所述顶端滑槽(9)间隙配合,所述底端滑块(12)与所述底端滑槽(10)间隙配合,所述弹簧导杆(3)与所述移动支撑弹簧(4)间隙配合,所述弹簧导杆(3)与所述联轴器(17)采用螺纹连接,所述固定支架(18)与所述底端滑槽(10)过盈配合,所述四角顶杆(5)与所述四角隔振弹簧(7)间隙配合,所述四角隔振弹簧(7)、侧面弹簧(8)分别与所述套筒(20)间隙配合。The top slider (11) is in clearance fit with the top chute (9), the bottom slider (12) is in clearance fit with the bottom chute (10), and the spring guide rod (3) It is in clearance fit with the moving support spring (4), the spring guide rod (3) is threadedly connected with the shaft coupling (17), the fixed bracket (18) is connected with the bottom chute (10) Interference fit, the four-corner push rod (5) is in clearance fit with the four-corner vibration isolation spring (7), and the four-corner vibration isolation spring (7), side spring (8) has a gap with the sleeve (20) respectively Cooperate.

还包括垫片(21),所述垫片(21)设置在所述电机减速组合体(13)与所述弹簧导杆(3)之间,以增加系统的稳定性。A spacer (21) is also included, and the spacer (21) is arranged between the motor reduction assembly (13) and the spring guide rod (3), so as to increase the stability of the system.

采用上述系统的控制方法本发明所采用的技术解决方案包括如下步骤:Adopt the control method of above-mentioned system The technical solution adopted in the present invention comprises the following steps:

步骤1:本实施例选取四个控制模块构建浮筏隔振系统实验模型,确定传感器数目4个、步进电机4个、步进电机驱动器4个、非自锁限位开关8个、驱动电源1个、直流电源1个、电机减速器组合体4个:Step 1: In this embodiment, four control modules are selected to construct the experimental model of the floating raft vibration isolation system, and the number of sensors is 4, stepper motors are 4, stepper motor drivers are 4, non-self-locking limit switches are 8, and the drive power 1, 1 DC power supply, 4 motor reducer assemblies:

所述的传感器应粘接在筏架底面。The sensor should be bonded to the bottom surface of the raft.

所述的非自锁限位开关在步进电机丝杠的左端与右端各设置一个,在电机减速器组合体上方的弹簧导杆上端和下端各设置一个。The non-self-locking limit switches are provided one at the left end and the right end of the lead screw of the stepping motor, and one at the upper end and the lower end of the spring guide rod above the motor reducer assembly.

步骤2:传感器、步进电机、步进电机驱动器、电机减速器组合体、非自锁限位开关及其电源的选型:Step 2: Selection of sensor, stepper motor, stepper motor driver, motor reducer assembly, non-self-locking limit switch and its power supply:

传感器型号:PCB压电加速度传感器Sensor model: PCB piezoelectric acceleration sensor

步进电机型号:42HM2416-17TStepper motor model: 42HM2416-17T

步进电机驱动器型号:TB6600HG-4.0Stepper motor driver model: TB6600HG-4.0

电机减速器组合体型号:新华通JGY-370-12V-230RPMMotor reducer combination model: Xinhuatong JGY-370-12V-230RPM

驱动电源型号:LED开关电源S-150-24。Drive power supply model: LED switching power supply S-150-24.

步骤3:传感器、步进电机、步进电机驱动器、驱动电源、电机减速器组合体、非自锁限位开关及其电源、Dspace接线与安装:Step 3: Sensor, stepper motor, stepper motor driver, drive power supply, motor reducer assembly, non-self-locking limit switch and its power supply, Dspace wiring and installation:

传感器的接线与安装:每个传感器与DspaceAD通道相连;Wiring and installation of sensors: each sensor is connected to DspaceAD channel;

电源的接线与安装:驱动电源与步进电机驱动器相连接;Wiring and installation of the power supply: the drive power supply is connected to the stepper motor driver;

直流减速电机的接线与安装:电机减速器组合体直接与DspaceDA通道相连;非自锁限位开关接线与安装:与配套电源形成并联回路;Wiring and installation of DC geared motor: the motor reducer assembly is directly connected to the DspaceDA channel; wiring and installation of non-self-locking limit switch: form a parallel circuit with the supporting power supply;

连接接线说明如下:The wiring instructions are as follows:

控制信号连接:Control signal connection:

PUL+:脉冲信号输入正。PUL-:脉冲信号输入负。PUL+: pulse signal input positive. PUL-: pulse signal input negative.

DIR+:电机正、反转控制正。DIR-:电机正、反转控制负。DIR+: Forward and reverse control of the motor. DIR-: motor forward and reverse control negative.

ENA+:电机脱机控制正。ENA-:电机脱机控制负。ENA+: Motor offline control positive. ENA-: motor offline control negative.

电机绕组连接Motor winding connection

A+:连接电机绕组A+相。A-:连接电机绕组A-相。A+: Connect the A+ phase of the motor winding. A-: Connect the A-phase of the motor winding.

B+:连接电机绕组B+相。B-:连接电机绕组B-相。B+: Connect to the B+ phase of the motor winding. B-: Connect the B-phase of the motor winding.

电源电压连接:VCC:电源正端“+”GND:电源负端“-”Power supply voltage connection: VCC: positive terminal of power supply "+" GND: negative terminal of power supply "-"

系统接线:System wiring:

驱动器与控制器、电机、电源的接线,以共阳接法为例如图6所示。The wiring of the driver, controller, motor, and power supply is shown in Figure 6, taking the common anode connection as an example.

步骤4:设计MATLAB/Simulink控制算法,设置相关通道:Step 4: Design the MATLAB/Simulink control algorithm and set the relevant channels:

仿真模型采用模块化设计,模块数量的多少取决于,浮筏隔振系统模块数量的多少,单个浮筏隔振系统模块配置如下:轴承支座(1个)、联轴器(1个)、滑块导槽(1个)、步进电机与丝杠(1个)、电机减速器组合体(1个)、凸型滑块(1个)、固定支架1个、非自锁限位开关(4个)、限位开关5V直流电源1个。其中非自锁限位开关5V直流电源说明:直流电源用于限位开关的供电,限位开关闭合后电路导通。The simulation model adopts a modular design, and the number of modules depends on the number of modules of the floating raft vibration isolation system. The configuration of a single floating raft vibration isolation system module is as follows: bearing support (1), coupling (1), Slider guide groove (1 pc), stepper motor and lead screw (1 pc), motor reducer assembly (1 pc), convex slider (1 pc), fixed bracket 1 pc, non-self-locking limit switch (4 pcs), 1 pc of limit switch 5V DC power supply. The non-self-locking limit switch 5V DC power supply description: The DC power supply is used for the power supply of the limit switch, and the circuit is turned on after the limit switch is closed.

如图7所示本实施例采用四个模块组合后控制算法流程如下:As shown in Figure 7, the present embodiment adopts four modules to combine and the control algorithm flow is as follows:

步骤4.1:Step 4.1:

步骤4.1.1:将上限位开关1收集到的数据与下限位开关1收集到的数据进行与运算。Step 4.1.1: Perform an AND operation on the data collected by the upper limit switch 1 and the data collected by the lower limit switch 1.

步骤4.1.2:将上限位开关2收集到的数据与下限位开关2收集到的数据进行与运算。Step 4.1.2: Perform an AND operation on the data collected by the upper limit switch 2 and the data collected by the lower limit switch 2.

步骤4.1.3:将上限位开关3收集到的数据与下限位开关3收集到的数据进行与运算。Step 4.1.3: Perform an AND operation on the data collected by the upper limit switch 3 and the data collected by the lower limit switch 3 .

步骤4.1.4:将上限位开关4收集到的数据与下限位开关4收集到的数据进行与运算。Step 4.1.4: Perform an AND operation on the data collected by the upper limit switch 4 and the data collected by the lower limit switch 4 .

步骤4.1.5:将步骤4.1.1得到的数据与0进行比较运算。Step 4.1.5: Compare the data obtained in step 4.1.1 with 0.

步骤4.1.6:将步骤4.1.2得到的数据与0进行比较运算。Step 4.1.6: Compare the data obtained in step 4.1.2 with 0.

步骤4.1.7:将步骤4.1.3得到的数据与0进行比较运算。Step 4.1.7: Compare the data obtained in step 4.1.3 with 0.

步骤4.1.8:将步骤4.1.4得到的数据与0进行比较运算。Step 4.1.8: Compare the data obtained in step 4.1.4 with 0.

步骤4.1.9:将步骤4.1.5得到的数据与0进行异或运算。Step 4.1.9: XOR the data obtained in step 4.1.5 with 0.

步骤4.1.10:将步骤4.1.6得到的数据与0进行异或运算。Step 4.1.10: XOR the data obtained in step 4.1.6 with 0.

步骤4.1.11:将步骤4.1.7得到的数据与0进行异或运算。Step 4.1.11: XOR the data obtained in step 4.1.7 with 0.

步骤4.1.12:将步骤4.1.8得到的数据与0进行异或运算。Step 4.1.12: XOR the data obtained in step 4.1.8 with 0.

步骤4.2:Step 4.2:

步骤4.2.1:将传感器1收集的数据与0进行比较,如果大于等于0,则输出1,否则输出0。Step 4.2.1: Compare the data collected by sensor 1 with 0, if it is greater than or equal to 0, output 1, otherwise output 0.

步骤4.2.2:将传感器2收集的数据与0进行比较,如果大于等于0,则输出1,否则输出0。Step 4.2.2: Compare the data collected by sensor 2 with 0, if it is greater than or equal to 0, output 1, otherwise output 0.

步骤4.2.3:将传感器3收集的数据与0进行比较,如果大于等于0,则输出1,否则输出0。Step 4.2.3: Compare the data collected by sensor 3 with 0, if it is greater than or equal to 0, output 1, otherwise output 0.

步骤4.2.4:将传感器4收集的数据与0进行比较,如果大于等于0,则输出1,否则输出0。Step 4.2.4: Compare the data collected by sensor 4 with 0, if it is greater than or equal to 0, output 1, otherwise output 0.

步骤4.3:Step 4.3:

步骤4.3.1:将右限位开关1和左位开关1收集到的数据进行或运算。Step 4.3.1: OR the data collected by the right limit switch 1 and the left limit switch 1.

步骤4.3.2:将右限位开关2和左位开关2收集到的数据进行或运算。Step 4.3.2: Perform an OR operation on the data collected by the right limit switch 2 and the left limit switch 2.

步骤4.3.3:将右限位开关3和左位开关3收集到的数据进行或运算。Step 4.3.3: Perform an OR operation on the data collected by the right limit switch 3 and the left limit switch 3.

步骤4.3.4:将右限位开关4和左位开关4收集到的数据进行或运算。Step 4.3.4: Perform an OR operation on the data collected by the right limit switch 4 and the left limit switch 4.

步骤4.3.5:将步骤4.3.1得到的数据与0进行比较运算。Step 4.3.5: compare the data obtained in step 4.3.1 with 0.

步骤4.3.6:将步骤4.3.2得到的数据与0进行比较运算。Step 4.3.6: Compare the data obtained in step 4.3.2 with 0.

步骤4.3.7:将步骤4.3.3得到的数据与0进行比较运算。Step 4.3.7: Compare the data obtained in step 4.3.3 with 0.

步骤4.3.8:将步骤4.3.4得到的数据与0进行比较运算。Step 4.3.8: Compare the data obtained in step 4.3.4 with 0.

步骤4.3.9:将步骤4.3.5得到的数据与0进行异或运算。Step 4.3.9: XOR the data obtained in step 4.3.5 with 0.

步骤4.3.10:将步骤4.3.6得到的数据与0进行异或运算。Step 4.3.10: XOR the data obtained in step 4.3.6 with 0.

步骤4.3.11:将步骤4.3.7得到的数据与0进行异或运算。Step 4.3.11: XOR the data obtained in step 4.3.7 with 0.

步骤4.3.12:将步骤4.3.8得到的数据与0进行异或运算。Step 4.3.12: XOR the data obtained in step 4.3.8 with 0.

步骤4.4:Step 4.4:

步骤4.4.1:将方波脉冲信号1与1进行与运算。Step 4.4.1: Perform an AND operation on the square wave pulse signals 1 and 1.

步骤4.4.2:将方波脉冲信号2与1进行与运算。Step 4.4.2: Perform an AND operation on the square wave pulse signal 2 and 1.

步骤4.4.3:将方波脉冲信号3与1进行与运算。Step 4.4.3: Perform an AND operation on the square wave pulse signal 3 and 1.

步骤4.4.4:将方波脉冲信号4与1进行与运算。Step 4.4.4: Perform an AND operation on the square wave pulse signal 4 and 1.

步骤4.5:Step 4.5:

步骤4.5.1:将1与1进行与运算。Step 4.5.1: Perform an AND operation with 1 and 1.

步骤4.5.2:将1与1进行与运算。Step 4.5.2: Perform an AND operation with 1 and 1.

步骤4.5.3:将1与1进行与运算。Step 4.5.3: Perform an AND operation with 1 and 1.

步骤4.5.4:将1与1进行与运算。Step 4.5.4: Perform an AND operation with 1 and 1.

步骤4.6:Step 4.6:

步骤4.6.1:将步骤4.1.9得到的数据与步骤4.2.1得到的数据进行与运算。Step 4.6.1: Perform an AND operation on the data obtained in step 4.1.9 and the data obtained in step 4.2.1.

步骤4.6.2:将步骤4.1.10得到的数据与步骤4.2.2得到的数据进行与运算。Step 4.6.2: Perform an AND operation on the data obtained in step 4.1.10 and the data obtained in step 4.2.2.

步骤4.6.3:将步骤4.1.11得到的数据与步骤4.2.3得到的数据进行与运算。Step 4.6.3: Perform an AND operation on the data obtained in step 4.1.11 and the data obtained in step 4.2.3.

步骤4.6.4:将步骤4.1.12得到的数据与步骤4.2.4得到的数据进行与运算。Step 4.6.4: Perform an AND operation on the data obtained in step 4.1.12 and the data obtained in step 4.2.4.

步骤4.6.5:将步骤4.6.1得到的数据与0进行比较,如果大于0,则输出1,否则输出-1。Step 4.6.5: Compare the data obtained in step 4.6.1 with 0, if it is greater than 0, output 1, otherwise output -1.

步骤4.6.6:将步骤4.6.2得到的数据与0进行比较,如果大于0,则输出1,否则输出-1。Step 4.6.6: Compare the data obtained in step 4.6.2 with 0, if it is greater than 0, output 1, otherwise output -1.

步骤4.6.7:将步骤4.6.3得到的数据与0进行比较,如果大于0,则输出1,否则输出-1。Step 4.6.7: Compare the data obtained in step 4.6.3 with 0, if it is greater than 0, output 1, otherwise output -1.

步骤4.6.8:将步骤4.6.4得到的数据与0进行比较,如果大于0,则输出1,否则输出-1。Step 4.6.8: Compare the data obtained in step 4.6.4 with 0, if it is greater than 0, output 1, otherwise output -1.

步骤4.6.9:将步骤4.6.5得到的数据转化为double类型,通过输出通道1进行输出。Step 4.6.9: Convert the data obtained in step 4.6.5 into double type, and output it through output channel 1.

步骤4.6.10:将步骤4.6.6得到的数据转化为double类型,通过输出通道2进行输出。Step 4.6.10: Convert the data obtained in step 4.6.6 into double type, and output it through output channel 2.

步骤4.6.11:将步骤4.6.7得到的数据转化为double类型,通过输出通道3进行输出。Step 4.6.11: Convert the data obtained in step 4.6.7 into double type, and output it through output channel 3.

步骤4.6.12:将步骤4.6.8得到的数据转化为double类型,通过输出通道4进行输出。Step 4.6.12: Convert the data obtained in step 4.6.8 into double type, and output it through output channel 4.

步骤4.7:Step 4.7:

步骤4.7.1:将步骤4.2.1得到的数据与步骤4.3.9得到的数据进行与运算。Step 4.7.1: Perform an AND operation on the data obtained in step 4.2.1 and the data obtained in step 4.3.9.

步骤4.7.2:将步骤4.2.2得到的数据与步骤4.3.10得到的数据进行与运算。Step 4.7.2: Perform an AND operation on the data obtained in step 4.2.2 and the data obtained in step 4.3.10.

步骤4.7.3:将步骤4.2.3得到的数据与步骤4.3.11得到的数据进行与运算。Step 4.7.3: Perform an AND operation on the data obtained in step 4.2.3 and the data obtained in step 4.3.11.

步骤4.7.4:将步骤4.2.4得到的数据与步骤4.3.12得到的数据进行与运算。Step 4.7.4: Perform an AND operation on the data obtained in step 4.2.4 and the data obtained in step 4.3.12.

步骤4.7.5:将步骤4.7.1得到的数据通过BIT#24通道进行输出。Step 4.7.5: Output the data obtained in step 4.7.1 through the BIT#24 channel.

步骤4.7.6:将步骤4.7.2得到的数据通过BIT#16通道进行输出。Step 4.7.6: Output the data obtained in step 4.7.2 through the BIT#16 channel.

步骤4.7.7:将步骤4.7.3得到的数据通过BIT#8通道进行输出。Step 4.7.7: Output the data obtained in step 4.7.3 through the BIT#8 channel.

步骤4.7.8:将步骤4.7.4得到的数据通过BIT#0通道进行输出。Step 4.7.8: Output the data obtained in step 4.7.4 through the BIT#0 channel.

步骤4.8:Step 4.8:

步骤4.8.1:步骤4.4.1得到的数据通过BIT#25通道进行输出。Step 4.8.1: The data obtained in step 4.4.1 is output through the BIT#25 channel.

步骤4.8.2:步骤4.4.2得到的数据通过BIT#17通道进行输出。Step 4.8.2: The data obtained in step 4.4.2 is output through the BIT#17 channel.

步骤4.8.3:步骤4.4.3得到的数据通过BIT#9通道进行输出。Step 4.8.3: The data obtained in step 4.4.3 is output through the BIT#9 channel.

步骤4.8.4:步骤4.4.4得到的数据通过BIT#1通道进行输出。Step 4.8.4: The data obtained in step 4.4.4 is output through the BIT#1 channel.

步骤4.9:Step 4.9:

步骤4.9.1:步骤4.5.1得到的数据通过BIT#26通道和BIT#27通道进行输出。Step 4.9.1: The data obtained in step 4.5.1 is output through BIT#26 channel and BIT#27 channel.

步骤4.9.2:步骤4.5.2得到的数据通过BIT#18通道和BIT#19通道进行输出。Step 4.9.2: The data obtained in step 4.5.2 is output through BIT#18 channel and BIT#19 channel.

步骤4.9.3:步骤4.5.3得到的数据通过BIT#10通道和BIT#11通道进行输出。Step 4.9.3: The data obtained in step 4.5.3 is output through BIT#10 channel and BIT#11 channel.

步骤4.9.4:步骤4.5.4得到的数据通过BIT#2通道和BIT#3通道进行输出;步骤5:将MATLAB/Simulink控制算法下载到Dspace硬件当中,在线运行与监测。Step 4.9.4: The data obtained in step 4.5.4 is output through BIT#2 channel and BIT#3 channel; Step 5: Download the MATLAB/Simulink control algorithm to the Dspace hardware for online operation and monitoring.

以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments, and that described in the above-mentioned embodiments and the description only illustrates the principles of the present invention, and the present invention also has various aspects without departing from the spirit and scope of the present invention. Variations and improvements all fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.

Claims (3)

1.一种柔性浮筏智能隔振控制系统设计方法,其特征是:包括如下步骤:1. A flexible floating raft intelligent vibration isolation control system design method is characterized in that: comprising the steps: 步骤1:根据柔性浮筏隔振系统结构图确定传感器、步进电机、步进电机驱动器、非自锁限位开关及其电源和电机减速器组合体的配置数量、装配位置;Step 1: Determine the configuration quantity and assembly position of sensors, stepper motors, stepper motor drivers, non-self-locking limit switches and their power supply and motor reducer assemblies according to the structure diagram of the flexible floating raft vibration isolation system; 步骤2:传感器、步进电机、步进电机驱动器、电机减速器组合体、非自锁限位开关及其电源的选型:Step 2: Selection of sensor, stepper motor, stepper motor driver, motor reducer assembly, non-self-locking limit switch and its power supply: 传感器选型依据:选择IEPE压电加速度振动传感器,其性能指标如下:电缆接头为BNC接头、外壳材料为不锈钢、横向灵敏度应小于5%、幅值线性应小于1%、激励电压为18Vdc~28Vdc、激励电流为2~10mA、输出电压信号为±10V、输出阻抗为100Ω、灵敏度大于等于50mV/g、频响范围Hz(±10%)为0.2~4k、量程为大于等于±10g、温度范围为-40~+121℃、重量小于30克;Sensor type selection basis: IEPE piezoelectric acceleration vibration sensor is selected, and its performance indicators are as follows: the cable connector is BNC connector, the shell material is stainless steel, the lateral sensitivity should be less than 5%, the amplitude linearity should be less than 1%, and the excitation voltage is 18Vdc~28Vdc , The excitation current is 2~10mA, the output voltage signal is ±10V, the output impedance is 100Ω, the sensitivity is greater than or equal to 50mV/g, the frequency response range Hz (±10%) is 0.2~4k, the measuring range is greater than or equal to ±10g, and the temperature range The temperature is -40~+121℃, and the weight is less than 30 grams; 步进电机选型依据:步距角小于等于1.8°、温升小于80℃、环境温度-40~+121℃、径向间隙小于0.02毫米、轴向间隙小于0.08毫米、静转矩大于0.39N.m;步进电机驱动器选型依据:工作温度-40~+45℃、湿度要求为不能结露,不能有水珠、禁止有可燃气体和导电灰尘,其他性能指标需与步进电机相配套;Stepper motor selection basis: step angle less than or equal to 1.8°, temperature rise less than 80°C, ambient temperature -40~+121°C, radial clearance less than 0.02mm, axial clearance less than 0.08mm, static torque greater than 0.39N.m ;Basis for selection of stepper motor driver: working temperature -40~+45℃, humidity requirements: no condensation, no water droplets, no combustible gas and conductive dust, other performance indicators must be matched with the stepper motor; 电机减速器组合体选型依据:额定电压大于12V、空载转速大于等于237rpm、负载转速大于等于165rpm、负载扭矩0.3kg.cm、功率大于0.5W;Motor reducer combination selection basis: rated voltage greater than 12V, no-load speed greater than or equal to 237rpm, load speed greater than or equal to 165rpm, load torque 0.3kg.cm, power greater than 0.5W; 非自锁限位开关选型依据:额定工作电压小于等于24V,其外形几何尺寸不得大于电机减速去组合体上端弹簧内径;Non-self-locking limit switch selection basis: the rated working voltage is less than or equal to 24V, and its geometrical dimensions shall not be greater than the inner diameter of the spring at the upper end of the motor deceleration assembly; 非自锁限位开关电源选型依据:直流电源,额定工作电压小于等于24V;Non-self-locking limit switch power supply selection basis: DC power supply, rated working voltage is less than or equal to 24V; 步骤3:传感器、步进电机、步进电机驱动器、驱动电源、电机减速器组合体、非自锁限位开关及其电源、Dspace接线与安装:Step 3: Sensor, stepper motor, stepper motor driver, drive power supply, motor reducer assembly, non-self-locking limit switch and its power supply, Dspace wiring and installation: 传感器的接线与安装:每个传感器与DspaceAD通道相连;Wiring and installation of sensors: each sensor is connected to DspaceAD channel; 电源的接线与安装:驱动电源与步进电机驱动器相连接;Wiring and installation of the power supply: the drive power supply is connected to the stepper motor driver; 直流减速电机的接线与安装:电机减速器组合体直接与DspaceDA通道相连;非自锁限位开关接线与安装:与配套电源形成并联回路;Wiring and installation of DC geared motor: the motor reducer assembly is directly connected to the DspaceDA channel; wiring and installation of non-self-locking limit switch: form a parallel circuit with the supporting power supply; 步骤4:设计MATLAB/Simulink控制算法,设置相关通道:Step 4: Design the MATLAB/Simulink control algorithm and set the relevant channels: 仿真模型采用模块化设计,模块数量的多少取决于,浮筏隔振系统模块数量的多少,其中,单个模块控制算法流程如下:The simulation model adopts a modular design, and the number of modules depends on the number of modules of the floating raft vibration isolation system. Among them, the control algorithm flow of a single module is as follows: 步骤4.1:Step 4.1: 步骤4.1.1:将上限位开关1收集到的数据与下限位开关1收集到的数据进行与运算;Step 4.1.1: Perform an AND operation on the data collected by the upper limit switch 1 and the data collected by the lower limit switch 1; 步骤4.1.2:将步骤4.1.1得到的数据与0进行比较运算;Step 4.1.2: compare the data obtained in step 4.1.1 with 0; 步骤4.1.3:将步骤4.1.2得到的数据与0进行异或运算;Step 4.1.3: XOR the data obtained in step 4.1.2 with 0; 步骤4.2:将传感器1收集的数据与0进行比较,如果大于等于0,则输出1,否则输出0;Step 4.2: Compare the data collected by sensor 1 with 0, if it is greater than or equal to 0, output 1, otherwise output 0; 步骤4.3:Step 4.3: 步骤4.3.1:将右限位开关1和左位开关1收集到的数据进行或运算;Step 4.3.1: OR the data collected by the right limit switch 1 and the left limit switch 1; 步骤4.3.2:将步骤4.3.1得到的数据与0进行比较运算;Step 4.3.2: compare the data obtained in step 4.3.1 with 0; 步骤4.3.3:将步骤4.3.2得到的数据与0进行异或运算;Step 4.3.3: XOR the data obtained in step 4.3.2 with 0; 步骤4.4:将方波脉冲信号与1进行与运算;Step 4.4: AND the square wave pulse signal with 1; 步骤4.5:将1与1进行与运算;Step 4.5: AND operation of 1 and 1; 步骤4.6:Step 4.6: 步骤4.6.1:将步骤4.1.3得到的数据与步骤4.2得到的数据进行与运算;Step 4.6.1: Perform an AND operation on the data obtained in step 4.1.3 and the data obtained in step 4.2; 步骤4.6.2:将步骤4.6.1得到的数据与0进行比较,如果大于0,则输出1,否则输出-1;Step 4.6.2: Compare the data obtained in step 4.6.1 with 0, if it is greater than 0, output 1, otherwise output -1; 步骤4.6.3:将步骤4.6.2得到的数据转化为double类型,通过输出通道1进行输出;Step 4.6.3: convert the data obtained in step 4.6.2 into double type, and output it through output channel 1; 步骤4.7:Step 4.7: 步骤4.7.1:将步骤4.2得到的数据与步骤4.3.3得到的数据进行与运算;Step 4.7.1: performing an AND operation on the data obtained in step 4.2 and the data obtained in step 4.3.3; 步骤4.7.2:将步骤4.7.1得到的数据通过BIT#24通道进行输出;Step 4.7.2: Output the data obtained in step 4.7.1 through the BIT#24 channel; 步骤4.8:步骤4.4得到的数据通过BIT#25通道进行输出;Step 4.8: The data obtained in step 4.4 is output through the BIT#25 channel; 步骤4.9:步骤4.5得到的数据通过BIT#26通道和BIT#27通道进行输出;Step 4.9: The data obtained in step 4.5 is output through BIT#26 channel and BIT#27 channel; 步骤5:将MATLAB/Simulink控制算法下载到Dspace硬件当中,在线运行与监测。Step 5: Download the MATLAB/Simulink control algorithm to the Dspace hardware, and run and monitor it online. 2.根据权利要求1所述的柔性浮筏智能隔振控制系统设计方法,其特征是:所述的传感器应粘接在筏架底面。2. The design method of the flexible floating raft intelligent vibration isolation control system according to claim 1, characterized in that: the sensor should be bonded to the bottom surface of the raft frame. 3.根据权利要求1所述的柔性浮筏智能隔振控制系统设计方法,其特征是:所述的非自锁限位开关在步进电机丝杠的左端与右端各设置一个,在电机减速器组合体上方的弹簧导杆上端和下端各设置一个。3. The design method of flexible floating raft intelligent vibration isolation control system according to claim 1, characterized in that: the non-self-locking limit switches are respectively provided at the left end and the right end of the stepping motor lead screw, and one at the motor deceleration The upper end and the lower end of the spring guide rod above the device assembly are respectively provided with one.
CN201510830731.3A 2015-11-24 2015-11-24 A kind of intelligent vibration isolation Control System Design method of flexible buoyant raft Expired - Fee Related CN105465267B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510830731.3A CN105465267B (en) 2015-11-24 2015-11-24 A kind of intelligent vibration isolation Control System Design method of flexible buoyant raft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510830731.3A CN105465267B (en) 2015-11-24 2015-11-24 A kind of intelligent vibration isolation Control System Design method of flexible buoyant raft

Publications (2)

Publication Number Publication Date
CN105465267A true CN105465267A (en) 2016-04-06
CN105465267B CN105465267B (en) 2017-09-26

Family

ID=55603291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510830731.3A Expired - Fee Related CN105465267B (en) 2015-11-24 2015-11-24 A kind of intelligent vibration isolation Control System Design method of flexible buoyant raft

Country Status (1)

Country Link
CN (1) CN105465267B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108920880A (en) * 2018-08-14 2018-11-30 哈工大机器人(合肥)国际创新研究院 A kind of motor and retarder selection method of intelligent drives unit
CN109458430A (en) * 2018-11-27 2019-03-12 中国舰船研究设计中心 Based on quality, tuning, mixes and cut down vibrating isolation system optimum design method to the floating of effect

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104281A (en) * 2000-09-29 2002-04-10 Noritaka Matsumura Rolling reducing device of ship and its control method
CN201103649Y (en) * 2007-08-17 2008-08-20 济南市天桥环保设备厂 Floating raft type double-layer isolation device
CN201224479Y (en) * 2008-06-19 2009-04-22 江苏南极机械有限责任公司 Modularized shock resistant vibrating isolation buoyant raft for shipping main propulsion unit
CN101737450A (en) * 2010-01-06 2010-06-16 嘉兴学院 Intelligent magneto-rheological vibration damping system
CN103453068A (en) * 2013-07-16 2013-12-18 浙江海洋学院 Frequency-modulated type floating raft vibration isolation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104281A (en) * 2000-09-29 2002-04-10 Noritaka Matsumura Rolling reducing device of ship and its control method
CN201103649Y (en) * 2007-08-17 2008-08-20 济南市天桥环保设备厂 Floating raft type double-layer isolation device
CN201224479Y (en) * 2008-06-19 2009-04-22 江苏南极机械有限责任公司 Modularized shock resistant vibrating isolation buoyant raft for shipping main propulsion unit
CN101737450A (en) * 2010-01-06 2010-06-16 嘉兴学院 Intelligent magneto-rheological vibration damping system
CN103453068A (en) * 2013-07-16 2013-12-18 浙江海洋学院 Frequency-modulated type floating raft vibration isolation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108920880A (en) * 2018-08-14 2018-11-30 哈工大机器人(合肥)国际创新研究院 A kind of motor and retarder selection method of intelligent drives unit
CN108920880B (en) * 2018-08-14 2023-06-09 合肥哈工图南智控机器人有限公司 Motor and speed reducer type selection method of intelligent driving unit
CN109458430A (en) * 2018-11-27 2019-03-12 中国舰船研究设计中心 Based on quality, tuning, mixes and cut down vibrating isolation system optimum design method to the floating of effect

Also Published As

Publication number Publication date
CN105465267B (en) 2017-09-26

Similar Documents

Publication Publication Date Title
CN104571173B (en) Double-movement piezoelectric hinge-joint flexible beam vibration control device based on lead screw drive
CN104677466B (en) Underwater robot compensator displacement detecting sensor and its detection method
CN105465267B (en) A kind of intelligent vibration isolation Control System Design method of flexible buoyant raft
CN205785865U (en) A kind of vibration and power loading environment simulator stand
CN103901789B (en) Vibration output force following control device and control method thereof
RU2008145257A (en) SYSTEM OF SIMULATION OF ZERO ZERO OF MULTI-LINK MECHANISMS
CN204374799U (en) Based on the hinged flexible beam vibration control apparatus of double-movement piezoelectricity that screw mandrel drives
CN103700313B (en) A kind of automotive engine throttle voltage-controlled frequency conversion motor experimental system for simulating
CN103645055A (en) Test platform for simulating dynamic environments
CN202928799U (en) Engine comprehensive parameters detection system used for performance analysis
CN203186583U (en) Overall unit aging testing device for quad-rotor unmanned aerial vehicle
CN203070095U (en) Motor controller test bench
CN102156046A (en) Testing system for aeromodelling engine
CN203224510U (en) Wind direction sensor
CN203719693U (en) Wireless marine propulsion shafting monitoring system
CN201319228Y (en) Comprehensive experiment device of testing system
CN205423676U (en) Flexible buoyant raft vibration isolation system of broadband
CN204045054U (en) Engine practical traning platform
CN204422702U (en) A kind of ratio electromagnet performance test system
CN201672969U (en) Gray prediction device for drive motor faults of underwater robots
CN206583592U (en) A kind of vibration testing device
CN202229976U (en) Measurement and control system of electronic universal material testing machine
CN205300843U (en) Civilian helicopter moves loading test device
CN203824723U (en) Apparatus used for comprehensive testing of vibration, temperature, and humidity
CN201946208U (en) Automobile steering lamplight control experiment table

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170926

Termination date: 20191124

CF01 Termination of patent right due to non-payment of annual fee