CN105463197A - Method for recycling valuable metal from copper smelting white smoke - Google Patents
Method for recycling valuable metal from copper smelting white smoke Download PDFInfo
- Publication number
- CN105463197A CN105463197A CN201510867122.5A CN201510867122A CN105463197A CN 105463197 A CN105463197 A CN 105463197A CN 201510867122 A CN201510867122 A CN 201510867122A CN 105463197 A CN105463197 A CN 105463197A
- Authority
- CN
- China
- Prior art keywords
- arsenic
- copper
- zinc
- leaching
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010949 copper Substances 0.000 title claims abstract description 104
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 35
- 239000002184 metal Substances 0.000 title claims abstract description 34
- 238000003723 Smelting Methods 0.000 title abstract description 35
- 239000000779 smoke Substances 0.000 title abstract description 13
- 238000004064 recycling Methods 0.000 title description 2
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 90
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 90
- 238000002386 leaching Methods 0.000 claims abstract description 63
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000011701 zinc Substances 0.000 claims abstract description 58
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 55
- 239000002893 slag Substances 0.000 claims abstract description 44
- 239000002253 acid Substances 0.000 claims abstract description 39
- 238000001556 precipitation Methods 0.000 claims abstract description 30
- 239000002699 waste material Substances 0.000 claims abstract description 28
- 238000011084 recovery Methods 0.000 claims abstract description 21
- 239000000428 dust Substances 0.000 claims abstract description 18
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 239000007787 solid Substances 0.000 claims abstract description 11
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 7
- 230000005684 electric field Effects 0.000 claims abstract description 3
- 239000011133 lead Substances 0.000 claims description 28
- 239000000706 filtrate Substances 0.000 claims description 18
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000003517 fume Substances 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 5
- 239000007791 liquid phase Substances 0.000 claims description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 4
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 239000011667 zinc carbonate Substances 0.000 claims description 4
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 4
- 235000004416 zinc carbonate Nutrition 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 3
- 239000003500 flue dust Substances 0.000 claims 5
- 239000002956 ash Substances 0.000 claims 3
- 239000012716 precipitator Substances 0.000 claims 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims 3
- 238000004140 cleaning Methods 0.000 claims 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 claims 1
- 229910000413 arsenic oxide Inorganic materials 0.000 claims 1
- 229960002594 arsenic trioxide Drugs 0.000 claims 1
- 230000002596 correlated effect Effects 0.000 claims 1
- KTTMEOWBIWLMSE-UHFFFAOYSA-N diarsenic trioxide Chemical compound O1[As](O2)O[As]3O[As]1O[As]2O3 KTTMEOWBIWLMSE-UHFFFAOYSA-N 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 229910001385 heavy metal Inorganic materials 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 239000012492 regenerant Substances 0.000 claims 1
- 235000010265 sodium sulphite Nutrition 0.000 claims 1
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- 230000001988 toxicity Effects 0.000 claims 1
- 231100000419 toxicity Toxicity 0.000 claims 1
- 150000002739 metals Chemical class 0.000 abstract description 12
- 239000004071 soot Substances 0.000 description 33
- 229910052979 sodium sulfide Inorganic materials 0.000 description 21
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 21
- 239000006228 supernatant Substances 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 12
- 239000012065 filter cake Substances 0.000 description 11
- 239000013049 sediment Substances 0.000 description 11
- 238000000605 extraction Methods 0.000 description 10
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 239000003546 flue gas Substances 0.000 description 7
- 229910052797 bismuth Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- -1 after analysis Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 3
- 238000005363 electrowinning Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- CUGMJFZCCDSABL-UHFFFAOYSA-N arsenic(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[As+3].[As+3] CUGMJFZCCDSABL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000012717 electrostatic precipitator Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- YPFNIPKMNMDDDB-UHFFFAOYSA-K 2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate;iron(3+) Chemical compound [Fe+3].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O YPFNIPKMNMDDDB-UHFFFAOYSA-K 0.000 description 1
- MHUWZNTUIIFHAS-XPWSMXQVSA-N 9-octadecenoic acid 1-[(phosphonoxy)methyl]-1,2-ethanediyl ester Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C\CCCCCCCC MHUWZNTUIIFHAS-XPWSMXQVSA-N 0.000 description 1
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- LSBZIXBHABLKDN-UHFFFAOYSA-N [S-2].[AsH3].[U+6] Chemical compound [S-2].[AsH3].[U+6] LSBZIXBHABLKDN-UHFFFAOYSA-N 0.000 description 1
- NZYJFRGHEGZHRV-UHFFFAOYSA-N [S-2].[Na+].[Cu+2] Chemical compound [S-2].[Na+].[Cu+2] NZYJFRGHEGZHRV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229940047047 sodium arsenate Drugs 0.000 description 1
- WODWERWAIAVIDN-UHFFFAOYSA-L sodium;zinc;carbonate Chemical compound [Na+].[Zn+2].[O-]C([O-])=O WODWERWAIAVIDN-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/02—Working-up flue dust
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/04—Obtaining lead by wet processes
- C22B13/045—Recovery from waste materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0065—Leaching or slurrying
- C22B15/0067—Leaching or slurrying with acids or salts thereof
- C22B15/0071—Leaching or slurrying with acids or salts thereof containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0084—Treating solutions
- C22B15/0089—Treating solutions by chemical methods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/20—Obtaining zinc otherwise than by distilling
- C22B19/22—Obtaining zinc otherwise than by distilling with leaching with acids
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/30—Obtaining zinc or zinc oxide from metallic residues or scraps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明涉及一种铜冶炼白烟尘回收有价金属的方法,属于资源回收利用技术领域,本方法以铜冶炼电收尘器第二至四电场收集的白烟尘为原料,一级动力波循环洗涤液为浸取剂,液固质量比为8~10:1,常温浸出,获得金属品位大于40wt%的富铅渣;浸出液加硫化钠分步沉淀回收铜、富砷,富铜渣金属品位大40wt%,富砷渣砷含量大于35wt%,最后加碳酸钠沉锌,富锌渣金属品位大于45wt%,这些有价金属经富集后可作原料自用或外卖,固化处理后,满足堆存或填埋要求,形成砷的开路。这种方法以循环废酸液作浸取剂,减少了系统废酸处理量,并且可回收废酸中有价元素,浸出、沉淀操作在常温下进行,操作方便,有较好推广应用价值。
The invention relates to a method for recovering valuable metals from copper smelting white smoke and dust, which belongs to the technical field of resource recovery and utilization. The method uses white smoke and dust collected by the second to fourth electric fields of copper smelting electric dust collectors as raw materials, and is washed by a first-stage dynamic wave cycle. The liquid is the leaching agent, the liquid-solid mass ratio is 8-10:1, and leaching at room temperature can obtain lead-rich slag with a metal grade greater than 40wt%. 40wt%, the arsenic content of arsenic-rich slag is greater than 35wt%, and finally add sodium carbonate to precipitate zinc, the metal grade of zinc-rich slag is greater than 45wt%. or landfill requirements, forming an open circuit for arsenic. This method uses circulating waste acid liquid as the leaching agent, which reduces the amount of waste acid in the system and can recover valuable elements in the waste acid. The leaching and precipitation operations are carried out at normal temperature, which is convenient to operate and has good popularization and application value.
Description
技术领域technical field
本发明涉及工业固体废弃物资源化利用技术领域,特别涉及一种铜冶炼白烟尘回收有价金属的方法。The invention relates to the technical field of resource utilization of industrial solid waste, in particular to a method for recovering valuable metals from copper smelting white smoke.
背景技术Background technique
铜是现代经济发腱的基础工业原料之一,由于其具有导电导热、抗张耐磨性能较好,因而在电力电气、机械制造、运输、建筑、能源、军事等业领域得剑了广泛应用。Copper is one of the basic industrial raw materials for modern economic development. Because of its good electrical and thermal conductivity, tensile and wear resistance, it has been widely used in electric power, machinery manufacturing, transportation, construction, energy, military and other industries. .
熔炼是火法炼铜最重要的冶炼过程,传统熔炼方法是在鼓风炉、反射炉和电炉内进行,这种工艺的主要缺点是:不能充分利用炉料中硫化物氧化的化学反应热作为能量,矿物燃料量或电能消耗大;产出S02烟气浓度低,生产硫酸不经济,易对环境造成严重污染。因此传统熔炼工艺逐渐被高效、节能和低污染的强化熔炼新工艺取代。Smelting is the most important smelting process of pyrometallurgy copper smelting. The traditional smelting method is carried out in blast furnace, reverberatory furnace and electric furnace. The main disadvantage of this process is that it cannot fully utilize the chemical reaction heat of sulfide oxidation in the charge as energy. The amount of fuel or electric energy consumption is large; the output of S0 2 flue gas concentration is low, the production of sulfuric acid is uneconomical, and it is easy to cause serious pollution to the environment. Therefore, the traditional smelting process is gradually replaced by a new enhanced smelting process with high efficiency, energy saving and low pollution.
从近期国内几个大厂的技术改造和新项目技术方案看,都已将熔炼系统的技术作为重点,并选择适合自身特点的先进熔炼技术和设备,其中铜精矿配料-圆盘制粒-澳斯麦特炉熔炼-转炉吹炼-回转式阳极炉火法精炼-常规大极板电解精炼是目前新上铜冶炼首选工艺。Judging from the recent technological transformation and new project technical plans of several large domestic factories, they have all focused on the technology of the smelting system and selected advanced smelting technology and equipment suitable for their own characteristics. Among them, the copper concentrate batching-disc granulation- Ausmelt furnace smelting-converter blowing-rotary anode furnace fire refining-conventional large plate electrolytic refining is currently the preferred process for new copper smelting.
铜冶炼白烟尘灰来源于电炉烟气和熔炼烟气,电炉烟气主要成分为氮气和氧气,还含有少量的水蒸汽和二氧化硫,温度一般在420℃左右,含尘量约30g/Nm3;熔炼烟气主要成分为氮气、二氧化硫和水蒸汽,还含有少量的氧气和三氧化硫,温度高达1200℃以上,含尘量约210g/Nm3,经废热锅炉回收显热后,温度降到390℃左右,含尘量降至120g/Nm3,比重大、粒度粗的粉尘在此聚集。从废热锅炉出来的熔炼烟气与电炉烟气混合,混合气温度约300℃、含尘量在105~110g/Nm3,经电收尘器第一电场捕集的高铜烟尘一道返回熔炼系统作入炉原料使用。电收尘器第二、三、四电场收集的烟尘由于含有较多有害的杂质成分,不宜返回熔炼系统,即为本申请所述的白烟尘灰。Copper smelting white dust ash comes from electric furnace flue gas and smelting flue gas. The main components of electric furnace flue gas are nitrogen and oxygen, and also contain a small amount of water vapor and sulfur dioxide. The temperature is generally around 420°C and the dust content is about 30g/Nm 3 ; The main components of smelting flue gas are nitrogen, sulfur dioxide and water vapor, and also contain a small amount of oxygen and sulfur trioxide. The temperature is as high as 1200 ℃, and the dust content is about 210g/Nm 3 . After the sensible heat is recovered by the waste heat boiler, the temperature drops to 390 ℃, the dust content drops to 120g/Nm 3 , and the dust with large specific gravity and coarse particle size gathers here. The smelting flue gas from the waste heat boiler is mixed with the electric furnace flue gas. The temperature of the mixed gas is about 300°C and the dust content is 105-110g/Nm 3 . Used as raw material for furnace. The soot collected by the second, third and fourth electric fields of the electrostatic precipitator contains more harmful impurities and should not be returned to the smelting system, which is the white soot ash mentioned in this application.
混合气体中二氧化硫体积含量在11~12%左右,适宜采用二转二吸制酸,其对粉尘要求小于0.5g/Nm3,因此,仅采用电除尘器难以满足制酸要求,水洗加动力波除尘对气体进行净化,是冶金尾气制酸最为常见的手段,由于气体中含有大量有害物质,洗涤水处理成本高,通常采取循环洗涤方式进行,因而其残余酸经累积后浓度可达5wt%左右,最后加硫化钠沉铅、石灰中和、石灰脱砷进行废水处理。The volume content of sulfur dioxide in the mixed gas is about 11-12%. It is suitable to use two-turn-two-absorption for acid production, and the dust requirement is less than 0.5g/Nm 3 . Dust removal to purify gas is the most common method for producing acid from metallurgical tail gas. Since the gas contains a large amount of harmful substances and the cost of washing water treatment is high, it is usually carried out in a circular washing manner, so the concentration of residual acid after accumulation can reach about 5wt%. , and finally add sodium sulfide to precipitate lead, lime to neutralize, and lime to remove arsenic for wastewater treatment.
由于铜冶炼白烟尘灰是富含有价金属和有害元素的混合物,即是一种危险固体废弃物,亦是可加以利用的资源,因此,广大学者从单一有价金属提取或多金属回收提出了针对性技术路线,如:Since the white soot from copper smelting is a mixture rich in valuable metals and harmful elements, it is not only a dangerous solid waste, but also a resource that can be used. Targeted technical routes, such as:
武汉工程大学的彭翠,以铜冶炼过程中产生的白烟灰为原料,研究了白烟灰中有价金属元素的浸出、分离及回收工艺,主要取得成果有:(1)通过先后采用常温水浸、加热酸浸以及稀酸加热氧化浸出;(2)对于烟灰浸出液中的铜,以N902作为萃取剂,硫酸作为反萃剂,在优化条件下萃取率和反萃率都可以达到99%以上;(4)采用硫化法共沉淀浸出液中的锌和砷,在优化条件下,锌和砷的沉淀率分别为100%和99%。Peng Cui from Wuhan Engineering University studied the leaching, separation and recovery process of valuable metal elements in white soot using white soot produced in the process of copper smelting as raw material. , heating acid leaching and dilute acid heating oxidation leaching; (2) for the copper in the soot leaching solution, with N902 as the extraction agent, sulfuric acid as the stripping agent, the extraction rate and the stripping rate can reach more than 99% under optimized conditions; (4) Co-precipitate zinc and arsenic in the leaching solution by sulfidation method, under the optimized conditions, the precipitation rates of zinc and arsenic are 100% and 99% respectively.
阮胜寿、路永锁采用烟灰浸出—鼓风炉熔炼—铅铋合金电解—高铋阳极泥低温熔(火法精炼)流程,综合回收炼铜电收尘烟灰中的铜、锌、铺、铟、铅、铋、金、银。结果表明:可综合回收有价金属、环境污染小,并且技术经济指标较好,具有一定的经济效益。Ruan Shengshou and Lu Yongsuo adopted the process of soot leaching-blast furnace smelting-lead-bismuth alloy electrolysis-high-bismuth anode slime low-temperature melting (fire refining) to comprehensively recover copper, zinc, palladium, indium, lead, Bismuth, gold, silver. The results show that valuable metals can be recovered comprehensively, the environmental pollution is small, and the technical and economic indicators are good, which has certain economic benefits.
江西理工大学的刘国庆,采用由工业硫酸与生产水配制的溶剂、废电解液与生产水配制的溶剂、废电解液与工业废水配制的溶剂进行的各批次烟灰的一段一次浸出、一段一次浸出液的二次浸出、一段二次浸出液的三次浸出的办法来提高浸出液中的铜、锌含量,对减少后续置换沉积的处理量、能耗等有实际意义,浸出阶段总浸出率:Cu﹥90%,Zn﹥93%,Pb﹤1%,Bi﹤1%。Liu Guoqing from Jiangxi University of Science and Technology used the solvent prepared from industrial sulfuric acid and production water, the solvent prepared from waste electrolyte and production water, and the solvent prepared from waste electrolyte and industrial wastewater to conduct one-stage leaching of each batch of soot, and one-stage leaching solution The method of secondary leaching and three leaching of one stage of secondary leaching solution to increase the content of copper and zinc in the leaching solution has practical significance for reducing the treatment capacity and energy consumption of subsequent replacement deposition. The total leaching rate in the leaching stage: Cu > 90% , Zn﹥93%, Pb﹤1%, Bi﹤1%.
兰州理工大学的张琰,通过对某铜业公司铜转炉烟灰的深入研究,将萃取工艺应用于铜转炉烟灰的综合利用,提出铜转炉烟灰综合利用的新工艺。铜转炉烟灰经过硫酸浸出后,90%以上的铜和锌均进入酸浸液,大部分铅以硫酸铅的形式进入酸浸渣;对烟灰酸浸渣进行沉淀转化—硝酸溶解—硫酸沉铅等工艺流程,制得硫酸铅;烟灰酸浸液经过铁粉置换得到了纯度较高的海绵铜,可直接返回冰铜吹炼系统;烟灰酸浸提铜液经氧化、中和、水解除铁后,用P204对除铁净化液进行三级错流萃取,有机相经过一级反萃后制得了满足电积锌需要的硫酸锌溶液。Zhang Yan from Lanzhou University of Technology, through in-depth research on the copper converter soot of a copper company, applied the extraction process to the comprehensive utilization of copper converter soot, and proposed a new process for the comprehensive utilization of copper converter soot. After the copper converter soot is leached by sulfuric acid, more than 90% of copper and zinc enter the acid leaching solution, and most of the lead enters the acid leaching residue in the form of lead sulfate; carry out precipitation transformation on the soot acid leaching residue—dissolution in nitric acid—leading in sulfuric acid, etc. The technical process is to produce lead sulfate; the soot acid leaching solution is replaced by iron powder to obtain sponge copper with high purity, which can be directly returned to the matte blowing system; the soot acid leaching solution is oxidized, neutralized, and hydrolyzed to remove iron , using P204 to carry out three-stage cross-flow extraction on the iron-removing purification solution, and the organic phase is subjected to one-stage back-extraction to obtain a zinc sulfate solution that meets the needs of electrowinning zinc.
CN102517449A提出了一种冶炼烟灰有价元素综合回收工艺,冶炼烟灰加硫酸浆化两次浸出后压滤形成的铅银铋渣经过熔、熔铸、电解、精炼、转炉还原熔炼、得到粗铅、冰铜、精铋和银锌渣,进一步处理回收相应产品和砒霜。CN102517449A proposes a comprehensive recovery process of valuable elements in smelting soot. The lead, silver and bismuth slag formed by pressing and filtering after smelting soot plus sulfuric acid slurry for two times is melted, casted, electrolyzed, refined, and reduced to smelted in a converter to obtain crude lead, ice Copper, refined bismuth and silver-zinc slag are further processed to recover corresponding products and arsenic.
CN103643044A提供了一种铜烟灰湿法直接萃取铜、锌工艺,其工艺流程为:浸出→除有机物→萃铜→除铁、铝、铬→萃锌→无锌溶液回浸出(开路20-30%),该发明可使更多低品位铜烟灰得以资源化再生利用,具有产品转化率高,附加值高的优点。CN103643044A provides a copper soot wet direct extraction process of copper and zinc, the process flow is: leaching→removal of organic matter→extraction of copper→removal of iron, aluminum, chromium→extraction of zinc→back leaching of zinc-free solution (open circuit 20-30% ), the invention can enable more low-grade copper soot to be recycled and utilized, and has the advantages of high product conversion rate and high added value.
CN102851707A提供了一种碱浸法从冶炼烟灰中回收生产电解锌粉和铅粉的工艺,过程包括浸出,铅粉脱铜,电积脱铅—铸锭,硫化钠除铅,除砷锑和电积锌粉,其特征在于:将氢氧化钠液浸出剂与冶炼烟灰进行浸出反应;在浸出液中加入电解铅粉脱铜;脱铜液经过电积产出电解铅粉;以硫化钠为除铅剂,分离沉淀脱铅液中的余铅;除去除铅液中的砷锑;经过除砷锑后的净化液再经过电积产出锌粉,电解废液返回浸出工序中作碱浸出剂或进行净化工序中除去废液中杂质离子后再返回浸出工序作碱浸出剂循环使用,该方法具有操作简单、投资少、原料适应性广、环境友好等特点。CN102851707A provides a process for recovering and producing electrolytic zinc powder and lead powder from smelting soot by alkaline leaching. The process includes leaching, decoppering of lead powder, electrowinning and deleading-ingot casting, deleading of sodium sulfide, removal of arsenic and antimony and electrolytic The zinc deposition powder is characterized in that: the leaching agent of sodium hydroxide solution and smelting soot are subjected to leaching reaction; electrolytic lead powder is added to the leaching solution to decopper; the decopper solution is electrolytically produced to produce electrolytic lead powder; sodium sulfide is used as the lead removal agent. agent to separate and precipitate the remaining lead in the deleading solution; remove arsenic and antimony in the lead solution; the purified solution after removing arsenic and antimony is then electrowinning to produce zinc powder, and the electrolytic waste solution is returned to the leaching process as an alkali leaching agent or In the purification process, the impurity ions in the waste liquid are removed and then returned to the leaching process for recycling as an alkali leaching agent. This method has the characteristics of simple operation, low investment, wide adaptability of raw materials, and environmental friendliness.
CN103014355A提供了一种铜冶炼烟灰多金属综合回收工艺,包括如下步骤:(1)酸性浸出:采用稀酸对铜冶炼烟灰进行浸出,得烟灰浸出液和铅铋渣;(2)硫化砷除铜:在烟灰浸出液中加入硫化铀砷渣和硫化砷除铜,制备硫化铜产品;(3)还原沉砷:除铜液用二氧化硫还原得沉砷液和三氧化二砷产品;(4)二次除铜砷:在沉砷液中再加入硫化钠,二次除铜砷。该方法能将烟灰中的多种金属浸提出来,回收率高,成本低,效益好。CN103014355A provides a multi-metal comprehensive recovery process of copper smelting soot, including the following steps: (1) acid leaching: using dilute acid to leach copper smelting soot to obtain soot leachate and lead-bismuth slag; (2) arsenic sulfide copper removal: Add uranium sulfide arsenic slag and arsenic sulfide to the soot leaching solution to remove copper to prepare copper sulfide products; (3) Reduction of arsenic precipitation: copper removal solution is reduced with sulfur dioxide to obtain arsenic precipitation solution and arsenic trioxide product; (4) Secondary removal of copper and arsenic: Sodium sulfide is added to the arsenic precipitation solution to remove copper and arsenic for the second time. The method can extract various metals in the soot, and has high recovery rate, low cost and good benefit.
CN103981369A提供了一种含砷烟尘多金属回收工艺,通过选择性浸出得到含锌、铜的浸出液和含砷、铅的浸出渣,浸出液通过铜萃取和电积得到铜和锌;浸出渣通过H2O2和Na2S2O3混合脱砷剂浸出得到含砷浸出液和含铅脱砷渣,含砷浸出液浓缩结晶得到砷酸钠,脱砷浸出渣通过火法提铅和电解精炼得到铅。该发明利用湿法和火法联合冶金工艺,有效回收了金属铜、锌、铅,使砷得到资源化处理,工艺环保。CN103981369A provides a multi-metal recovery process of arsenic-containing smoke and dust, which obtains a leaching solution containing zinc and copper and a leaching residue containing arsenic and lead through selective leaching, and the leaching solution obtains copper and zinc through copper extraction and electrodeposition; the leaching residue is passed through H2 O 2 and Na 2 S 2 O 3 mixed dearsenic agent leaching to obtain arsenic-containing leaching solution and lead-containing slag for arsenic removal, arsenic-containing leaching solution was concentrated and crystallized to obtain sodium arsenate, and arsenic-containing leaching slag was extracted by pyrolysis and electrolytic refining to obtain lead. The invention utilizes wet method and pyrometallurgical combined metallurgical process to effectively recycle metal copper, zinc and lead, so that arsenic can be treated as a resource, and the process is environmentally friendly.
从铜冶炼烟尘灰中提取、分离有价金属研究论文及相关专利报导不少,各有特点,但以尾气循环洗涤废酸作酸浸剂,采用高液固比、常温浸出,硫化钠沉铜富砷,碳酸钠沉锌还未有研究报导。Extraction and separation of valuable metals from copper smelting soot and dust, there are many research papers and related patent reports, each with its own characteristics, but the exhaust gas is used as acid leaching agent for circulating washing waste acid, high liquid-solid ratio, normal temperature leaching, sodium sulfide copper precipitation Arsenic-rich, sodium carbonate zinc precipitation has not yet been reported.
发明内容Contents of the invention
为解决上述现有技术存在的问题,本发明的目的在于提供一种铜冶炼白烟尘回收有价金属的方法,回收铜冶炼白烟尘中的有价金属,对砷进行富集,以减少含砷废渣的处理总量,降低处置成本。本发明以铜冶炼系统循环洗涤废酸作酸浸剂,不仅使废酸中的游离酸得到合理利用,同时还可实现废酸中有价金属回收,减少系统废水处理量,降低环保处理成本。In order to solve the above-mentioned problems in the prior art, the object of the present invention is to provide a method for recovering valuable metals from copper smelting white fumes, reclaiming valuable metals in copper smelting white fumes, and enriching arsenic to reduce arsenic content. The total amount of waste slag to be processed reduces the cost of disposal. The present invention uses the waste acid from the copper smelting system as the pickling agent, which not only makes reasonable use of the free acid in the waste acid, but also realizes the recovery of valuable metals in the waste acid, reduces the waste water treatment amount of the system, and reduces the cost of environmental protection treatment.
为达到上述目的,本发明的技术方案为:To achieve the above object, the technical solution of the present invention is:
一种铜冶炼白烟尘回收有价金属的方法,白烟尘加酸洗循环废酸于常温下浸取,将铜、砷、锌转入液相,铅富集于渣相中,过滤分离,用系统沉锌滤液洗涤滤饼,即得富铅渣,作原料自用或外售;过滤液加硫化钠沉铜,以硫化铜形式回收铜,用作铜冶炼原料;向回收铜后的滤液中继续加硫化钠沉砷,在此实现砷的富集;向分离砷的滤液中加硫酸钠沉锌,以碳酸锌的形式回收锌,作原料自用或外卖。A method for recovering valuable metals from copper smelting white fumes. The white fumes are leached with pickling cycle waste acid at normal temperature, copper, arsenic and zinc are transferred to the liquid phase, and lead is enriched in the slag phase, separated by filtration, and used Wash the filter cake with the zinc precipitation filtrate of the system to obtain lead-rich slag, which can be used as raw materials for self-use or for sale; the filtrate is added with sodium sulfide to precipitate copper, and copper is recovered in the form of copper sulfide, which is used as a raw material for copper smelting; the filtrate after copper recovery is continued Add sodium sulfide to precipitate arsenic, and realize the enrichment of arsenic here; add sodium sulfate to the filtrate of separated arsenic to precipitate zinc, recover zinc in the form of zinc carbonate, and use it as raw material for self-use or takeaway.
一种铜冶炼白烟尘回收有价金属的方法,其基本步骤包括如下:A method for reclaiming valuable metals from copper smelting white smoke, the basic steps of which include the following:
(1)取第二级电除尘后的白烟尘灰1份,加来自一级动力波的循环洗涤废液8~10份,在带搅拌的反应槽中于常温下进行浸提30~45min,过滤、洗涤,得金属铅含量大于40wt%的富铅渣,作原料自用或外卖;(1) Take 1 part of the white smoke dust after the second-stage electrostatic precipitator, add 8-10 parts of the circulating washing waste liquid from the first-stage power wave, and carry out leaching in a stirred reaction tank at room temperature for 30-45 minutes, Filtrating and washing to obtain lead-rich slag with a metal lead content greater than 40wt%, which is used as raw materials for personal use or takeaway;
(2)对浸出液进行铜含量分析,加硫化沉铜理论用量的0.9~1.1倍硫化钠进行沉铜,操作在常温带搅拌的反应槽内进行,沉铜反应时间为30min,反应结束后泵至沉降槽静置分离,上清液溢流至富砷槽,沉积物泵至离心机进行分离,滤液并入中间槽,滤饼即为金属铜含量大于40wt%、含砷小于7wt%的富铜渣;(2) Analyze the copper content of the leaching solution, add 0.9 to 1.1 times the theoretical amount of sulfide copper precipitation for copper precipitation, and operate in a reaction tank with stirring at room temperature. The copper precipitation reaction time is 30 minutes. After the reaction, pump to The settling tank is left standing for separation, the supernatant overflows to the arsenic-rich tank, the sediment is pumped to the centrifuge for separation, the filtrate is merged into the middle tank, and the filter cake is copper-rich with a metal copper content greater than 40wt% and arsenic content less than 7wt% slag;
(3)对浸出液进行砷含量分析,加硫化沉砷理论用量的0.8~1.0倍硫化钠进行沉砷,操作在带搅拌的反应槽内于常温下进行,沉砷反应时间为30min,反应结束后静置30min,上清液直接泵入中间槽,沉积液泵至板框过滤机过滤,即可得砷含量大于35wt%的富砷渣;(3) Analyze the arsenic content of the leaching solution, add 0.8 to 1.0 times the theoretical amount of sodium sulfide for arsenic precipitation for arsenic precipitation, and operate in a stirred reaction tank at room temperature. The reaction time for arsenic precipitation is 30 minutes. Stand still for 30 minutes, the supernatant is directly pumped into the middle tank, and the sedimentation liquid is pumped to a plate and frame filter for filtration to obtain arsenic-rich slag with an arsenic content greater than 35 wt%.
(4)在脱砷后的分离液中加碳酸钠沉锌,控制pH值7.5±0.5,以碳酸锌的形式回收锌,过滤即得金属锌含量大于45%,砷含量小于5%富锌渣。(4) Add sodium carbonate to precipitate zinc in the separation liquid after dearsenicization, control the pH value to 7.5±0.5, recover zinc in the form of zinc carbonate, and filter to obtain a zinc-rich slag with a metal zinc content greater than 45% and an arsenic content less than 5%. .
相对于现有技术,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
一种铜冶炼白烟尘回收有价金属的方法,白烟尘加酸洗循环废酸于常温下浸取,将铜、砷、锌转入液相,铅富集于渣相中,过滤分离,用系统沉锌滤液洗涤滤饼,即得富铅渣,作原料自用或外售;过滤液加硫化钠沉铜,以硫化铜形式回收铜,用作铜冶炼原料;向回收铜后的滤液中继续加硫化钠沉砷,在此实现砷的富集;向分离砷的滤液中加硫酸钠沉锌,以碳酸锌的形式回收锌,作原料自用或外卖。A method for recovering valuable metals from copper smelting white fumes. The white fumes are leached with pickling cycle waste acid at normal temperature, copper, arsenic and zinc are transferred to the liquid phase, and lead is enriched in the slag phase, separated by filtration, and used Wash the filter cake with the zinc precipitation filtrate of the system to obtain lead-rich slag, which can be used as raw materials for self-use or for sale; the filtrate is added with sodium sulfide to precipitate copper, and copper is recovered in the form of copper sulfide, which is used as a raw material for copper smelting; the filtrate after copper recovery is continued Add sodium sulfide to precipitate arsenic, and realize the enrichment of arsenic here; add sodium sulfate to the filtrate of separated arsenic to precipitate zinc, recover zinc in the form of zinc carbonate, and use it as raw material for self-use or takeaway.
附图说明Description of drawings
图1为本发明的工艺流程图。Fig. 1 is a process flow diagram of the present invention.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明技术方案做进一步详细描述:The technical solution of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments:
实施例中均为质量份或质量百分含量。All are parts by mass or percentage by mass in the examples.
实施例1:Example 1:
如图1所示:(1)白烟尘灰、一级动力波循环废酸主要成分见表1、2;As shown in Figure 1: (1) The main components of white smoke ash and primary power wave cycle waste acid are shown in Tables 1 and 2;
表1白烟尘灰主要成分Table 1 Main components of white soot
表2一级动力波循环废酸主要成分Table 2 Main components of waste acid in primary power wave cycle
(2)取一级动力波循环废酸40吨泵入浸取槽,再加入白烟尘灰5吨,于常温下搅拌浸取30min,过滤、用沉锌液1.5吨洗涤滤饼并入滤液中,经分析,滤液中铜、锌、砷含量分别为:2.7g/L、21.5g/L、13.3g/L;折干基滤饼质量为1120kg,铅含量为43.6wt%,铅回收率大于95.5%,铜、锌、砷的溶出率分别为92.6%、97.5%和95.5%;(2) Take 40 tons of primary power wave circulating waste acid and pump it into the leaching tank, then add 5 tons of white smoke and dust, stir and leaching for 30 minutes at room temperature, filter, wash the filter cake with 1.5 tons of zinc-precipitating liquid and incorporate it into the filtrate , after analysis, copper, zinc, arsenic content are respectively in the filtrate: 2.7g/L, 21.5g/L, 13.3g/L; The filter cake weight of dry basis is 1120kg, and lead content is 43.6wt%, and lead recovery rate is greater than 95.5%, the dissolution rates of copper, zinc and arsenic are 92.6%, 97.5% and 95.5% respectively;
(3)取酸浸液40m3,按沉铜所需理论量0.8倍加有效含量为65wt%硫化钠163kg固体硫化钠,加料结束后继续反应30min,再泵至沉降槽,上清液泵入脱砷槽,沉积物经离心分离,得富铜渣215kg,经分析富铜渣金属铜含量为48wt%、砷含量为4.2wt%;( 3 ) Take 40m3 of pickling solution, add 0.8 times the theoretical amount required for copper precipitation, add 163kg of solid sodium sulfide with an effective content of 65wt% sodium sulfide, continue to react for 30 minutes after the addition, then pump to the settlement tank, and pump the supernatant into the desulfurization tank In the arsenic tank, the sediment was centrifuged to obtain 215kg of copper-rich slag, the copper-rich slag was analyzed to have a metal copper content of 48wt%, and arsenic content of 4.2wt%;
(4)向步骤(3)的沉铜液中继续加入理论量的1.0倍上述硫化钠1180kg,加料结束后继续反应30min,再泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富砷渣,富砷渣质量(干基)为1387kg,经分析砷含量为37.2wt%;(4) Continue to add 1.0 times the theoretical amount of the above-mentioned sodium sulfide 1180kg to the copper precipitation solution in step (3), continue to react for 30 minutes after the addition, and then pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered It is the arsenic-rich slag, the mass (dry basis) of the arsenic-rich slag is 1387kg, and the arsenic content is 37.2wt% after analysis;
(5)向步骤(4)的沉砷液中继续加入固体碳酸钠,反应结束后测pH值为7.0,泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富锌渣,富锌渣质量(干基)为1788kg,经分析金属锌含量为46.3wt%,砷含量为3.7wt%。(5) Continue to add solid sodium carbonate to the arsenic precipitation solution in step (4), measure the pH value after the reaction is 7.0, pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered to become zinc-rich slag , the quality of the zinc-rich slag (dry basis) is 1788kg, the metal zinc content is 46.3wt% after analysis, and the arsenic content is 3.7wt%.
实施例2:Example 2:
(1)白烟尘灰、一级动力波循环废酸主要成分见表3、4;(1) The main components of white soot and ash and primary power wave cycle waste acid are shown in Tables 3 and 4;
表3白烟尘灰主要成分Table 3 Main components of white soot
表4一级动力波循环废酸主要成分Table 4 Main components of waste acid in primary power wave cycle
(2)取一级动力波循环废酸40吨泵入浸取槽,再加入白烟尘灰5吨,于常温下搅拌浸取30min,过滤、用沉锌液1.5吨洗涤滤饼并入滤液中,经分析,滤液中铜、锌、砷含量分别为:2.9g/L、23.3g/L、13.2g/L;折干基滤饼质量为1265kg,铅含量为40.2wt%,铅回收率大于95.7%,铜、锌、砷的溶出率分别为92.8%、98.6%和95.1%;(2) Take 40 tons of primary power wave circulating waste acid and pump it into the leaching tank, then add 5 tons of white smoke and dust, stir and leaching for 30 minutes at room temperature, filter, wash the filter cake with 1.5 tons of zinc-precipitating liquid and incorporate it into the filtrate , after analysis, copper, zinc, arsenic content are respectively in the filtrate: 2.9g/L, 23.3g/L, 13.2g/L; The dry basis filter cake quality is 1265kg, and lead content is 40.2wt%, and lead recovery rate is greater than 95.7%, the dissolution rates of copper, zinc and arsenic are 92.8%, 98.6% and 95.1% respectively;
(3)取酸浸液40m3,按沉铜所需理论量1.0倍加有效含量为65wt%硫化钠222g固体硫化钠,加料结束后继续反应30min,再泵至沉降槽,上清液泵入脱砷槽,沉积物经离心分离,得富铜渣245kg,经分析富铜渣金属铜含量为42.3wt%、砷含量为5.7wt%;(3) Take 40m3 of acid leaching solution, add 1.0 times the theoretical amount required for copper precipitation, add effective content of 65wt% sodium sulfide and 222g solid sodium sulfide, continue to react for 30min after feeding, then pump to the settlement tank, and pump the supernatant into the dearsenic Groove, deposit is through centrifugation, obtains 245kg of copper-rich slag, and after analyzing copper-rich slag metallic copper content is 42.3wt%, arsenic content is 5.7wt%;
(4)向步骤(3)的沉铜液中继续加入理论量的0.9倍上述硫化钠1120kg,加料结束后继续反应30min,再泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富砷渣,富砷渣质量(干基)为1279kg,经分析砷含量为41.0wt%;(4) Continue to add 0.9 times the theoretical amount of the above-mentioned sodium sulfide 1120kg to the copper precipitation liquid in step (3), continue to react for 30 minutes after the addition, and then pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered It is the arsenic-rich slag, the mass (dry basis) of the arsenic-rich slag is 1279kg, and the arsenic content is 41.0wt% after analysis;
(5)向步骤(4)的沉砷液中继续加入固体碳酸钠,反应结束后测pH值为7.5,泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富锌渣,富锌渣质量(干基)为2095kg,经分析金属锌含量为42.3wt%,砷含量为4.8wt%。(5) Continue to add solid sodium carbonate to the arsenic precipitation solution in step (4), measure the pH value after the reaction is 7.5, pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered to be zinc-rich slag , the zinc-rich slag quality (dry basis) is 2095kg, and after analysis, the metal zinc content is 42.3wt%, and the arsenic content is 4.8wt%.
实施例3:Example 3:
(1)白烟尘灰、一级动力波循环废酸主要成分见表5、6;(1) The main components of white soot and ash and primary power wave cycle waste acid are shown in Tables 5 and 6;
表5白烟尘灰主要成分Table 5 Main components of white soot
表6一级动力波循环废酸主要成分Table 6 Main components of waste acid in primary power wave cycle
(2)取一级动力波循环废酸40吨泵入浸取槽,再加入白烟尘灰4吨,于常温下搅拌浸取30min,过滤、用沉锌液1.5吨洗涤滤饼并入滤液中,经分析,滤液中铜、锌、砷含量分别为:2.3g/L、18.6g/L、11.5g/L;折干基滤饼质量为811kg,铅含量为48.2wt%,铅回收率大于95.5%,铜、锌、砷的溶出率分别为92.6%、97.5%和95.5%;(2) Take 40 tons of primary power wave circulating waste acid and pump it into the leaching tank, then add 4 tons of white smoke ash, stir and leaching for 30 minutes at room temperature, filter, wash the filter cake with 1.5 tons of zinc-precipitating liquid and incorporate it into the filtrate , after analysis, copper, zinc, arsenic content are respectively in the filtrate: 2.3g/L, 18.6g/L, 11.5g/L; The filter cake weight of dry basis is 811kg, and lead content is 48.2wt%, and lead recovery rate is greater than 95.5%, the dissolution rates of copper, zinc and arsenic are 92.6%, 97.5% and 95.5% respectively;
(3)取酸浸液40m3,按沉铜所需理论量1.1倍加有效含量为65wt%的硫化钠182kg固体硫化钠,加料结束后继续反应30min,再泵至沉降槽,上清液泵入脱砷槽,沉积物经离心分离,得富铜渣217g,经分析富铜渣金属铜含量为40.5wt%、砷含量为6.8wt%;(3) Get 40m3 of pickling solution, add 182kg of solid sodium sulfide with an effective content of 65wt% sodium sulfide according to 1.1 times the theoretical amount required for the precipitation of copper, continue to react for 30min after the feeding, then pump to the settling tank, and the supernatant is pumped into the desulfurization tank. In the arsenic tank, the sediment was centrifuged to obtain 217g of copper-rich slag, the content of copper in the copper-rich slag was analyzed to be 40.5wt% and the arsenic content was 6.8wt%;
(4)向步骤(3)的沉铜液中继续加入理论量的1.1倍上述硫化钠476kg,加料结束后继续反应30min,再泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富砷渣,富砷渣质量(干基)为1120kg,经分析砷含量为35.4wt%;(4) Continue to add 1.1 times the theoretical amount of the above-mentioned sodium sulfide 476kg to the copper precipitation solution in step (3), continue to react for 30 minutes after the addition, and then pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered It is the arsenic-rich slag, the mass (dry basis) of the arsenic-rich slag is 1120kg, and the arsenic content is 35.4wt% after analysis;
(5)向步骤(4)的沉砷液中继续加入固体碳酸钠,反应结束后测pH值为8.0,泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富锌渣,富锌渣质量(干基)为1610kg,经分析金属锌含量为40.2wt%,砷含量为3.2wt%。(5) Continue to add solid sodium carbonate to the arsenic precipitation solution in step (4). After the reaction, the measured pH value is 8.0, pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered to become zinc-rich slag , the quality of the zinc-rich slag (dry basis) is 1610kg, the metal zinc content is 40.2wt% after analysis, and the arsenic content is 3.2wt%.
实施例4:Example 4:
(1)白烟尘灰、一级动力波循环废酸主要成分见表7、8;(1) The main components of white smoke ash and primary power wave cycle waste acid are shown in Tables 7 and 8;
表7白烟尘灰主要成分Table 7 Main components of white soot
表8一级动力波循环废酸主要成分Table 8 Main components of waste acid in primary power wave cycle
(2)取一级动力波循环废酸40吨泵入浸取槽,再加入白烟尘灰4.44吨,于常温下搅拌浸取30min,过滤、用沉锌液1.5吨洗涤滤饼并入滤液中,经分析,滤液中铜、锌、砷含量分别为:2.6g/L、21.0g/L、11.7/L;折干基滤饼质量为1215kg,铅含量为41.5wt%,铅回收率为95.1%,铜、锌、砷的溶出率分别为92.2%、98.3%和95.7%;(2) Take 40 tons of primary power wave circulating waste acid and pump it into the leaching tank, then add 4.44 tons of white smoke ash, stir and leaching for 30 minutes at room temperature, filter, wash the filter cake with 1.5 tons of zinc precipitation solution and merge it into the filtrate , after analysis, copper, zinc, arsenic content are respectively in the filtrate: 2.6g/L, 21.0g/L, 11.7/L; The filter cake weight of dry basis is 1215kg, and lead content is 41.5wt%, and lead recovery rate is 95.1 %, the dissolution rates of copper, zinc and arsenic are 92.2%, 98.3% and 95.7% respectively;
(3)取酸浸液40m3,按沉铜所需理论量1.0倍加有效含量为65wt%硫化钠197g固体硫化钠,加料结束后继续反应30min,再泵至沉降槽,上清液泵入脱砷槽,沉积物经离心分离,得富铜渣210kg,经分析富铜渣金属铜含量为40.9wt%、砷含量为5.5wt%;(3) Take 40m3 of acid leaching solution, add 1.0 times the theoretical amount required for copper precipitation, add effective content of 65wt% sodium sulfide and 197g solid sodium sulfide, continue to react for 30min after feeding, then pump to the settling tank, and pump the supernatant into the arsenic removal Groove, deposit is through centrifugation, obtains 210kg of copper-rich slag, and after analyzing copper-rich slag metallic copper content is 40.9wt%, arsenic content is 5.5wt%;
(4)向步骤(3)的沉铜液中继续加入理论量的0.9倍上述硫化钠1000kg,加料结束后继续反应30min,再泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富砷渣,富砷渣质量(干基)为1178kg,经分析砷含量为38.2wt%;(4) Continue to add 0.9 times the theoretical amount of the above-mentioned sodium sulfide 1000kg to the copper precipitation liquid in step (3), continue to react for 30 minutes after the addition, and then pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered It is the arsenic-rich slag, the mass (dry basis) of the arsenic-rich slag is 1178kg, and the arsenic content is 38.2wt% after analysis;
(5)向步骤(4)的沉砷液中继续加入固体碳酸钠,反应结束后测pH值为7.5,泵至沉降槽,上清液溢流入中间槽,沉积物经过滤即为富锌渣,富锌渣质量(干基)为1860kg,经分析金属锌含量为41.7wt%,砷含量为4.7wt%。(5) Continue to add solid sodium carbonate to the arsenic precipitation solution in step (4), measure the pH value after the reaction is 7.5, pump to the settling tank, the supernatant overflows into the middle tank, and the sediment is filtered to be zinc-rich slag , the zinc-rich slag quality (dry basis) is 1860kg, and after analysis, the metal zinc content is 41.7wt%, and the arsenic content is 4.7wt%.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。The above is only a specific implementation of the present invention, but the scope of protection of the present invention is not limited thereto, and any changes or replacements that do not come to mind through creative work shall be covered within the scope of protection of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope defined in the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510867122.5A CN105463197A (en) | 2015-12-02 | 2015-12-02 | Method for recycling valuable metal from copper smelting white smoke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510867122.5A CN105463197A (en) | 2015-12-02 | 2015-12-02 | Method for recycling valuable metal from copper smelting white smoke |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105463197A true CN105463197A (en) | 2016-04-06 |
Family
ID=55601349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510867122.5A Pending CN105463197A (en) | 2015-12-02 | 2015-12-02 | Method for recycling valuable metal from copper smelting white smoke |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105463197A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105803209A (en) * | 2016-04-21 | 2016-07-27 | 西北矿冶研究院 | Method for recovering rare and precious metals from acid mud |
CN106521167A (en) * | 2016-10-11 | 2017-03-22 | 昆明理工大学 | Comprehensive treatment method for high-arsenic lead zinc flue dust ash |
CN106591586A (en) * | 2016-12-02 | 2017-04-26 | 昆明理工大学 | Method for recovering multiple kinds of metal from flue dust in copper smelting |
CN106636656A (en) * | 2016-09-19 | 2017-05-10 | 昆明理工大学 | Method for recovering valuable metal from copper smelting white smoke |
CN106756056A (en) * | 2016-11-22 | 2017-05-31 | 昆明理工大学 | A kind of method of Copper making white cigarette dirt dearsenification |
CN107459166A (en) * | 2017-08-15 | 2017-12-12 | 昆明理工大学 | The curing of sour recycling and arsenic in a kind of waste acid |
CN107502753A (en) * | 2017-03-29 | 2017-12-22 | 河南中原黄金冶炼厂有限责任公司 | A kind of method of Copper making white cigarette dirt acid leaching-extraction removal of impurities |
CN107858519A (en) * | 2017-10-30 | 2018-03-30 | 河南中原黄金冶炼厂有限责任公司 | A kind of comprehensive processing technique of Copper making flue dust and arsenic sulfide slag |
CN109136575A (en) * | 2018-08-31 | 2019-01-04 | 唐山鹤兴废料综合利用科技有限公司 | A kind of process of the more metallic dusts of wet-treating |
CN111690815A (en) * | 2019-03-13 | 2020-09-22 | 惠州Tcl环境科技有限公司 | Heavy metal recovery method |
-
2015
- 2015-12-02 CN CN201510867122.5A patent/CN105463197A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105803209A (en) * | 2016-04-21 | 2016-07-27 | 西北矿冶研究院 | Method for recovering rare and precious metals from acid mud |
CN106636656A (en) * | 2016-09-19 | 2017-05-10 | 昆明理工大学 | Method for recovering valuable metal from copper smelting white smoke |
CN106521167A (en) * | 2016-10-11 | 2017-03-22 | 昆明理工大学 | Comprehensive treatment method for high-arsenic lead zinc flue dust ash |
CN106521167B (en) * | 2016-10-11 | 2018-10-02 | 昆明理工大学 | A kind of integrated conduct method of high concn. arsenic and lead Zn dust ash |
CN106756056A (en) * | 2016-11-22 | 2017-05-31 | 昆明理工大学 | A kind of method of Copper making white cigarette dirt dearsenification |
CN106591586A (en) * | 2016-12-02 | 2017-04-26 | 昆明理工大学 | Method for recovering multiple kinds of metal from flue dust in copper smelting |
CN107502753A (en) * | 2017-03-29 | 2017-12-22 | 河南中原黄金冶炼厂有限责任公司 | A kind of method of Copper making white cigarette dirt acid leaching-extraction removal of impurities |
CN107459166A (en) * | 2017-08-15 | 2017-12-12 | 昆明理工大学 | The curing of sour recycling and arsenic in a kind of waste acid |
CN107858519A (en) * | 2017-10-30 | 2018-03-30 | 河南中原黄金冶炼厂有限责任公司 | A kind of comprehensive processing technique of Copper making flue dust and arsenic sulfide slag |
CN107858519B (en) * | 2017-10-30 | 2019-08-02 | 河南中原黄金冶炼厂有限责任公司 | A kind of comprehensive processing technique of Copper making flue dust and arsenic sulfide slag |
CN109136575A (en) * | 2018-08-31 | 2019-01-04 | 唐山鹤兴废料综合利用科技有限公司 | A kind of process of the more metallic dusts of wet-treating |
CN109136575B (en) * | 2018-08-31 | 2020-08-14 | 唐山鹤兴废料综合利用科技有限公司 | Technological method for processing multi-metal dust by wet method |
CN111690815A (en) * | 2019-03-13 | 2020-09-22 | 惠州Tcl环境科技有限公司 | Heavy metal recovery method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105463197A (en) | Method for recycling valuable metal from copper smelting white smoke | |
CN101225476B (en) | Process for reclaiming copper from lead copper matte | |
CN106636656A (en) | Method for recovering valuable metal from copper smelting white smoke | |
CN102586600B (en) | Process for recycling valuable metal from lead copper matte | |
CN100591783C (en) | Method for recovering zinc and lead from waste electrolytic anode mud | |
CN101078052B (en) | Method for synthetically reclaiming iron and non-ferrous metal from solid waste of iron and steel plant | |
CN102409180B (en) | Metallurgical process for recovering metal copper, lead, zinc and tin from copper refining waste slag | |
CN106399692B (en) | A kind of concentration smelting method that cupric solid wastes recycling utilizes | |
CN102491287A (en) | Process for separating and recovering selenium from selenium-containing material | |
CN101871046A (en) | Method for recycling heavy metal pollution wastes | |
CN101012514A (en) | Method for producing metallic lead and zinc by using lead-zinc containing waste slag or lead-zinc monoxide mine | |
CN101113490B (en) | A method for leaching indium from indium sulfide concentrate | |
CN105543479B (en) | A kind of comprehensive recovering process of bismuth matte | |
CN104480325A (en) | Method for extracting cobalt from cobalt-containing raw material | |
CN102534255A (en) | Wet-fire combined smelting process for antimony or bismuth | |
CN105695744A (en) | Full-path full-valence separation method for multifarious metal | |
CN110079676A (en) | A kind of zinc oxide fumes step extract technology rich in germanium | |
CN103882236A (en) | Method for processing high-sulfur copper dust and recovering copper by employing a wet process | |
CN108624759A (en) | A method of the comprehensively recovering valuable metal from white cigarette dirt | |
CN102108447B (en) | Technology for removing iron and arsenic from leaching solution of purification slag generated in zinc hydrometallurgy | |
CN104451156A (en) | Comprehensive recovery method of lead copper matte | |
CN106498181A (en) | Green metallurgy extraction method for lead-zinc oxide ore | |
CN105567983A (en) | Soot treatment process in copper smelting process | |
CN101525696B (en) | A method for leaching indium from indium-containing leaching slag | |
CN101565780A (en) | Smelting method of polymetallic lead-zinc sulfide ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160406 |