CN105450112A - Wind power generation system with fault-tolerant operation capability in independent phase control structure - Google Patents

Wind power generation system with fault-tolerant operation capability in independent phase control structure Download PDF

Info

Publication number
CN105450112A
CN105450112A CN201510919070.1A CN201510919070A CN105450112A CN 105450112 A CN105450112 A CN 105450112A CN 201510919070 A CN201510919070 A CN 201510919070A CN 105450112 A CN105450112 A CN 105450112A
Authority
CN
China
Prior art keywords
fault
winding
phase
wind
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510919070.1A
Other languages
Chinese (zh)
Other versions
CN105450112B (en
Inventor
吴爱华
茅靖峰
吴国庆
张旭东
吴国祥
曹阳
易龙芳
周磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201510919070.1A priority Critical patent/CN105450112B/en
Publication of CN105450112A publication Critical patent/CN105450112A/en
Application granted granted Critical
Publication of CN105450112B publication Critical patent/CN105450112B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The invention discloses a wind power generation system with fault-tolerant operation capability in an independent phase control structure. The wind power generation system comprises a wind turbine, a fault-tolerant wind driven generator, a modular power converter, a multi-sensor signal detector, an electrical equipment failure judging and indicating device, a full-wind speed optimum torque outer-loop controller, a fault-tolerant decision inner-loop controller and a logic switching and pulse width modulation driver. According to a wind generating set structure with fault-tolerant operation capability and low torque pulsation and a drive control technology of the wind generating set structure, power generation operation can be further safely and reliably carried out close to rated capacity when a certain electrical failure of the set occurs; and the wind power generation system has the characteristics of being simple in mechanical structure, high electrical reliability, high modular assembly degree, convenient to inspect and maintain and the like.

Description

There is the wind generator system of the independent phase control structure of fault-tolerant operation ability
The application is application number: the divisional application of 201410052445.4, the applying date: 2014.2.17, title " wind generator system of independent phase control structure ".
Technical field
The present invention relates to wind-driven generator and Fault Tolerance Control Technology field, be specifically related to the wind turbine generator that a kind of fault tolerant runs.
Background technology
Wind power generation is the regenerative resource of current most extensive development potentiality, and every country has all dropped into a huge sum of money and competitively researched and developed, and actively pushes forward industrialization process, application of exploiting market energetically.
Due to wind resource distribution, wind power plant is installed on the physical features eminence in geographical and that meteorological condition is more severe suburb or urban district more.Once equipment installs, operational management and the repair and maintenance of unit are extremely inconvenient, and for this reason, the continuous reliability service ability improving wind turbine generator is an important technology in wind power plant research and development manufacture field.Due to one of core component that wind-driven generator is in wind power plant, therefore, its reliability service and fault-tolerant operation ability particularly important.
At present, the generator for wind generator system mainly contains threephase alternator, DC permanent-magnetic brushless generator and switch reluctance generator.Threephase alternator (as synchronous, double-fed asynchronous, mouse cage asynchronous, winding asynchronous in permanent-magnet synchronous, electric excitation etc.) and DC permanent magnetic generator; adopt distributed symmetric winding construction; when a certain phase winding generation open circuit or short trouble; or a certain phase power inverter is when breaking down; air-gap field distorts; cause generator out of control from operation mechanism; the basic controlling target as wind power generations such as most strong wind power tracking controls cannot be reached; if shut down not in time, its serious torque is jolted and will inevitably be damaged plant equipment.Switch reluctance generator adopts symmetrical concentratred winding, when a certain phase winding generation open circuit or short trouble, or a certain phase power inverter is when breaking down, although can run by phase-lacking fault-tolerant, but the pulsation of its intrinsic teeth groove and the radial magnetic pull characteristic of imbalance can be exaggerated, generating torque produces periodically serious pulsation, very easily causes the damage of wind turbine and accessory machinery thereof and the dangerous of unit.
Therefore, from raising reliability index angle, avoid the generator of traditional distributed symmetric winding structure cannot phase-deficient operation, and the deficiency of the large torque pulsation of switch reluctance generator, research and design is a set of has the wind-driven generator of fault-tolerant operation ability and low torque ripple and driving control system has good engineering and economic implications.
Summary of the invention
The object of the present invention is to provide a kind of wind generator system with the wind generating set structure of fault-tolerant operation ability and low torque ripple and the independent phase control structure of Drive Control Technique thereof.
Technical solution of the present invention is:
A wind generator system for independent phase control structure, is characterized in that: comprise wind turbine, fault-tolerance aerogenerator, modular power converters, multiple sensor signals detector, electrical equipment failure differentiation and ring controller, logic switch and pulse-width-modulation driver in indicating device, the outer ring controller of full blast speed optimum torque, fault-tolerant decision-making;
Described fault-tolerance aerogenerator, be included in stator circumference space, evenly staggered m stator electromagnet isolates tooth and m stator armature generating tooth, individual centralized power generation winding phase, the sinusoidal permanent magnet array of Surface Mount on rotor diameter generated electricity on tooth around stator armature of m at equal intervals; Its rotor is connected with wind turbine rotary main shaft;
Described modular power converters, includes m the single-phase sine-converter circuit of H bridge; Each H bridge single-phase sine-converter circuit is all connected with negative pole with DC bus positive pole respectively by 2 electric gate-controlled switches; Each H bridge single-phase sine-converter circuit is all connected with 1 winding that generates electricity of fault-tolerance aerogenerator mutually by 1 electric gate-controlled switch;
Described multiple sensor signals detector, comprises air velocity transducer, speed probe, voltage sensor, current sensor; Realize the detection to the voltage and current of wind speed, wind turbine rotating speed, fault-tolerance aerogenerator rotating speed and its m winding phase;
Described electrical equipment failure differentiates and indicating device, according to the analysis of the voltage and current signal of the fault-tolerance aerogenerator m winding provided multiple sensor signals detector, in fault-tolerant decision-making, ring controller provides the numbering of fault-tolerance aerogenerator k fault winding phase, and the fault type of k fault winding phase, wherein k≤m; And utilize display device to indicate the numbering of k fault winding phase and the fault type of correspondence thereof;
The outer ring controller of described full blast speed optimum torque, absorb electric current and the voltage signal of wind speed, wind turbine rotating speed, fault-tolerance aerogenerator rotating speed and its m the winding phase that generates electricity that best torque curved line relation and multiple sensor signals detector provide according to the wind energy of wind turbine, in fault-tolerant decision-making, ring controller provides optimal power generation total current control command signal;
Ring controller in described fault-tolerant decision-making, number mutually with k fault winding according to optimal power generation total current control command signal, wait according to coordination and hold allocation algorithm, calculate the optimal power generation phase current command signal that fault-tolerance aerogenerator (m-k) individual non-faulting winding is mutually respective;
Described logic switch and pulse-width-modulation driver, the optimal power generation phase current command signal that fault-tolerance aerogenerator (m-k) the individual non-faulting winding provided according to ring controller in fault-tolerant decision-making is mutually respective, forms the pwm control signal of the single-phase sine-converter circuit of corresponding (m-k) individual healthy phases H bridge; And the disconnection control signal of 3k electric gate-controlled switch in the single-phase sine-converter circuit of H bridge corresponding to k fault phase;
Fault-tolerance aerogenerator m stator electromagnet isolation tooth and m stator armature generating tooth are in stator circumference space, and be evenly staggered at equal intervals, its end all has pole shoe structure, to obtain good magnetic field sine distribution character; M stator electromagnet isolation tooth does not all install around winding.
In described fault-tolerant decision-making, the numerical value of fault-tolerance aerogenerator (m-k) the individual non-faulting winding optimal power generation phase current command signal separately that ring controller calculates can not be identical.
Described modular power converters, can differentiate and the numbering of the fault winding phase that indicating device indicates and corresponding fault type thereof according to electrical equipment failure, carry out online on-line maintenance.
Electrical equipment failure differentiates that the rule of carrying out fault distinguishing with indicating device comprises: (1) is if the electric current of certain winding phase that generates electricity of fault-tolerance aerogenerator, mean value in one-period is not equal to zero, and with zero phase error is larger, obviously be not equal to the average current value of other phases, then show, the single-phase sine-converter circuit of the H bridge be connected with this generating winding there occurs " power electronic element lost efficacy " fault; (2) if the current instantaneous value of certain generating winding phase of fault-tolerance aerogenerator, in multiple detection sampling period, be equal to zero, be obviously not equal to the current value of other phases, then show, this generating winding there occurs " winding overhang open circuit " fault mutually; (3) if the current effective value of certain generating winding phase of fault-tolerance aerogenerator becomes suddenly large, meanwhile, floating voltage effective value diminishes suddenly, is obviously not equal to the voltage and current value of other phases, then show, this generating winding there occurs " winding overhang short circuit " fault mutually.Compared with prior art the invention has the advantages that:
(1) fault-tolerance aerogenerator can when part phase winding be short-circuited or open circuit fault, electrical isolation fault phase winding rapidly online, and phase shortage generator operation can be continued;
(2) fault-tolerance aerogenerator under the power electronic element failure conditions of the single-phase sine-converter circuit of modular power converters part H bridge, can excise the single-phase sine-converter circuit of fault H bridge, and can continue phase shortage generator operation online rapidly;
(3) fault-tolerance aerogenerator respectively mutually generate electricity winding work alone, the generation current of each phase can independently control;
(4) fault-tolerance aerogenerator holds algorithm assigns by the coordination to optimal power generation direct torque command signal etc., ensures that generator always generates electricity electromagnetic torque in phase-deficient operation situation, large torque does not occur yet and falls or pulse.
Accompanying drawing explanation
Below in conjunction with drawings and Examples, the invention will be further described.
Fig. 1 is overall construction drawing of the present invention.
Fig. 2 is the sectional structure chart of fault-tolerance aerogenerator.
Fig. 3 is modular power converters structure chart.
Fig. 4 is the control principle drawing of the outer ring controller of full blast speed optimum torque.
Embodiment
For a kind of wind generator system of independent phase control structure, the invention will be further described by reference to the accompanying drawings.
See accompanying drawing 1, the wind generator system of described a kind of independent phase control structure partly forms with ring controller, logic switch and pulse-width-modulation driver etc. in indicating device, the outer ring controller of full blast speed optimum torque, fault-tolerant decision-making primarily of wind turbine, fault-tolerance aerogenerator, modular power change device, multiple sensor signals detector, electrical equipment failure differentiation.
See accompanying drawing 2, fault-tolerance aerogenerator forms around the centralized power generation winding phase 4 on stator armature generating tooth 3, rotor 5, the sinusoidal permanent magnet array 6 of Surface Mount on rotor diameter primarily of stator 1, m stator electromagnet isolation tooth 2 on stator circumference internal diameter, m stator armature generating tooth 3 on stator circumference internal diameter, m.M stator electromagnet isolation tooth 2 and m stator armature generating tooth 3 are in stator circumference space, and be evenly staggered at equal intervals, its end all has pole shoe 7 structure, to obtain good magnetic field sine distribution character; M stator electromagnet isolation tooth 2 does not all install around winding; In Fig. 2, m=8.According to Electrical Motor principle, isolate the effect of tooth 2 at stator electromagnet under, the electromagnetic coupled interference of each generating winding mutually between 4 is very little, and the independence that can realize each generating winding phase 4 controls.
The rotor 6 of fault-tolerance aerogenerator is given a dinner for a visitor from afar the rotary main shaft of turbine, stator 1 geo-stationary of fault-tolerance aerogenerator.When rotating under the drive of fault-tolerance aerogenerator rotor 6 at wind turbine, its m centralized power generation winding 4 under the cutting of permanent magnetism sine magnetic power air-gap field, can produce sinusoidal generating voltage mutually.
See accompanying drawing 3, the centralized power generation winding phase 4 of fault-tolerance aerogenerator, by electric gate-controlled switch 13, is connected with the single-phase sine-converter circuit 8 of the H bridge of modular power converters.The H bridge single-phase sine-converter circuit 8 of modular power converters is connected with bus positive pole 9 by electric gate-controlled switch 11, is connected with bus negative pole 10 by electric gate-controlled switch 12.The number of H bridge single-phase sine-converter circuit 8 of modular power converters is identical with the number of the centralized power generation winding phase of fault-tolerance aerogenerator.Modular power converters, can differentiate and the numbering of the fault winding phase that indicating device indicates and corresponding fault type thereof according to electrical equipment failure, carry out online on-line maintenance.
Multiple sensor signals detector, comprises air velocity transducer, speed probe, voltage sensor, current sensor; Realize the detection of the voltage and current to wind speed, fault-tolerance aerogenerator rotating speed and m generating winding phase.
Electrical equipment failure differentiates and indicating device, according to the voltage and current signal of fault-tolerance aerogenerator m the generating winding phase 4 that multiple sensor signals detector provides, carries out fault distinguishing.Its rule comprises: (1) is if the electric current of certain generating winding phase of fault-tolerance aerogenerator, mean value in one-period is not equal to zero, and with zero phase error is larger, obviously be not equal to the average current value of other phases, then show, the single-phase sine-converter circuit of the H bridge be connected with this generating winding there occurs " power electronic element lost efficacy " fault.(2) if the current instantaneous value of certain generating winding phase of fault-tolerance aerogenerator, in multiple detection sampling period, be equal to zero, be obviously not equal to the current value of other phases, then show, this generating winding there occurs " winding overhang open circuit " fault mutually.(3) if the current effective value of certain generating winding phase of fault-tolerance aerogenerator becomes suddenly large, meanwhile, floating voltage effective value diminishes suddenly, is obviously not equal to the voltage and current value of other phases, then show, this generating winding there occurs " winding overhang short circuit " fault mutually.
Electrical equipment failure differentiates and indicating device, according to above-mentioned rule, carries out fault distinguishing, obtains the numbering of fault-tolerance aerogenerator k fault winding phase, wherein k≤m; And the fault type that k fault winding is mutually corresponding; These fault types comprise: power electronic element failure of removal, winding overhang open circuit fault, winding overhang short trouble.
Electrical equipment failure differentiates and indicating device, and by the numbering of k fault winding phase detected, and the mutually corresponding fault type of k fault winding is supplied to display device and indicates, for attendant's fast inspection and the maintenance of generating set.
See accompanying drawing 4, the outer ring controller of full blast speed optimum torque, the fault-tolerance aerogenerator rotational speed omega first provided according to multiple sensor signals detector and the current i of m the winding phase that generates electricity thereof xwith voltage u xsignal (x=1,2 ..., m), converse current total generating electromagnetic torque value T ef; The wind speed v signal provided according to multiple sensor signals detector again and wind turbine rotational speed omega wtsignal, the wind energy according to wind turbine absorbs best torque curved line relation, obtains current optimum pneumatic torque signal T opm*; Optimum pneumatic torque signal and current total generating electromagnetic torque value are subtracted each other, T opm*-T ef, its difference carries out pid control algorithm computing, draws current optimal power generation total current control command signal i qand be supplied to ring controller in fault-tolerant decision-making *.
Described logic switch and pulse-width-modulation driver, the optimal power generation phase current command signal that fault-tolerance aerogenerator (m-k) the individual non-faulting winding provided according to ring controller in fault-tolerant decision-making is mutually respective, forms the pwm control signal of the single-phase sine-converter circuit of corresponding (m-k) individual healthy phases H bridge; And the disconnection control signal of 3k electric gate-controlled switch in the single-phase sine-converter circuit of H bridge corresponding to k fault phase.Specifically, ring controller in fault-tolerant decision-making, first the numbering of k the fault winding phase provided with indicating device is differentiated according to electrical equipment failure, output logic control signal is to logic switch and pulse-width-modulation driver, the pwm control signal making corresponding failure winding number the power electronic element in the single-phase sine-converter circuit 8 of corresponding H bridge mutually blocks, and the electric gate-controlled switch 11,12,13 that is connected its 3 disconnects, to reach object k fault winding being realized mutually to electrical isolation.
Because this k fault winding achieves electrical isolation mutually, therefore, the attendant of generating set can differentiate numbering and the fault type thereof of the fault winding phase that indicate with indicating device according to electrical equipment failure, carry out online on-line maintenance.Comprising: for " power electronic element failure of removal ", the single-phase sine-converter circuit of H bridge that this fault winding phase connects directly can be changed, to get rid of this fault; For " winding overhang open circuit fault " and " winding overhang short trouble ", can measure to determine concrete fault point by manual observation with further, to get rid of this fault, or do conservative process, wait until entirety maintenance in the future.
In described fault-tolerant decision-making, the numerical value of fault-tolerance aerogenerator (m-k) the individual non-faulting winding optimal power generation phase current command signal separately that ring controller calculates can not be identical.
Ring controller in fault-tolerant decision-making, then according to the current optimal power generation total current control command signal i that the outer ring controller of full blast speed optimum torque provides q*, wait according to coordination and hold allocation algorithm, to the optimal power generation phase current command signal i of each phase of fault-tolerance aerogenerator residue (m-k) individual non-faulting generating winding phase partitioning qp*, wherein, p=1,2 ..., m-k.It is coordinated to wait and holds allocation algorithm with this (m-k) individual healthy phases optimal power generation phase current command signal i separately qp* vector forms circular magnetic field is target, minimum and total generation current value equals or close to optimal power generation total current control command signal i with copper loss q* be constraints, concrete solving equation can be expressed as
Σ x = 1 m F → x = Σ y = 1 m - k F → y - - - ( 1 )
P C u = Σ y = 1 m - k i y R - - - ( 2 )
Formula (1) the equal sign left side represents the whole m of fault-tolerance aerogenerator generating winding when all normally working mutually, the circular rotating magnetic potential that should produce, fault-tolerance aerogenerator is represented when only there being (m-k) individual non-faulting generating winding normally to work mutually, the required circular rotating magnetic potential produced of each healthy phases on the right of equal sign.Formula (1) ensure that fault-tolerance aerogenerator is electrically isolated before and after excision k generating winding phase factor fault, and the magnetic potential of generation is equal, and namely circular magnetic field and total current are worth constant coordination etc. and hold distribution principle.Formula (2) is (m-k) individual non-faulting generating winding phase current i ythe copper loss produced, wherein, y=1,2 ..., m-k.Because there is the situation of separating in formula (1), therefore, add formula (2) and get this constraints of minimum value, the solution of formula (1) can be made unique more.Obviously, i ylast solution be i qp*.
In fault-tolerant decision-making, ring controller will resolve the optimal power generation phase current command signal i of (m-k) the individual non-faulting winding phase obtained qp* logic switch and pulse-width-modulation driver is supplied to.Logic switch and pulse-width-modulation driver adopt the stagnant ring modulation control method containing current closed-loop, form the pwm control signal of the power electronic element in corresponding (m-k) individual non-faulting winding single-phase sine-converter circuit 8 of H bridge corresponding mutually, finally to complete the object that the optimum wind-powered electricity generation power conversion of this wind turbine generator under full blast speed operating mode controls.

Claims (4)

1. there is a wind generator system for the independent phase control structure of fault-tolerant operation ability, it is characterized in that: comprise wind turbine, fault-tolerance aerogenerator, modular power converters, multiple sensor signals detector, electrical equipment failure differentiation and ring controller, logic switch and pulse-width-modulation driver in indicating device, the outer ring controller of full blast speed optimum torque, fault-tolerant decision-making;
Described fault-tolerance aerogenerator, be included in stator circumference space, evenly staggered m stator electromagnet isolates tooth and m stator armature generating tooth, individual centralized power generation winding phase, the sinusoidal permanent magnet array of Surface Mount on rotor diameter generated electricity on tooth around stator armature of m at equal intervals; Its rotor is connected with wind turbine rotary main shaft;
Described modular power converters, includes m the single-phase sine-converter circuit of H bridge; Each H bridge single-phase sine-converter circuit is all connected with negative pole with DC bus positive pole respectively by 2 electric gate-controlled switches; Each H bridge single-phase sine-converter circuit is all connected with 1 winding that generates electricity of fault-tolerance aerogenerator mutually by 1 electric gate-controlled switch;
Described multiple sensor signals detector, comprises air velocity transducer, speed probe, voltage sensor, current sensor; Realize the detection to the voltage and current of wind speed, wind turbine rotating speed, fault-tolerance aerogenerator rotating speed and its m winding phase;
Described electrical equipment failure differentiates and indicating device, according to the analysis of the voltage and current signal of the fault-tolerance aerogenerator m winding provided multiple sensor signals detector, in fault-tolerant decision-making, ring controller provides the numbering of fault-tolerance aerogenerator k fault winding phase, and the fault type of k fault winding phase, wherein k<m; And utilize display device to indicate the numbering of k fault winding phase and the fault type of correspondence thereof;
The outer ring controller of described full blast speed optimum torque, absorb electric current and the voltage signal of wind speed, wind turbine rotating speed, fault-tolerance aerogenerator rotating speed and its m the winding phase that generates electricity that best torque curved line relation and multiple sensor signals detector provide according to the wind energy of wind turbine, in fault-tolerant decision-making, ring controller provides optimal power generation total current control command signal;
Ring controller in described fault-tolerant decision-making, number mutually with k fault winding according to optimal power generation total current control command signal, wait according to coordination and hold allocation algorithm, calculate the optimal power generation phase current command signal that fault-tolerance aerogenerator (m-k) individual non-faulting winding is mutually respective;
Described logic switch and pulse-width-modulation driver, the optimal power generation phase current command signal that fault-tolerance aerogenerator (m-k) the individual non-faulting winding provided according to ring controller in fault-tolerant decision-making is mutually respective, forms the pwm control signal of the single-phase sine-converter circuit of corresponding (m-k) individual healthy phases H bridge; And the disconnection control signal of 3k electric gate-controlled switch in the single-phase sine-converter circuit of H bridge corresponding to k fault phase;
Fault-tolerance aerogenerator m stator electromagnet isolation tooth and m stator armature generating tooth are in stator circumference space, and be evenly staggered at equal intervals, its end all has pole shoe structure, to obtain good magnetic field sine distribution character; M stator electromagnet isolation tooth does not all install around winding;
In described fault-tolerant decision-making, the numerical value of fault-tolerance aerogenerator (m-k) the individual non-faulting winding optimal power generation phase current command signal separately that ring controller calculates is not identical.
2. the wind generator system with the independent phase control structure of fault-tolerant operation ability according to claim 1, it is characterized in that: electrical equipment failure differentiates that the rule of carrying out fault distinguishing with indicating device comprises: if the electric current of certain winding phase that generates electricity of fault-tolerance aerogenerator, mean value in one-period is not equal to zero, and with zero phase error is larger, obviously be not equal to the average current value of other phases, then show, the single-phase sine-converter circuit of the H bridge be connected with this generating winding there occurs " power electronic element lost efficacy " fault.
3. the wind generator system with the independent phase control structure of fault-tolerant operation ability according to claim 1, it is characterized in that: electrical equipment failure differentiates that the rule of carrying out fault distinguishing with indicating device comprises: if the current instantaneous value of certain winding phase that generates electricity of fault-tolerance aerogenerator, zero is equal in multiple detection sampling period, obviously be not equal to the current value of other phases, then show, this generating winding there occurs " winding overhang open circuit " fault mutually.
4. the wind generator system with the independent phase control structure of fault-tolerant operation ability according to claim 1, it is characterized in that: electrical equipment failure differentiates that the rule of carrying out fault distinguishing with indicating device comprises: if the current effective value of certain winding phase that generates electricity of fault-tolerance aerogenerator becomes suddenly large, simultaneously, floating voltage effective value diminishes suddenly, obviously be not equal to the voltage and current value of other phases, then show, this generating winding there occurs " winding overhang short circuit " fault mutually.
CN201510919070.1A 2014-02-17 2014-02-17 The wind generator system of the phased structure of independence with fault-tolerant operation ability Expired - Fee Related CN105450112B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510919070.1A CN105450112B (en) 2014-02-17 2014-02-17 The wind generator system of the phased structure of independence with fault-tolerant operation ability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510919070.1A CN105450112B (en) 2014-02-17 2014-02-17 The wind generator system of the phased structure of independence with fault-tolerant operation ability
CN201410052445.4A CN103807095B (en) 2014-02-17 2014-02-17 The wind generator system of independent phase control structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410052445.4A Division CN103807095B (en) 2014-02-17 2014-02-17 The wind generator system of independent phase control structure

Publications (2)

Publication Number Publication Date
CN105450112A true CN105450112A (en) 2016-03-30
CN105450112B CN105450112B (en) 2017-09-12

Family

ID=50704374

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201410052445.4A Expired - Fee Related CN103807095B (en) 2014-02-17 2014-02-17 The wind generator system of independent phase control structure
CN201510918700.3A Expired - Fee Related CN105386933B (en) 2014-02-17 2014-02-17 The wind generator system of the phased structure of independence of low torque ripple
CN201510916824.8A Expired - Fee Related CN105386932B (en) 2014-02-17 2014-02-17 Can phase shortage generator operation the phased structure of independence wind generator system
CN201510919070.1A Expired - Fee Related CN105450112B (en) 2014-02-17 2014-02-17 The wind generator system of the phased structure of independence with fault-tolerant operation ability

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201410052445.4A Expired - Fee Related CN103807095B (en) 2014-02-17 2014-02-17 The wind generator system of independent phase control structure
CN201510918700.3A Expired - Fee Related CN105386933B (en) 2014-02-17 2014-02-17 The wind generator system of the phased structure of independence of low torque ripple
CN201510916824.8A Expired - Fee Related CN105386932B (en) 2014-02-17 2014-02-17 Can phase shortage generator operation the phased structure of independence wind generator system

Country Status (1)

Country Link
CN (4) CN103807095B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247736A (en) * 2017-10-23 2020-06-05 通用电气公司 System and method for preventing demagnetization of permanent magnets in an electric machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673324B (en) * 2016-03-31 2018-04-10 广西大学 A kind of method for realizing Wind turbines MPPT maximum power point tracking
CN110100094A (en) 2016-12-22 2019-08-06 维斯塔斯风力系统集团公司 Measure the transducer current in wind turbine generator
CN106655551B (en) * 2017-01-14 2019-01-15 山东理工大学 A kind of body-sensing vehicle electrical excitation hub motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247065A (en) * 2008-03-26 2008-08-20 南京航空航天大学 Direct-driving electric excitation double-salient pole fault-tolerance aerogenerator
CN102624297A (en) * 2012-03-20 2012-08-01 南京航空航天大学 Fault tolerance permanent magnet power generation system and control method thereof
US20120205912A1 (en) * 2010-12-28 2012-08-16 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator control apparatus, wind turbine generator system, and wind-turbine-generator control method
CN102644545A (en) * 2011-02-18 2012-08-22 华锐风电科技(集团)股份有限公司 Method and system for processing faults of wind generating set

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578880A (en) * 1994-07-18 1996-11-26 General Electric Company Fault tolerant active magnetic bearing electric system
US5929549A (en) * 1998-04-02 1999-07-27 Pacific Scientific Company Fault tolerant electric machine
US6504281B1 (en) * 2000-07-12 2003-01-07 Electric Boat Corporation Synchronous machine fault tolerant arrangement
CN100377478C (en) * 2004-07-14 2008-03-26 华中科技大学 Energy-storing phase modulation motor
CN101237142B (en) * 2007-12-11 2011-06-22 上海电力学院 Failure control method for winding line rotor wind power generator system
CN101355286B (en) * 2008-09-09 2010-08-04 浙江大学 Mixing excitation type permanent magnet switch magnetic linkage electric machine
CN101764491B (en) * 2008-12-24 2014-04-16 徐隆亚 Megawatt grade brushless slip ring double-fed wind generator/motor and control method thereof
CN101958683B (en) * 2010-08-09 2012-05-23 重庆科凯前卫风电设备有限责任公司 Method for acquiring redundant stator voltage signal of double-fed wind turbine
CN103051098A (en) * 2013-01-22 2013-04-17 广东肇庆新广仪科技有限公司 Multi-component electric/magnetic passageway and low-cogging torque magnetic flow switching type motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247065A (en) * 2008-03-26 2008-08-20 南京航空航天大学 Direct-driving electric excitation double-salient pole fault-tolerance aerogenerator
US20120205912A1 (en) * 2010-12-28 2012-08-16 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator control apparatus, wind turbine generator system, and wind-turbine-generator control method
CN102644545A (en) * 2011-02-18 2012-08-22 华锐风电科技(集团)股份有限公司 Method and system for processing faults of wind generating set
CN102624297A (en) * 2012-03-20 2012-08-01 南京航空航天大学 Fault tolerance permanent magnet power generation system and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘亚娟等: "基于容错控制的风力发电机运行可靠性研究", 《自动化技术与应用》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247736A (en) * 2017-10-23 2020-06-05 通用电气公司 System and method for preventing demagnetization of permanent magnets in an electric machine
CN111247736B (en) * 2017-10-23 2023-11-21 通用电气公司 System and method for preventing permanent magnet demagnetization in an electric machine

Also Published As

Publication number Publication date
CN105386932B (en) 2017-10-17
CN105450112B (en) 2017-09-12
CN105386933B (en) 2017-10-10
CN103807095A (en) 2014-05-21
CN105386932A (en) 2016-03-09
CN105386933A (en) 2016-03-09
CN103807095B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN103795313B (en) The wind turbine generator that fault tolerant runs
Hansen et al. Conceptual survey of generators and power electronics for wind turbines
CN102983587B (en) Wind power generation system with overspeed protection and operation method thereof
EP2400150A2 (en) Overspeed protection system and method for wind turbines
EP2296265B1 (en) System for detecting generator winding faults
CN102787974B (en) Fully digital servo driver for AC permanent magnet synchronous motor for wind power generation pitch
CN102035309B (en) Method and apparatus for generating power in a wind turbine
CN103095053A (en) Wind turbine generator and wind turbine
CN103807095B (en) The wind generator system of independent phase control structure
US9683540B2 (en) Electric unit for a pumped-storage power plant having components within and outside of an underground cavern
US10054108B2 (en) Wind turbine system and method for controlling a wind turbine system by power monitoring
Beik An HVDC off-shore wind generation scheme with high voltage hybrid generator
CN203627089U (en) Electrically-driven starting system of force lifting type vertical-axis wind turbine generator set
Badoni et al. Modeling and simulation of 2 MW PMSG wind energy conversion systems
CN203722353U (en) Fault-tolerant wind-driven electric generator
CN101350527A (en) Variable speed drive system
CN203722505U (en) Modularized power converter for fault-tolerant operation wind-driven electric generator group
CN103615359B (en) The electricity of lifting-force type vertical-axis wind power generator group drives start up system and starting method
WO2019112729A1 (en) Systems and methods for isolating faults in electrical power systems connected to a power grid
CN106469965B (en) A kind of wind-driven generator power supply system
US20180342875A1 (en) Electrical power systems and subsystems
EP2562417A1 (en) Three-phase electrical generator and system for turbines
CN112583043A (en) Electrical power system having a clustered transformer with multiple primary windings
Biriescu et al. Experimental model of a hydrogenerator with static excitation
Latréche et al. MODELING AND SIMULATION OF THE GENERATOR GSAP IN A WIND POWER PLANT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170912

Termination date: 20180217