CN105443315A - Method of operating wind power plant and controller thereof - Google Patents

Method of operating wind power plant and controller thereof Download PDF

Info

Publication number
CN105443315A
CN105443315A CN201510596988.7A CN201510596988A CN105443315A CN 105443315 A CN105443315 A CN 105443315A CN 201510596988 A CN201510596988 A CN 201510596988A CN 105443315 A CN105443315 A CN 105443315A
Authority
CN
China
Prior art keywords
rotor
blade
rotor blade
rotational speed
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510596988.7A
Other languages
Chinese (zh)
Inventor
T.法尔克
F.黑斯
S.克卢格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wade Miller Fan Monitoring System Co Ltd
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN105443315A publication Critical patent/CN105443315A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及一种用于运行风能源设备(100)的方法(300),其中所述方法(300)具有确定的步骤(302),其中在确定的步骤(302)中在使用转子叶片(112)的转速信息(206)和可选的加速度信息以及处理规则的情况下确定风能源设备(100)的转子(108)的至少一个转子叶片(112)的局部的弯曲角。在此所述转速信息(206)表示以与所述转子(108)的旋转轴(402)有间距(114)的方式在所述转子叶片(112)上检测到的、所述转子叶片(112)的转速(ω)。所述处理规则表示所述转子叶片(112)的特定于转子的模型。

The invention relates to a method (300) for operating a wind energy installation (100), wherein the method (300) has a determined step (302), wherein in the determined step (302) a rotor blade (112) is used ) rotational speed information ( 206 ) and optionally acceleration information and processing rules to determine a local bending angle of at least one rotor blade ( 112 ) of a rotor ( 108 ) of a wind energy installation ( 100 ). The rotational speed information ( 206 ) here represents the rotor blade ( 112 ) of the rotational speed (ω). The processing rules represent a rotor-specific model of the rotor blade (112).

Description

用于运行风能源设备的方法和控制器Method and controller for operating a wind energy plant

技术领域 technical field

本发明涉及用于运行风能源设备的方法、相应的控制器以及相应的计算机程序。 The invention relates to a method for operating a wind energy installation, a corresponding controller and a corresponding computer program.

背景技术 Background technique

在风能源设备中风由于空气动力而引起转子叶片的变形。为了能够以调节的方式进行干预需要测量叶片的负荷,例如在所述叶片中检测所述变形。 In wind energy installations, the wind causes aerodynamic deformations of the rotor blades. In order to be able to intervene in a regulatory manner, it is necessary to measure the load on the blade, for example to detect the deformation in the blade.

发明内容 Contents of the invention

在该背景下利用在此介绍的方法提供了根据独立权利要求所述的用于运行风能源设备的方法、还有运用该方法的控制器并且最后还有相应的计算机程序。有利的设计方案从各从属权利要求和以下说明书中得出。 Against this background, the method presented here provides a method for operating a wind power plant according to the independent claims, as well as a controller using the method and finally a corresponding computer program. Advantageous refinements emerge from the subclaims and the following description.

为了减小负荷在使用至少一个在转子叶片处检测到的测量值的情况下可以调节风能源设备的转子的转子叶片的冲角。特别地,在此可以使用转速信息,所述转速信息由转速传感器检测到,所述转速传感器以与转子的转动轴有一定间距的方式放置在转子叶片上。转子叶片的当前的转速可以直接归因于在转子叶片处的当前的负荷。 To reduce the load, the angle of attack of the rotor blades of the rotor of the wind energy installation can be adjusted using at least one measured value detected on the rotor blades. In particular, rotational speed information can be used here, which is detected by a rotational speed sensor which is placed on the rotor blade at a distance from the rotational axis of the rotor. The current rotational speed of the rotor blade can be directly attributed to the current load on the rotor blade.

介绍了一种用于运行风能源设备的方法,其中所述方法具有以下步骤: A method for operating a wind power plant is described, wherein the method has the following steps:

在使用转子叶片的转速信息和处理规则的情况下确定风能源设备的转子的至少一个转子叶片的局部的弯曲角,其中所述转速信息表示以与所述转子的旋转轴有间距的方式在所述转子叶片上检测到的、转子叶片的转速,并且所述处理规则表示所述转子叶片的特定于转子的模型。 A local bending angle of at least one rotor blade of a rotor of a wind energy installation is determined using rotational speed information of the rotor blades and a processing rule, wherein the rotational speed information indicates the position at a distance from the rotor axis of rotation. The rotational speed of the rotor blade detected on the rotor blade, and the processing rules represent a rotor-specific model of the rotor blade.

“风能源设备”可以理解为风力设备或风力涡轮机。在此,通过风能而使得风能源设备的转子转动并且利用转子来驱动电的发电机。在转子处的空气动力在这种情况下使转子叶片弯曲。由此在转子的轮毂与转子叶片之间的接口处产生弯矩、叶根弯矩。转速信息可以多维地或多轴地应用。处理规则可以在转子叶片处描绘机械的关系。可选地,为了确定局部的弯曲角可以附加地使用在转子叶片中测量到的加速度。 "Wind energy installations" can be understood as wind power installations or wind turbines. In this case, the rotor of the wind energy installation is rotated by wind energy and an electric generator is driven by the rotor. The aerodynamic forces on the rotor bend the rotor blades in this case. Bending moments, blade root bending moments, thus arise at the interface between the hub of the rotor and the rotor blades. The rotational speed information can be used multidimensionally or multiaxially. Processing rules may describe mechanical relationships at the rotor blades. Optionally, accelerations measured in the rotor blade can additionally be used to determine the local bending angle.

局部的弯曲角还可以在使用转子叶片的冲角信息的情况下被确定。冲角信息可以表示通过调整装置调节的转子叶片的冲角。冲角信息可以是转子叶片的冲角的实际值。转子叶片的冲角决定性地影响转子叶片处的空气动力。 The local bending angle can also be determined using information on the angle of attack of the rotor blade. The angle of attack information can indicate the angle of attack of the rotor blade adjusted by the adjusting device. The angle of attack information may be an actual value of the angle of attack of the rotor blade. The angle of attack of the rotor blade has a decisive influence on the aerodynamics at the rotor blade.

局部的弯曲角还可以在使用加速度信息的情况下被确定。加速度信息可以表示以与旋转轴有另一间距的方式在转子叶片上检测到的、转子叶片的加速度。通过加速度可以保障局部的弯曲角。在转速与加速度之间存在几何关系。加速度信息可以被多维地或多轴地使用。加速度接收器与旋转轴间的另外的间距可以等于转速传感器的间距,例如当构建共同的传感器壳体时。同样地,可以以与旋转轴不同的间距的方式布置加速度接收器和转速传感器。 The local bending angle can also be determined using acceleration information. The acceleration information can represent an acceleration of the rotor blade detected on the rotor blade at a different distance from the axis of rotation. The local bending angle can be guaranteed by the acceleration. There is a geometric relationship between rotational speed and acceleration. Acceleration information can be used multi-dimensionally or multi-axis. A further distance between the acceleration receiver and the axis of rotation can be equal to the distance of the rotational speed sensor, for example when a common sensor housing is formed. Likewise, acceleration receivers and rotational speed sensors can be arranged at different distances from the axis of rotation.

在确定的步骤中,可以在使用局部的弯曲角和处理规则的情况下确定叶片偏移和/或叶根弯矩。 In the determining step, the blade deflection and/or the blade root bending moment can be determined using local bending angles and processing rules.

所述方法可以具有提供的步骤,在该步骤中在使用局部的叶片弯曲角、叶片偏移或叶根弯矩的情况下为转子叶片的调整装置提供参考变量。参考变量可以是转子叶片的冲角的目标值。 The method can have the step of providing a reference variable for an adjustment device of the rotor blade using a local blade bending angle, blade offset or blade root bending moment. The reference variable may be a target value for the angle of attack of the rotor blade.

检测到的转速可以是矢量。相应地,检测到的加速度可以是矢量。这种矢量可以各具有三个项(Eintrag)。 The detected rotational speed can be a vector. Accordingly, the detected acceleration may be a vector. Such vectors can each have three entries (Eintrag).

在此介绍的方法还提供了一种控制器,该控制器被构造用于在相应的装置内实施、控制或执行在此所介绍的方法之一的变型的步骤。通过构造为控制器方式的、本发明的该实施变型还可以迅速且有效地解决基于本发明的任务。 The methods presented here also provide a controller which is designed to carry out, control or carry out the steps of one of the variants of the methods presented here in a corresponding device. The object underlying the invention can also be solved quickly and effectively by means of this embodiment variant of the invention, which is embodied in the manner of a controller.

“控制器”在本发明中可以理解为电设备,该电设备处理传感器信号并且根据该传感器信号发出控制信号和/或数据信号。控制器可以具有接口,该接口可以以硬件和/或软件的方式来构造。在以硬件的方式构造时接口例如可以是所谓的系统ASIC的、包含控制器的不同功能的部件。然而还可以的是,接口是自身的、集成的开关电路或者至少部分地由分立的部件组成。在以软件的方式构造时,接口可以是软件模块,所述软件模块例如存在于其他软件模块旁的微控制器上。 A “controller” in the context of the present invention is to be understood as an electrical device which processes sensor signals and emits control signals and/or data signals as a function of the sensor signals. The controller can have an interface, which can be embodied in hardware and/or software. In the case of a hardware configuration, the interface can be, for example, a so-called system ASIC, which contains various functional components of the controller. However, it is also possible for the interface to be a separate, integrated switching circuit or to consist at least partially of separate components. When configured as software, the interface can be a software module that is present, for example, on a microcontroller next to other software modules.

具有程序代码的计算机程序产品或计算机程序也是有利的,所述程序代码可以存储在机器可读的载体或存储介质例如半导体存储器、硬盘存储器或光存储器上,并且特别是当程序产品或程序实施在计算机或设备上时被用于实施、执行和/或控制根据上述实施方式之一的方法的步骤。 Also advantageous is a computer program product or computer program with a program code which can be stored on a machine-readable carrier or storage medium, such as a semiconductor memory, hard disk memory or optical memory, and in particular when the program product or program is implemented on a A computer or device is used to implement, execute and/or control the steps of the method according to one of the above-described embodiments.

附图说明 Description of drawings

以下借助于附图示范性地对本发明进行详述。在附图中: The invention is explained in more detail below by way of example with reference to the drawings. In the attached picture:

图1示出了具有用于运行根据本发明的一种实施例的风能源设备的控制器的风能源设备的图示; FIG. 1 shows a diagram of a wind power plant with a controller for operating a wind power plant according to an embodiment of the invention;

图2示出了用于运行根据本发明的一种实施例的风能源设备的控制器的框图; Figure 2 shows a block diagram of a controller for operating a wind energy plant according to an embodiment of the present invention;

图3示出了用于运行根据本发明的一种实施例的风能源设备的方法的流程图; FIG. 3 shows a flow chart of a method for operating a wind energy installation according to an embodiment of the invention;

图4示出了在根据本发明的一种实施例的风能源设备处的变形的图示;并且 Figure 4 shows an illustration of a deformation at a wind energy installation according to an embodiment of the invention; and

图5示出了在根据本发明的一种实施例的风能源设备处的变形的另外的图示。 FIG. 5 shows a further illustration of deformations on a wind energy installation according to an exemplary embodiment of the invention.

在下面的附图中,相同或类似的元件可以设有相同或类似的附图标号。此外,附图的图示、附图的说明以及权利要求书包含组合中的多个特征。在此对本领域技术人员而言清楚的是,这些特征也可以被单独考虑或者所述特征可以被概括为其他、在此没有明确描述的组合。 In the following drawings, the same or similar elements may be provided with the same or similar reference numerals. Furthermore, the illustration of the figures, the description of the figures and the claims contain several features in combination. It is clear to a person skilled in the art that these features can also be considered individually or that the features can be combined in other combinations not explicitly described here.

具体实施方式 detailed description

图1示出了具有用于运行根据本发明的一种实施例的风能源设备100的控制器102的风能源设备100的图示。风能源设备100具有塔104。在塔104上水平地可旋转地布置了机舱106。在机舱106中近似水平地可旋转地支承了风能源设备100的主轴。所述主轴表示风能源设备100的转子108的旋转轴。所述主轴连接风能源设备的转子108与机舱106中的发电机。传动机构可以位于转子108与发电机之间。主轴被构造用于将转子108的转动传递到发电机的转子或传动机构上。转子108具有转子轮毂110和三个在轮毂110中沿轴向可旋转地支承的转子叶片112。转子叶片112的冲角在轮毂110中是可单独调节的。 FIG. 1 shows a diagram of a wind energy installation 100 with a controller 102 for operating a wind energy installation 100 according to an exemplary embodiment of the invention. Wind energy installation 100 has a tower 104 . A nacelle 106 is arranged horizontally and rotatably on the tower 104 . The main shaft of wind energy installation 100 is rotatably mounted approximately horizontally in nacelle 106 . The main axis represents the axis of rotation of rotor 108 of wind energy installation 100 . The main shaft connects the rotor 108 of the wind energy installation with the generator in the nacelle 106 . A transmission mechanism may be located between the rotor 108 and the generator. The main shaft is designed to transmit the rotation of the rotor 108 to the rotor or transmission of the generator. The rotor 108 has a rotor hub 110 and three rotor blades 112 mounted axially rotatably in the hub 110 . The angle of attack of the rotor blades 112 is individually adjustable in the hub 110 .

在转子叶片112中的每个上以与轮毂110或与旋转轴一定的间距114的方式固定有传感器装置116。传感器装置116在此包括至少一个多轴的转速传感器。传感器装置116与控制器102连接,从而控制器102可以读入传感器装置116中的、至少一个当前的转速信息。 A sensor device 116 is attached to each of the rotor blades 112 at a distance 114 from the hub 110 or from the axis of rotation. Sensor device 116 here includes at least one multi-axis rotational speed sensor. Sensor device 116 is connected to controller 102 so that controller 102 can read at least one current rotational speed information from sensor device 116 .

在一种实施例中,控制器102被构造用于在使用转速信息的情况下为转子叶片112的角度调整装置提供参考变量。 In one exemplary embodiment, controller 102 is designed to provide a reference variable for an angle adjustment of rotor blade 112 using rotational speed information.

图2示出了用于运行根据本发明的一种实施例的风能源设备的控制器102的框图。控制器102基本上相当于图1中的控制器。控制器102具有用于确定的装置200。该用于确定的装置200被构造用于在使用转子叶片的转速信息206和处理规则的情况下确定风能源设备的转子的至少一个转子叶片的局部的弯曲角或叶根弯矩204。转速信息206如在图1中那样地表示以与转子的旋转轴有间距的方式在所述转子叶片上检测到的、所述转子叶片的转速。所述处理规则表示转子叶片的特定于转子的模型。 FIG. 2 shows a block diagram of a controller 102 for operating a wind energy installation according to an exemplary embodiment of the invention. The controller 102 basically corresponds to the controller in FIG. 1 . Controller 102 has means 200 for determining. The determining device 200 is designed to determine a local bending angle or blade root bending moment 204 of at least one rotor blade of a rotor of a wind energy installation using rotational speed information 206 of the rotor blade and processing rules. Rotational speed information 206 , as in FIG. 1 , indicates the rotational speed of the rotor blade detected on the rotor blade at a distance from the rotor axis of rotation. The processing rules represent a rotor-specific model of the rotor blade.

在一种实施例中,控制器102具有用于提供的装置202。该用于提供的装置202被构造用于在使用局部的弯曲角或叶根弯矩204的情况下为转子叶片的调整装置提供参考变量208。 In one embodiment, the controller 102 has means 202 for providing. Device 202 for providing is designed to provide reference variable 208 for an adjustment device of the rotor blade using local bending angle or blade root bending moment 204 .

控制器102具有接口210,用于读入或发出至少转速信息206和/或参考变量208。 The controller 102 has an interface 210 for reading in or outputting at least rotational speed information 206 and/or a reference variable 208 .

图3示出了用于运行根据本发明的一种实施例的风能源设备的方法300的流程图。所述方法300具有确定的步骤302。所述方法300可以在控制器上如在图1和图2中所示出那样地被执行。在确定的步骤302中,在使用转子叶片的转速信息和处理规则的情况下确定出风能源设备的转子的至少一个转子叶片的局部的弯曲角或叶根弯矩。在此所述转速信息表示以与转子的旋转轴有间距的方式在转子叶片上检测到的、转子叶片的转速。所述处理规则表示转子叶片的特定于转子的模型。 FIG. 3 shows a flow chart of a method 300 for operating a wind energy installation according to an exemplary embodiment of the invention. Method 300 has a determined step 302 . Method 300 can be executed on a controller as shown in FIGS. 1 and 2 . In a determination step 302 , a local bending angle or blade root bending moment of at least one rotor blade of a rotor of a wind energy installation is determined using rotational speed information of the rotor blade and processing rules. In this case, the rotational speed information represents the rotational speed of the rotor blade detected on the rotor blade at a distance from the axis of rotation of the rotor. The processing rules represent a rotor-specific model of the rotor blade.

在一种实施例中,所述方法300具有提供的步骤304。在提供的步骤304中,在使用局部的弯曲角或叶根弯矩的情况下为转子叶片的调整装置提供参考变量。 In one embodiment, the method 300 has a step 304 provided. In a provided step 304 , a reference variable is provided for an adjustment device of the rotor blade using a local bending angle or blade root bending moment.

图4和图5示出了在根据本发明的一种实施例的风能源设备100处的变形的图示。风能源设备100基本上相当于图1中的风能源设备。在风能源设备100的示意图中在此示出了坐标系KN、KT、转速ωT,y、ωT,x和角度β、αC、αT x y以及偏移w和转子108的旋转角ΩR。在此,坐标系KN是转子坐标系。坐标系KT是机舱106或塔的坐标系。两个坐标系都以系统坐标系400为参照,该系统坐标系在此在塔104的底部具有、移动和/或旋转其坐标原点。坐标系KT的坐标原点布置在机舱106的旋转中心处。坐标系KN的坐标原点布置在轮毂110的旋转中心处。坐标系KN和转子的旋转轴402相对于坐标系KT倾斜了角度αT。转子叶片112垂直于转子平面404相对于旋转轴402调整了角度αC。角度β是转子叶片112在轮毂110中的冲角。 4 and 5 show illustrations of variants on a wind energy installation 100 according to an exemplary embodiment of the invention. Wind energy installation 100 basically corresponds to the wind energy installation in FIG. 1 . The coordinate system K N , K T , the rotational speed ω T,y , ω T,x and the angles β, α C , α T , x , y as well as the offset w and the rotation angle Ω R of the rotor 108 . Here, the coordinate system K N is the rotor coordinate system. The coordinate system K T is the coordinate system of the nacelle 106 or the tower. Both coordinate systems are referenced to the system coordinate system 400 , which here has, shifts and/or rotates its coordinate origin at the base of the tower 104 . The coordinate origin of the coordinate system K T is arranged at the center of rotation of the nacelle 106 . The coordinate origin of the coordinate system K N is arranged at the rotation center of the hub 110 . The coordinate system K N and the axis of rotation 402 of the rotor are inclined by an angle α T relative to the coordinate system K T . The rotor blades 112 are adjusted by an angle α C relative to the axis of rotation 402 perpendicular to the rotor plane 404 . Angle β is the angle of attack of rotor blade 112 in hub 110 .

当转子叶片112在工作时发生变形时,所述转子叶片以角度 y从转子平面404中弯曲并且所述转子叶片相对于转子平面404发生了偏移w。 When the rotor blade 112 is deformed during operation, the rotor blade rotates at an angle y is bent from the rotor plane 404 and the rotor blades are offset w relative to the rotor plane 404 .

塔104因在机舱106和塔104上的合力而以转速ωT,y向后沿着旋转轴402的方向弯曲。由于转子108的转矩还使得塔104以ωT,x在侧向横向于旋转轴402偏移。 The tower 104 is bent backwards in the direction of the axis of rotation 402 at a rotational speed ω T,y due to the resultant force on the nacelle 106 and the tower 104 . The tower 104 is also offset laterally transverse to the axis of rotation 402 by ω T,x due to the torque of the rotor 108 .

为了减小风能源设备100的机械应力并且提高效率,在风中争取单独地对转子叶片112进行调整。不同的传感器通常结合模型知识被建议作为用于调节的输入信号。此外建议应变测量、加速度传感器和LIDAR。 In order to reduce the mechanical stress on wind energy installation 100 and increase the efficiency, individual adjustments of rotor blades 112 in wind are aimed at. Different sensors are often proposed in combination with model knowledge as input signals for regulation. Also suggested are strain gauges, accelerometers and LIDAR.

通过在此介绍的方法实现了成本低廉且可靠地提供信号,所述信号适合作为用于调节器的输入参数用于单独调节转子叶片112的冲角β。特别地恢复叶根弯矩。 Inexpensive and reliable provision of signals which are suitable as input variables for the controller for the individual adjustment of the angle of attack β of the rotor blade 112 is achieved by the method presented here. In particular the blade root bending moment is recovered.

通过分析轮毂110中的以及转子叶片112中的惯性数据结合模型知识通过转子叶片112的动态保持评估弯矩。在此,转速ω特别地被分析并且可以通过加速度得以保障。 The bending moment is estimated by analyzing the inertial data in the hub 110 and in the rotor blade 112 combined with model knowledge through the dynamic hold of the rotor blade 112 . In this case, the rotational speed ω is evaluated in particular and can be guaranteed by the acceleration.

换而言之,介绍了转速ω的应用或转速ω和加速度传感器。 In other words, the application of the rotational speed ω or the rotational speed ω and the acceleration sensor is introduced.

基于该评估,调节可以使转子108的机械的和气体动力学的不平衡度最小化、减小转子108的非对称负载以及使风能源设备100的效率最大化。 Based on this evaluation, regulation can minimize the mechanical and aerodynamic unbalance of rotor 108 , reduce the asymmetric loading of rotor 108 and maximize the efficiency of wind energy installation 100 .

在转子叶片112上的点x0(该点距旋转轴402为r0)处,在转子108旋转时通过相应的传感器测量转速ω并且作为在此介绍的方法的扩展还测量加速度a。测量的转速ω是转子108的转速ω、塔104的摆动、转子叶片112的摆动、以及通过桨距调节程度(Pitchverstellung)β而产生的转子叶片112的转速ω的叠加。根据一种实施例,转速ω、加速度a是具有三个项的矢量。 At a point x 0 on the rotor blade 112 , which is r 0 at a distance from the axis of rotation 402 , the rotational speed ω and, as an extension of the method presented here, also the acceleration a are measured by means of corresponding sensors while the rotor 108 is rotating. The measured rotational speed ω is the superposition of the rotational speed ω of the rotor 108 , the oscillating motion of the tower 104 , the oscillating motion of the rotor blades 112 , and the rotational speed ω of the rotor blades 112 produced by the pitch adjustment β. According to an embodiment, the rotational speed ω, the acceleration a are vectors with three terms.

除了纯粹考虑转速信号ω之外,还可以分析在点x0中的转速信号ω以及点x0中的或转子叶片处的另一点中的加速度a的组合。除了关于转速已经提到的来源之外,就加速度而言还可以考虑地球引力、离心加速度和科里奥利加速度。 In addition to purely considering the rotational speed signal ω, it is also possible to analyze the combination of the rotational speed signal ω in the point x 0 and the acceleration a in the point x 0 or in another point on the rotor blade. In addition to the sources already mentioned for the rotational speed, gravity, centrifugal acceleration and Coriolis acceleration can also be taken into consideration for the acceleration.

有用的是为风能源设备100的不同的元件定义不同的坐标系KN、KT并且在这些坐标系之间定义变换。在此处所描述的实施例中,考虑了塔104的坐标系KN、轮毂110的坐标系KT、叶根的坐标系KBR和叶片元件112的坐标系KBIt is useful to define different coordinate systems K N , K T for different elements of wind energy installation 100 and to define transformations between these coordinate systems. In the embodiment described here, a coordinate system K N of the tower 104 , a coordinate system K T of the hub 110 , a coordinate system K BR of the blade root and a coordinate system KB of the blade element 112 are considered.

所述变换为: The transformation is:

KT→KN:Ry(αT), K T → KN: R yT ),

KN→KBR:RZ(β)Ry(αC)Rx(ΩR)和 K N → K BR : R Z (β) R yC ) R xR ) and

KBR→KB:Rx x)Ry y)。 K BR →K B : R x ( x ) R y ( y ).

用Rx(α)、Ry(α)、RZ(α)来表示矩阵,所述矩阵使相应的坐标系围绕x轴、y轴或z轴以给定的角度α旋转。角度αN表明主轴402相对于塔顶的结构的倾斜。角度αC表明叶片112的锥面调节(Kegelanstellung)。转动角因为转子旋转用ΩR来表示且转子叶片的桨距角用β来表示。 R x (α), R y (α), R Z (α) denote matrices which rotate the corresponding coordinate system by a given angle α around the x-axis, y-axis or z-axis. The angle α N indicates the inclination of the main axis 402 relative to the structure at the top of the tower. Angle α C indicates the conical adjustment of blade 112 . The angle of rotation due to rotor rotation is denoted by Ω R and the pitch angle of the rotor blades is denoted by β.

由塔摆动在坐标系KT中产生的转速ω为ωT=[ωT,x,ωT,y,0]T。关于转子在KN中的旋转速度为。转子叶片112的桨距在KBR中考虑由转速引起。由叶片元件112的摆动产生的转速ω在KB中通过来给定。 The rotational speed ω generated by the tower oscillation in the coordinate system K T is ω T =[ω T,x , ω T,y ,0] T . Regarding the rotational speed of the rotor in K N is . The pitch of the rotor blades 112 is considered in K BR by the rotational speed cause. The rotational speed ω generated by the swing of the blade element 112 passes through the KB to give.

因此,整体上被定位在叶片元件112中的传感器检测到的转速ω为: Therefore, the rotational speed ω detected by the sensor positioned in the blade element 112 as a whole is:

可以直接测量出转速ωT。变量β是系统的调节变量且因此也是已知的。其时间的导数例如可以通过数值微分来计算。角度αC和αT是结构变量且作为这种结构变量也是已知的。 Can directly measure the rotational speed ω T , and . The variable β is the regulating variable of the system and is therefore also known. Its time derivative can be calculated, for example, by numerical differentiation. The angles α C and α T are structural variables and are also known as such structural variables.

在此处介绍的方法中弯曲角 x y由测量值ωT恢复。角度 y表明叶片元件112在冲击方向上的转动,并且所述角度与冲击方向上的叶根弯矩直接相关。角度 x表明叶片元件112在枢转方向上的转动,并且所述角度与枢转方向上的叶根弯矩直接相关。 Bending corners in the method presented here x , y is determined by the measured value ω T , and recover. angle y indicates the rotation of the blade element 112 in the direction of impact, and the angle is directly related to the root bending moment in the direction of impact. angle x indicates the rotation of the blade element 112 in the pivot direction, and the angle is directly related to the blade root bending moment in the pivot direction.

由所介绍的的关系和所有转速ω或角速度ω的测量值可以计算出 y以及 x的估计值。通过对这些值的结合和时间上的滤波可以减少测量噪声。 introduced by The relationship and all measured values of rotational speed ω or angular velocity ω can be calculated y and as well as x and estimated value. Measurement noise can be reduced by combining these values and filtering in time.

在使用用于动态保持叶片112的、特定于系统的模型的情况下,代替通过随后的滤波来静态地恢复目标变量也可以直接设计用于 x y的观察器(Beobachter)。 Using a system-specific model for dynamically maintaining the blade 112, instead of statically recovering the target variable by subsequent filtering can also be designed directly for x and The observer for y (Beobachter).

通过非线性的关系在此例如提供了非线性的卡尔曼滤波器,如扩展卡尔曼滤波,无迹卡尔曼滤波或滚动时域估计。 The non-linear relationship provides, for example, a non-linear Kalman filter, such as an extended Kalman filter, an unscented Kalman filter or a rolling temporal estimation.

为了提高恢复的弯曲角 x y的质量,除了转速之外也还可以分析加速度传感器的信息。相应的关系与在此对转速ω进行的说明相似。 To improve the bending angle of recovery x and The quality of y , in addition to the speed, can also analyze the information of the acceleration sensor. The corresponding relationship is similar to that described here for the rotational speed ω.

塔顶的重力和加速度因为塔的偏移在坐标系KT中作为起作用。因转动而产生在坐标系KN中不同的加速度,离心加速度、科里奥利加速度和由转子转速变化产生的加速度。叶片112的摆动导致加速度,在这里w表示叶片112在点x0处的矢量偏转。该术语是坐标系KB的组成部分。 The gravity and acceleration at the top of the tower due to the deflection of the tower are in the coordinate system K T as kick in. Different accelerations in the coordinate system K N due to rotation, centrifugal acceleration , Coriolis acceleration and the acceleration due to the change in rotor speed . The oscillation of the blade 112 results in an acceleration , where w represents the vector deflection of the blade 112 at point x 0 . This term is an integral part of the coordinate system KB .

因此合成的测量的加速度为: The resulting measured acceleration is thus:

.

在矢量偏转w和弯曲角 x y之间存在线性的关系。比例常数可以由弯曲线和弯曲线在传感器的位置处的斜率的关系计算出。 In vector deflection w and bend angle x with There is a linear relationship between y . The constant of proportionality can be calculated from the relationship of the bend line and the slope of the bend line at the location of the sensor.

因此,关于加速度的给定的测量方程可以用在非线性的观察器中,以便改善恢复的信号的质量。 Thus, a given measurement equation for acceleration can be used in a non-linear observer in order to improve the quality of the recovered signal.

在此处介绍的方法中,惯性传感器被用在风能源设备100的转子叶片112内或用在风能源设备100的转子叶片112上。通过该传感器可以特别好地对叶片112进行单独的桨距调节。 In the method presented here, inertial sensors are used in or on the rotor blade 112 of the wind energy installation 100 . An individual pitch adjustment of the blades 112 is particularly well possible by means of this sensor.

所示出的实施例仅仅被示范性地选择并且可以彼此组合。 The exemplary embodiments shown are selected as examples only and can be combined with one another.

附图标记清单: List of reference signs:

100风能源设备 100 wind energy equipment

102控制器 102 controller

104塔 104 Tower

106机舱 106 cabin

108转子 108 rotor

110轮毂 110 hub

112转子叶片 112 rotor blades

114间距 114 spacing

116传感器装置 116 sensor device

200用于确定的装置 200 for sure device

202用于提供的装置 202 means for providing

204局部的叶片弯曲角或者叶根弯矩 204 Local blade bending angle or blade root bending moment

206转速信息 206 speed information

208参考变量 208 reference variable

210接口 210 interface

300用于运行风能源设备的方法 300 Method for operating a wind energy plant

302确定的步骤 302 OK Steps

304提供的步骤 304 provided steps

400系统坐标系 400 system coordinate system

402旋转轴 402 rotation axis

404转子平面 404 rotor plane

w偏移 w offset

500用于引出的装置 500 devices for extraction

502用于测定的装置 502 Devices for determination

504用于确定的装置 504 means for determining

506加速度传感器 506 acceleration sensor

508加速度值 508 acceleration value

516负荷值 516 load value

Claims (8)

1.用于测定风能源设备(100)的转子的负荷的方法(300),其中所述方法(300)具有以下步骤: 1. Method (300) for determining a load on a rotor of a wind energy installation (100), wherein said method (300) has the following steps: 在使用转子叶片(112)的转速信息(206)和处理规则的情况下确定(302)所述风能源设备(100)的转子(108)的至少一个转子叶片(112)的局部的弯曲角,其中所述转速信息(206)表示以与所述转子(108)的旋转轴(402)有间距(114)的方式在所述转子叶片(112)上检测到的、所述转子叶片(112)的转速(ω),并且所述处理规则表示所述转子叶片(112)的特定于转子的模型。 determining (302) a local bending angle of at least one rotor blade (112) of a rotor (108) of the wind energy installation (100) using rotational speed information (206) of the rotor blade (112) and a processing rule, wherein said rotational speed information (206) represents said rotor blade (112) detected on said rotor blade (112) at a distance (114) from said rotor (108) axis of rotation (402) The rotational speed (ω) of , and the processing rule represents a rotor-specific model of the rotor blade (112). 2.根据权利要求1所述的方法(300),其中在确定的步骤(302)中还在使用所述转子叶片(112)的冲角信息的情况下确定所述局部的弯曲角,其中所述冲角信息表示通过调整装置调节的所述转子叶片(112)的冲角(β)。 2. The method (300) according to claim 1, wherein in the step of determining (302) the local bending angle is also determined using angle of attack information of the rotor blade (112), wherein the The angle of attack information represents the angle of attack (β) of the rotor blade (112) adjusted by the adjusting device. 3.根据前述权利要求中任一项所述的方法(300),其中在确定的步骤(302)中还在使用加速度信息(508)的情况下确定所述局部的弯曲角,其中所述加速度信息(508)表示以与所述旋转轴(402)有另一间距(114)的方式在所述转子叶片(112)上检测到的、所述转子叶片(112)的加速度。 3. The method (300) according to any one of the preceding claims, wherein in the step of determining (302) the local bending angle is also determined using acceleration information (508), wherein the acceleration Information ( 508 ) indicates an acceleration of the rotor blade ( 112 ) detected on the rotor blade ( 112 ) at a further distance ( 114 ) from the axis of rotation ( 402 ). 4.根据前述权利要求中任一项所述的方法,其中在确定的步骤中在使用局部的弯曲角和处理规则的情况下确定叶片偏移和/或叶根弯矩。 4 . The method according to claim 1 , wherein in the determining step, the blade deflection and/or the blade root bending moment are determined using local bending angles and processing rules. 5.根据前述权利要求中任一项所述的方法(300),其具有提供的步骤(304),在该步骤中在使用局部的叶片弯曲角、叶片偏移或叶根弯矩的情况下为所述转子叶片的调整装置提供参考变量。 5. The method (300) according to any one of the preceding claims, having the step (304) of providing in which using a local blade bending angle, blade offset or blade root bending moment A reference variable is provided for the adjustment device of the rotor blade. 6.根据前述权利要求中任一项所述的方法(300),其中所检测到的转速(ω)和/或所检测到的加速度是矢量。 6. The method (300) according to any one of the preceding claims, wherein the detected rotational speed (ω) and/or the detected acceleration are vectors. 7.用于运行风能源设备(100)的控制器(102),该控制器被构造用于实施根据前述权利要求中任一项所述方法(300)的所有步骤。 7. A controller (102) for operating a wind energy installation (100), which controller is designed to carry out all the steps of the method (300) according to any one of the preceding claims. 8.计算机程序,该计算机程序被设立用于实施根据前述权利要求中任一项所述方法(300)的所有步骤。 8. Computer program set up to carry out all the steps of the method (300) according to any one of the preceding claims.
CN201510596988.7A 2014-09-19 2015-09-18 Method of operating wind power plant and controller thereof Pending CN105443315A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218851.2A DE102014218851A1 (en) 2014-09-19 2014-09-19 Method and control device for operating a wind turbine
DE102014218851.2 2014-09-19

Publications (1)

Publication Number Publication Date
CN105443315A true CN105443315A (en) 2016-03-30

Family

ID=55444581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510596988.7A Pending CN105443315A (en) 2014-09-19 2015-09-18 Method of operating wind power plant and controller thereof

Country Status (2)

Country Link
CN (1) CN105443315A (en)
DE (1) DE102014218851A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147708A (en) * 2018-01-23 2018-06-12 云南森博混凝土外加剂有限公司 A kind of preparation method of compound foaming agent
CN108733079A (en) * 2018-06-19 2018-11-02 上海扩博智能技术有限公司 Automatic detecting flight path is carried out to wind turbine by unmanned plane and determines method and system
WO2023142366A1 (en) * 2022-01-29 2023-08-03 新疆金风科技股份有限公司 Method and apparatus for estimating wind speed at rotor of wind turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586363B (en) * 2021-08-27 2023-05-02 西安热工研究院有限公司 Wind turbine generator blade deflection monitoring device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003565A (en) * 2010-07-24 2013-03-27 罗伯特·博世有限公司 Method and device for determining a bending angle of a rotor blade of a wind turbine system
DE102013009877A1 (en) * 2013-06-13 2014-12-18 Robert Bosch Gmbh Method and device for load evaluation of a rotor blade of a wind turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003565A (en) * 2010-07-24 2013-03-27 罗伯特·博世有限公司 Method and device for determining a bending angle of a rotor blade of a wind turbine system
DE102013009877A1 (en) * 2013-06-13 2014-12-18 Robert Bosch Gmbh Method and device for load evaluation of a rotor blade of a wind turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147708A (en) * 2018-01-23 2018-06-12 云南森博混凝土外加剂有限公司 A kind of preparation method of compound foaming agent
CN108733079A (en) * 2018-06-19 2018-11-02 上海扩博智能技术有限公司 Automatic detecting flight path is carried out to wind turbine by unmanned plane and determines method and system
CN108733079B (en) * 2018-06-19 2021-08-10 上海扩博智能技术有限公司 Method and system for determining flight path of fan through automatic inspection by unmanned aerial vehicle
WO2023142366A1 (en) * 2022-01-29 2023-08-03 新疆金风科技股份有限公司 Method and apparatus for estimating wind speed at rotor of wind turbine

Also Published As

Publication number Publication date
DE102014218851A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP7175981B2 (en) Measurement system from wind turbine tower to blade tip
EP2112376B1 (en) Systems and methods involving wind turbine towers for power applications
CN103649528B (en) The method that wind turbine and wind turbine yaw angle control
CN104114859B (en) Device for adjusting the driftage of wind turbine
ES2974957T3 (en) Control system and procedure to mitigate rotor imbalance in a wind turbine
CN106640548A (en) State monitoring method and device for wind generating set
CN102538939B (en) With the system and method for sensor device determination wind turbine rotor blade vibration frequency
EP2317132B1 (en) Systems and methods for determining the angular position of a wind turbine rotor
JP5881631B2 (en) Wind turbine generator, wind turbine generator controller and control method
US20130272874A1 (en) Method and device for determining a bending angle of a rotor blade of a wind turbine system
CN105443315A (en) Method of operating wind power plant and controller thereof
CN107110125A (en) For the method and system for the dynamic distortion for determining wind turbine blade
EP3657291B1 (en) Data processing device, data processing method and program.
CN112727682B (en) Blade vibration suppression system for wind turbines and associated methods
CN103899497A (en) Method of detecting a degree of yaw error of a wind turbine
CN107559144B (en) Method and system for feedforward control of wind turbines
US12281639B2 (en) Determining wind turbine rotor speed
US9164124B2 (en) Apparatus and method for controlling automatic gain of inertial sensor
CN105317627B (en) Method and control device for adjusting a rotor of a wind energy installation according to wind direction tracking
TWI771642B (en) wind power plant
CN111577557A (en) Blade icing detection method and device for wind generating set and storage medium
CN107110105A (en) Method and system for adjusting the quality in Wave-activated power generation equipment and the torque of spinning roller rotor
CN103019093A (en) Obtaining method of fusion angle of sensor for two-wheeled vehicle
CN110726511B (en) Centroid calculation method of inertial navigation system with rotating mechanism
EP4009510A1 (en) Motor control device, moving body, motor control method, and program

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170606

Address after: Dresden, Germany

Applicant after: Wade Miller Fan Monitoring System Co., Ltd.

Address before: Stuttgart, Germany

Applicant before: Robert Bosch Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160330