CN105431003A - 连续相变热沉热控制单元 - Google Patents

连续相变热沉热控制单元 Download PDF

Info

Publication number
CN105431003A
CN105431003A CN201510785550.3A CN201510785550A CN105431003A CN 105431003 A CN105431003 A CN 105431003A CN 201510785550 A CN201510785550 A CN 201510785550A CN 105431003 A CN105431003 A CN 105431003A
Authority
CN
China
Prior art keywords
phase
change material
phase change
diffusion plate
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510785550.3A
Other languages
English (en)
Other versions
CN105431003B (zh
Inventor
胡家渝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 10 Research Institute
Original Assignee
CETC 10 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 10 Research Institute filed Critical CETC 10 Research Institute
Priority to CN201510785550.3A priority Critical patent/CN105431003B/zh
Publication of CN105431003A publication Critical patent/CN105431003A/zh
Application granted granted Critical
Publication of CN105431003B publication Critical patent/CN105431003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明公开的一种连续相变热沉热控制单元,旨在提供一种原理简单,实现成本低的相变材料的热控制单元,本发明通过下述技术方案予以实现:在封装壳体封闭腔体的底端设有支撑预紧压板的锥形弹簧,相变材料设置在热扩散板与预紧压板之间,锥形弹簧预紧力将相变材料贴近压在热扩散板上,在相变过程中,热源通过热扩散板传递到相变材料发生相变,使相变材料与热扩散板界面处相变材料软化,锥形弹簧通过预紧压板将弹簧预紧力传递到相变材料与热扩散板界面,将软化熔融的相变材料推挤出热扩散板与相变材料的界面,从预紧压板与封装壳体之间的缝隙排除到锥形弹簧弹簧一侧,相变材料在锥形弹簧弹簧力作用下由厚变薄,产生不断变薄的连续熔融相变,实现高效的传热储能。

Description

连续相变热沉热控制单元
技术领域
本发明涉及一种利用相变传热原理对电子设备进行传热的相变热沉。
背景技术
随着电子器件的高频、高速以及集成电路技术的迅速发展和技术的进步,电子元器件的总功率密度大幅度增长而物理尺寸却越来越小,热流密度也随之增加,所以高温的温度环境势必会影响电子元器件的性能,这就要求对其进行更加高效的热控制。因此,有效解决电子元器件的散热问题已成为当前电子元器件和电子设备制造的关键技术。随着微电子技术的迅速发展,电子器件的微型化已经成为现代电子设备发展的主流趋势。电子器件特征尺寸不断减小,芯片的集成度、封装密度以及工作频率却不断提高,这就使得单位容积电子器件的总功率密度和发热量大幅度地增长,从而使电子器件的冷却问题变得越来越突出。统计表明,超过55%的电子设备的失效形式是由温度过高引起的。另一方面,电子器件工作的可靠性对温度却十分敏感,器件温度在70-80水平上每增加1,可靠性就会下降5%。较高的温度水平已日益成为制约电子器件性能的瓶颈,而高效电子器件的温度控制目前已经渐渐成为一个研究热点。随着电子元器件功率的增大,冷却设计对保证电子元器件正常工作起着非常重要的作用。固液相变热能存储系统作为热控制单元(TCU)已经运用于电子器件在脉冲热负荷条件下的高温保护和冷却。相变材料(PhaseChangeMaterial)通常是一些常压下在某些电子器件工作温度区段进行固液相变的材料,可利用相变材料在相变潜热吸收一定时段内运行的电子器件(如移动电话、便携式电脑)产生的热量,从而对电子器件进行保护。当PCM吸收热量后,其状态变为液态,当环境温度降低后,经过向环境的散热,就可以恢复固态。高温环境下工作的封装有相变材料的热沉,一方面利用固液相变潜热存储系统吸收电子器件散发的热量,另一方面还要吸收从高温环境传递过来的热量。热沉结构的几何外形是影响上述两个热量传递的关键因素。相变蓄热材料分石蜡类、非石蜡类、无机盐水合物、金属等。相变热沉是利用相变材料:如石蜡、无机盐类、脂肪酸类物质在发生相变时的潜热大,同时在相变过程中温度基本保持不变的特性。相变热沉将电子设备、器件等发出的热量吸收,同时相变热沉可保持温度在一定时间内几乎不发生变化,特别适用某些瞬态使用的大功率的电子设备热管理。由于系统内部存在温度变化,分装于系统内的石蜡密度会随着温度变化而变化,温度的差异会导致密度差,自然对流由此产生,相变材料体积会随着密度的变化而膨胀或收缩,顶端空气也会随着温度差异产生自然对流。对于顶端暴露于空气中的相变材料,相界面与空气互相接触而不互相融合。相变材料沿横向的凝固速度比纵向要快得多,这是因为,熔融态相变材料主要是对流传热为主;凝固态相变材料主要是热传导为主,相变材料的导热系数比较低,随着相变材料凝固厚度的增加,热阻会越来越来大。目前国内外主要使用两种形式的相变热沉结构:一是使用普通纯相变物质,机械封装在一个封闭腔体内形成的热沉,二是采用某些高导热填料、结构及改性的相变材料,机械封装在封闭腔体内形成热沉。采用普通相变材料封装的热沉其导热系数低,相变界面移动缓慢,相变材料发生相变后由于其导热系数低,将形成加热面与剩余未相变部分相变材料的热阻,造成较大温差,从而导致需要进行热控制的电子器件的温升高,进而导致器件的失效,相变热沉没有充分发挥作用。采用高导热相变材料有很多技术途径,主要有在传统相变材料中增加铜粉、铝粉以至纳米材料;在蜂窝结构的或周期性金属结构中填入普通相变材料;使用复杂的物理、化学合成方法将石墨形成微胶囊,而普通相变材料包裹在微胶囊中。对于这些技术途径,主要目的均是为了提高相变材料导热系数,提高相变界面移动速度,从而降低加热面与未相变材料之间的温差,促进相变材料的充分利用,增加热沉工作时间,同时降低热沉温度。目前已有的改型相变材料主要采用泡沫金属填充、石墨类材料组成包覆体、添加金属或其它高导热粒子;增加轻质高导热骨架,如翅片或周期性金属网格材料等四种基本技术提高其导热系数。所有的现有技术均是基于提高导热系数对相变材料进行改进的。国内外主要的专利也朝是在这个方向集中的。无论采用何种提高导热系数手段,都涉及到诸如新材料的制造合成、新结构的制造合成,新工艺手段的开发等。复合相变材料等所采用的技术手段复杂;如为生产高导热多孔介质材料。复合相变材料的等效的比热较之纯相变材料物质下降幅度较大;无论采用何种技术手段,复合之后的等效比热较之纯相变物质来说都会变小,以膨胀石墨相变材料来说,复合后的材料潜热从纯石蜡的230Kj/Kg变化到复合材料的161.2Kj/Kg。在相同重量的情况下,蓄热能力下降30~40%,对于重量敏感的设备和项目来说是不合适的。复合相变材料与结构的结构工艺性难以大规模生产;复合相变材料或结构的生产工艺性差,例如采用金属多孔介质必须解决多孔介质与相变材料容器之间的焊接问题,采用复合相变材料又涉及到材料如何封装入封闭容器中的问题,目前的工艺方法均不十分成熟,采用的如真空加注等方法,技术实施复杂,工艺过程有大量工艺参数需要确定,因此能够掌握的生产单位不多,生产规模不大。复合相变材料与结构的成本较普通相变材料高得多。基于以上原因,所有的技术手段都导致成本的提高,其技术经济性普遍较差,因此在通常的应用中很难大规模推广使用。
发明内容
本发明的目的是针对现有技术存在的不足之处,提供一种原理简单,实现成本低,相变材料的连续相变热沉热控制单元,以克服传统改性相变材料成本高,技术实施困难,技术经济性差的问题。
本发明的上述目的可以通过以下措施来达到,一种连续相变热沉热控制单元,包括封装在封装壳体5封闭腔体中的相变材料2,其特征在于:在封装壳体5封闭腔体的底端设有支撑预紧压板3的锥形弹簧4,相变材料2设置在热扩散板1与预紧压板3之间,锥形弹簧4弹簧预紧力将相变材料2贴紧压在热扩散板1上,在相变过程中,热源通过热扩散板1传递到相变材料2发生相变,使相变材料2与热扩散板1界面处相变材料软化,锥形弹簧4通过预紧压板3将弹簧预紧力传递到相变材料2与热扩散板1界面处,将已熔融的相变材料推挤出热扩散板1与热扩散板1界面处,从预紧压板3与封装壳体5之间的缝隙排除到锥形弹簧4弹簧一侧,相变材料2在锥形弹簧4弹簧力作用下由厚变薄,产生不断变薄的连续熔融相变,直至其完全发生相变流入弹簧一侧,实现高效的传热储能。
本发明相比于现有技术具有如下有益效果.
本发明通过弹簧预紧力将相变材料贴近压在热扩散板上,在相变的过程中与热扩散板接触的相变材料首先发生相变,交界面相变材料软化,弹簧预紧力将后续相变材料继续顶于交界面,同时将熔融的相变材料排除交界面位置;后续相变材料继而继续处于交界面位置,实现整块相变材料的连续相变,从而实现整块相变材料在传热过程中保持相变温度,实现对热扩散板及其下热源的温度控制,同时保证了整个相变材料均可参与传热过程。实验结果表明与传统实体热沉相比,相变热沉具有更快的启动性能,随着加热功率的增加,在一定时间内,器件将保持在固定的温升内,低于传统金属材料实体热沉和高导热相变材料热沉,同时在高加热功率条件下,仍能保持良好的均热性能。整个机构的作用效果和提高相变材料本身的导热系数一样,实现了高效的传热和储能作用。
原理简单,技术方案简洁。本发明采用完全不同的技术路线和方法,放弃了从材料本身入手解决问题的方法,利用机械预紧力使得相变材料连续发生相变,在一定程度上解决了相变材料导热系数低造成的局部传热温差大,相变不彻底的问题。
实现成本极低。本发明主要核心内部件为一锥形弹簧,锥形弹簧的加工和成本都非常低,各部件的制造均采用最传统最简单的方式,整体成本低。腔体内部相变材料的封装由于有预紧力的作用,将不再要求相变材料与腔体内壁面及热扩散板进行焊接等复杂工艺,这从另一方面降也低了成本。腔体的封装采用最普通的螺装加密封橡胶条的方式即可实现。总之本发明与传统改性相变材料相比,体现出了极高的性价比,有利于相变材料在电子设备热控制推广使用,特别是一次性使用电子设备上。
采用弹簧预紧力和相变材料结合,实现相变材料的连续相变是本发明的主要技术特征,采用本发明后相变材料无需再采用增强导热措施处理,利用机械预紧力即可实现相变材料连续、均匀、彻底的发生相变。且采用圆锥弹簧后将大幅度提高相变材料的充装量,增加相变储热热控制单元的工作寿命。
附图说明
图1是本发明连续相变热沉热控制单元的构造示意图。
图中:1热扩散板,2相变材料,3预紧压板,4预紧力弹簧,5封装壳体。
具体实施方式
参阅图1。在以下描述的实施例中,连续相变热沉热控制单元,包括封装在封装壳体5封闭腔体中的相变材料2。在封装壳体5封闭腔体的底端设有支撑预紧压板3的锥形弹簧4,相变材料2设置在热扩散板1与预紧压板3之间,锥形弹簧4弹簧预紧力将相变材料2贴近压在热扩散板1上,在相变过程中,当热源发热时,热源和热扩散板1温度升高,热源通过热扩散板1传递到相变材料2发生相变,近热扩散板1的内侧壁面的相变材料2熔融,相变材料2与热扩散板1交界面处相变材料软化,锥形弹簧4通过预紧压板3将弹簧预紧力传递到续相变材料2与热扩散板1交界面处,锥形弹簧4预紧力使相变后的相变材料被推挤出热扩散板与热扩散板1交界面处。从预紧压板3与封装壳体5之间的缝隙排除到锥形弹簧4弹簧一侧,相变材料2在锥形弹簧4弹簧力作用下由厚变薄,产生不断变薄的连续熔融相变,直至其完全发生相变流入弹簧一侧,至此本相变储热器使用完毕。实现高效的传热储能。其中采用的锥形弹簧4预紧力弹簧是锥型弹簧,其压缩量最大,可使相变材料充入量在指定空间内体积最大。整个过程中,热扩散板及热源将保持与相变材料相变区间温度略高的温度,从而实现了对热源的温度控制。

Claims (2)

1.一种连续相变热沉热控制单元,包括封装在封装壳体(5)封闭腔体中的相变材料(2),其特征在于:在封装壳体(5)封闭腔体的底端设有支撑预紧压板(3)的锥形弹簧(4),相变材料(2)设置在热扩散板(1)与预紧压板(3)之间,锥形弹簧(4)弹簧预紧力将相变材料(2)贴近压在热扩散板(1)上,在相变过程中,热源通过热扩散板(1)传递到相变材料(2)发生相变,使相变材料(2)与热扩散板(1)界面的相变材料软化,锥形弹簧(4)通过预紧压板(3)将弹簧预紧力传递到相变材料(2)与热扩散板(1)的界面,将软化熔融的相变材料推挤出热扩散板(1)与相变材料(2)的交界面,从预紧压板(3)与封装壳体(5)之间的缝隙排除到锥形弹簧(4)弹簧一侧,相变材料(2)在锥形弹簧(4)弹簧力作用下由厚变薄,产生不断变薄的连续熔融相变,直至其完全发生相变流入弹簧一侧,实现高效的传热储能。
2.如权利要求1所述的连续相变热沉热控制单元,其特征在于:弹簧预紧力将相变材料预压在热扩散板上,产生连续相变。
CN201510785550.3A 2015-11-16 2015-11-16 连续相变热沉热控制单元 Active CN105431003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510785550.3A CN105431003B (zh) 2015-11-16 2015-11-16 连续相变热沉热控制单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510785550.3A CN105431003B (zh) 2015-11-16 2015-11-16 连续相变热沉热控制单元

Publications (2)

Publication Number Publication Date
CN105431003A true CN105431003A (zh) 2016-03-23
CN105431003B CN105431003B (zh) 2018-05-04

Family

ID=55508852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510785550.3A Active CN105431003B (zh) 2015-11-16 2015-11-16 连续相变热沉热控制单元

Country Status (1)

Country Link
CN (1) CN105431003B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529315A (zh) * 2016-01-11 2016-04-27 中国电子科技集团公司第十研究所 连续相变热沉热控制单元
CN111836505A (zh) * 2019-04-15 2020-10-27 辰展股份有限公司 热相变储热模组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497764A (zh) * 2011-11-15 2012-06-13 上海卫星工程研究所 一种快速响应散热储能装置
CN103712192A (zh) * 2014-01-08 2014-04-09 武汉阳光佰鸿新能源股份有限公司 一体化相变热沉大功率led灯具散热器
CN104241513A (zh) * 2014-09-15 2014-12-24 西安交通大学 一种大功率led多孔相变热沉结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497764A (zh) * 2011-11-15 2012-06-13 上海卫星工程研究所 一种快速响应散热储能装置
CN103712192A (zh) * 2014-01-08 2014-04-09 武汉阳光佰鸿新能源股份有限公司 一体化相变热沉大功率led灯具散热器
CN104241513A (zh) * 2014-09-15 2014-12-24 西安交通大学 一种大功率led多孔相变热沉结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529315A (zh) * 2016-01-11 2016-04-27 中国电子科技集团公司第十研究所 连续相变热沉热控制单元
CN111836505A (zh) * 2019-04-15 2020-10-27 辰展股份有限公司 热相变储热模组

Also Published As

Publication number Publication date
CN105431003B (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
Kong et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures
Wang et al. Performance investigation of a passive battery thermal management system applied with phase change material
CN104031600B (zh) 一种绝缘的导热金属胶及其制造方法
CN102655247B (zh) 锂电池恒温运行的方法与装置
CN2927335Y (zh) 具有吸热体的电池装置
CN102181270A (zh) 一种用于锂电池散热的复合相变材料及装置
CN204271214U (zh) 具有智能温度调节功能的动力锂电池组
CN102364747A (zh) 一种基于相变材料的蓄电池温度管理系统
CN108682664A (zh) 一种基于相变材料的功率模块及其制作方法
Ahmad et al. Hybrid battery thermal management by coupling fin intensified phase change material with air cooling
CN201285762Y (zh) 一种基于相变储能纳米胶囊的电子散热装置
CN205655728U (zh) 一种复合蓄热体
CN105431003A (zh) 连续相变热沉热控制单元
CN109860454A (zh) 一种基于电热膜与相变材料的综合电池热管理方法
CN203398226U (zh) 一种具有高效散热功能的电池
Wu et al. Experimental and numerical study on hybrid battery thermal management system combining liquid cooling with phase change materials
Li et al. Efficient thermal management strategy of Li-ion battery pack based on sorption heat storage
CN201388357Y (zh) 密封设备相变储能温度控制装置
CN105529315A (zh) 连续相变热沉热控制单元
CN109842226B (zh) 风力发电机
CN103722804B (zh) 一种具有双熔点特征的四元液态金属热界面材料
CN105655666A (zh) 一种用于智慧能源网的储能式新能源电池保护系统及其方法
CN212851276U (zh) 充电器壳体、充电器和电子装置套件
CN204257662U (zh) 一种高性能轴向二极管
CN204539683U (zh) 一种用于智能手机散热的低熔点合金硅基微型冷却器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant