CN105429734A - 一种基于流控技术的Ad hoc多路访问协议 - Google Patents

一种基于流控技术的Ad hoc多路访问协议 Download PDF

Info

Publication number
CN105429734A
CN105429734A CN201510860048.4A CN201510860048A CN105429734A CN 105429734 A CN105429734 A CN 105429734A CN 201510860048 A CN201510860048 A CN 201510860048A CN 105429734 A CN105429734 A CN 105429734A
Authority
CN
China
Prior art keywords
cts
grouping
node
num
multiple access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510860048.4A
Other languages
English (en)
Inventor
熊鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201510860048.4A priority Critical patent/CN105429734A/zh
Publication of CN105429734A publication Critical patent/CN105429734A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance

Abstract

本发明公开了一种基于流控技术的Ad?hoc多路访问协议,其实现步骤包括:基于IEEE?802.11中的RTS/CTS机制,采用新的基本时隙结构进行数据传输;增加CTS-C分组,用于当一个节点不仅收到邻节点发给来的一个RTS分组,也侦听到本节点的两跳邻节点范围内有其他控制分组在传输,则回复发送节点CTS-C分组,通知发送节点在下一时隙以最大允许发送数据流发送数据,本发明在没有明显增加资源负荷的基础上,采用MIMO的流控技术来实现冲突避免和最大化数据流数目,进一步改善因网络通信时分组冲突而降低的数据吞吐量。

Description

一种基于流控技术的Ad hoc多路访问协议
技术领域
本发明涉及一种Adhoc多路访问协议,特别是涉及一种Adhoc网中基于流控技术(MIMO)的Adhoc多路访问协议(MAPSC-CA协议)。
背景技术
MIMO链路AdHoc网络协议在早先时候已被提出,其典型协议如下:一、NULLHOC是一种适用于节点有天线阵列的AdHoc网络媒体访问控制(MediaAccessControl,MAC)协议,该协议利用波束成形技术,通过将某节点领域内处于活动状态的发送者和接收者直接赋值为0,来提高空间复用度;二、SPACEMAC采用不同方法提高空间复用度,每个节点以一种完全分布式方法根据信道状态信息调整天线权重,使得干扰信号无效,从而保护要传输的信号,提高了网络容量;三、MIMOMAN是一种在多天线环境下考虑分流传输的协议,但需要控制信道独立于数据信道。
相对以上3种典型协议而言,MIMA-MAC和PRP-MAC协议是目前较为成功的MAC协议,MIMA-MAC利用多天线接收和分离来自2个独立发送方同时传输的数据流,不仅提高了网络吞吐量,实现起来也较为简单,但其天线资源利用率低。PRP-MAC协议是对MIMA-MAC的一种改进,根据接收节点收到的准备发送(ReadytoSend,RTS)分组决定本次传输最大允许发送数据流数目,虽然设计复杂,效率却有所提高,但该协议随着同时发送节点数增多,单个节点可以发送的数据流数目会因冲突增加而减少。为解决该问题,本文在PRP-MAC协议基础上提出一种带有冲突避免机制的流控多址接入(MultipleAccessProtocolBasedonStreamControlwithCollisionAvoidance,MAPSC-CA)协议,该协议适用于MIMO链路AdHoc网络,采用MIMO技术的流控能力,并引入新的确认发送(CleartoSend,CTS)分组类型,实现冲突避免和最大化数据流数目。
MIMO技术在物理层已经得到了广泛研究,但只有通过合理设计高层协议,才能充分发挥其灵活性从而达到期望的性能。MIMO技术利用发送端和接收端的多天线,形成多个独立信道,实现多个独立数据流同时发送,不仅提高了AdHoc网络通信能力,而且由于一定程度上避免由于两个互不可见的(即无线信号互不能达)的站点同时向一个双方都可达的第三站点(一般位于两个发送站点中间位置处)发送信号时发生的隐藏终端问题而获得了更高的可靠性。MIMO技术在通信链路的两端采用数字自适应阵列,这种通信链路在物理层提供3种类型的增益:阵列增益、分集增益和空间复用增益。阵列和分集增益主要通过降低错误比特率提高系统可靠性和鲁棒性,扩大传输范围;而空间复用增益主要提供更高的数据速率来增强通信链路的能力。
PRP-MAC协议中,RTS(Requesttosend,请求发送)分组用来通知传输请求和最大允许发送数据流数,当节点发送了RTS分组之后,会在其第一、第二CTS控制时隙中收到一个CTS分组,根据收到的CTS(Cleartosend)分组类型,决定在后续的哪个时隙开始发送数据以及发送几个数据流,从而可以最大化节点发送数据流数,提高了网络通过量。当网络规模较小时,PRP-MAC协议可以工作得较为理想,但当同时发送的节点数增多时,数据分组与控制分组的冲突会导致网络吞吐量下降。
发明内容
为克服上述现有技术存在的不足,本发明之目的在于提供一种基于流控技术的Adhoc多路访问协议,其在具备PRP-MAC协议最大化节点发送数据流数,提高网络通过量的同时,在没有明显增加资源负荷的基础上,采用MIMO的流控技术来实现冲突避免和最大化数据流数目,进一步改善因网络通信时分组冲突而降低的数据吞吐量。
为达上述及其它目的,本发明提出一种基于流控技术的Adhoc多路访问协议,其实现步骤包括:
步骤一,基于IEEE802.11中的RTS/CTS机制,采用新的基本时隙结构进行数据传输;
步骤二,增加CTS-C分组,用于当一个节点不仅收到邻节点发给来的一个RTS分组,也侦听到本节点的两跳邻节点范围内有其他控制分组在传输,则回复发送节点CTS-C分组,通知发送节点在下一时隙以最大允许发送数据流发送数据。
进一步地,每个时隙由若干个微时隙组成,用于实现基于带有避免冲突的载波侦听多址接入的随机媒质接入,从一个时隙中的第一个微时隙开始,第一个微时隙用于传输CTS分组、DATA分组和ACK分组,而其余微时隙可用于RTS分组的随机接入。
进一步地,一个数据分组的传输可能占用多个时隙。
进一步地,其实现步骤还包括计算最大允许发送数据流数目,该最大允许数据流数目由储存在RTS分组中的参数Nmax和接收节点的天线数目共同决定。
进一步地,计算最大允许发送数据流数目的步骤包括:
首先根据发送节点信息设置最大发送数据流上限Nmax_a/Nmax_b/Nmax;
判断发送节点的数目,若只有一个发送节点,接收节点回复给发送节点的可允许最大数据流数cts_num没有达到Nmaxx,且cts_num小于接收天线数,则增加cts_num,直到达到Nmax;若有2个发送节点则判断接收节点回复给2个发送节点的可允许最大数据流数目cts_num_a和cts_num_b是否达到各发送节点的Nmax,若接收节点回复给2个发送节点的可允许最大数据流数目cts_num_a和cts_num_b没有达到各发送节点的Nmax,且cts_num_a和cts_num_b的和没有超过接收天线数,则分别增加cts_num_a和cts_num_b,直到累加和达到接收天线数。
存储计算结果。
进一步地,将计算出来的cts_num_a和cts_num_b均储存在新的CTS-S或CTS-D分组中。
进一步地,为了避免数据分组与CTS-S分组的冲突,将计算出来的数据流数目减1后储存在新增的CTS-C分组中。
进一步地,其实现步骤还包括改进ACK分组。
进一步地,当成功接收到数据后,发送了CTS-S分组或CTS-C分组的接收节点在紧接着的时隙回复发送节点一个ACK分组;发送了CTS-D分组的接收节点等待一个时隙后回复给发送节点一个ACK分组。
进一步地,为提高控制分组成功接收的概率,规定控制分组采用单天线进行传输,而数据分组可采用多天线传输。
与现有技术相比,本发明一种基于流控技术的Adhoc多路访问协议在PRP-MAC定义的控制分组基础上引入了一种新类型的CTS分组,用于通知发送节点其邻节点传输情况,并利用MIMO技术的流控能力来避免冲突和最大化数据流数目,仿真结果表明,相较于PRP-MAC协议,本发明不仅改善了网络性能,提高了网络吞吐量,减少了控制开销,而且适应于天线多样化环境,网络能力因此得到了很大改善。
附图说明
图1为本发明一种基于流控技术的Adhoc多路访问协议的实现步骤流程图;
图2为本发明的基本时隙结构示意图;
图3为PRP-MAC协议的工作示例图;
图4为本发明较佳实施例中步骤103的细部流程图;
图5为本发明之MAPSC-CA协议的工作示例图。
具体实施方式
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
图1为本发明一种基于流控技术的Adhoc多路访问协议的实现步骤流程图。如图1所示,本发明一种基于流控技术的Adhoc多路访问协议,其实现步骤如下:
步骤101,基于IEEE802.11中的RTS/CTS机制,采用新的基本时隙结构进行数据传输。
本发明的基本时隙结构的定义(如图2所示)是基于IEEE802.11中的RTS/CTS机制,该机制包括4个阶段,也称4次握手。在图2中,时隙长度比任何控制分组的传输时延都要长。
图2中的数据分组的传输时延可能远大于一个控制分组的传输时延,因此一个数据分组的传输可能占用多个时隙。每个时隙由若干个微时隙组成,用于实现基于带有避免冲突的载波侦听多址接入(CSMA/CA)的随机媒质接入。为了避免RTS分组与其他分组冲突及充分利用时隙资源,从一个时隙中的第一个微时隙开始,第一个微时隙用于传输CTS(清除发送)分组、DATA(数据)分组和ACK(确认)分组,而其余微时隙可用于RTS分组的随机接入。
步骤102,增加CTS-C(CTSpacketforCollision,清除发送冲突)分组,用于当一个节点不仅收到邻节点发给来的一个RTS分组,也侦听到本节点的两跳邻节点范围内有其他控制分组在传输,则回复发送节点CTS-C分组,通知发送节点在下一时隙以最大允许发送数据流发送数据。
CTS-C分组定义:在PRP-MAC协议对控制分组RTS分组、CTS(CTS-S和CTS-D)分组、ACK分组定义的基础上(见图3),本发明又另外定义了一种CTS-C(CTSpacketforCollision,清除发送冲突)分组。当一个节点不仅收到邻节点发给来的一个RTS分组,也侦听到本节点的两跳邻节点范围内有其他控制分组在传输,则回复发送节点CTS-C分组,通知发送节点在下一时隙以最大允许发送数据流发送数据。
步骤103,计算最大允许发送数据流数目。通知发送节点的最大允许发送数据流数目的过程通过图4所示流程得到。其中最大可允许的数据流数目由储存在RTS分组中的参数Nmax(允许节点发送的最大数据流数目)和接收节点的天线数目共同决定。具体地,步骤103进一步包括如下步骤:
步骤一,首先根据发送节点信息设置最大发送数据流上限Nmax_a/Nmax_b/Nmax
步骤二,判断发送节点的数目,若只有一个发送节点,接收节点回复给发送节点的可允许最大数据流数cts_num没有达到Nmax,且cts_num小于接收天线数,则增加cts_num,直到达到Nmax;若有2个发送节点则判断接收节点回复给2个发送节点的可允许最大数据流数目cts_num_a和cts_num_b是否达到各发送节点的Nmax,若接收节点回复给2个发送节点的可允许最大数据流数目cts_num_a和cts_num_b没有达到各发送节点的Nmax,且cts_num_a和cts_num_b的和没有超过接收天线数,则分别增加cts_num_a和cts_num_b,直到累加和达到接收天线数。
步骤三,存储计算结果,通过算法计算出来的cts_num_a和cts_num_b均储存在新的CTS-S(CTS分组类型,携带目标节点下个时隙被允许发送数据流的数量)或CTS-D(CTS分组类型,携带相关目标节点需等待一个时隙后被允许发送数据流的数量)分组中。另外,为了避免数据分组与CTS-S分组的冲突,会把算法计算出来的数据流数目减1后储存在新增的CTS-C分组中。
步骤104,改进ACK分组。本发明中,ACK分组的功能与IEEE802.11MAC中的基本相同。但如果一个节点成功接收到2个发送节点的数据分组,ACK分组需要携带2个发送节点的地址。当成功接收到数据后,发送了CTS-S分组或CTS-C分组的接收节点在紧接着的时隙回复发送节点一个ACK分组;发送了CTS-D分组的接收节点等待一个时隙后回复给发送节点一个ACK分组,这种回复ACK的方式使得本发明之MAPSC-CA协议能有效避免ACK分组的冲突。
较佳的,在本发明中,为提高控制分组成功接收的概率,规定控制分组(RTS分组、CTS(CTS-S和CTS-D)分组、ACK分组)用单天线进行传输,而数据分组可以采用多天线传输。
本发明之MAPSC-CA协议通过增加新的CTS分组类型,并通过采用MIMO的流控技术,解决了图3(d)所示的冲突问题(见图4)。在第1个时隙上,节点A、E分别给节点B、F传输RTS分组。在第2个时隙上,节点D给节点C传输RTS分组。尽管节点B、F、C在等待时间间隔只收到了发给本节点各一个RTS分组,但侦听到其两跳邻节点范围内有其他控制分组在传输。根据MAPSC-CA协议中对CTS分组的定义,在第三和第四时隙上,节点B、F、C会给节点A、E、D回复一个CTS-C分组。这样,节点A、E、D分别在下一个时隙用3根天线给节点B、F、C发送3个数据流,有效避免了冲突问题。
相对于无线Adhoc网络中,同时发送数据的节点较少时,本发明之MAPSC-CA协议与PRP-MAC协议在整体数据吞吐量上相近,总体性能也基本相当,但随着网络中同时发送数据的节点增加,在数据吞吐量上,本发明之MAPSC-CA协议的性能优势逐渐显现,并且,这种优势将随着同时发送数据的节点数量的增加而增加增大。这主要是因为本发明通过CTS-C分组避免控制分组跟数据分组的冲突。因此,随着网络中同时发送的节点数增多,本发明之MAPSC-CA协议可以更好地提高网络吞吐量。
综上所述,本发明一种基于流控技术的Adhoc多路访问协议在PRP-MAC定义的控制分组基础上引入了一种新类型的CTS分组,用于通知发送节点其邻节点传输情况,并利用MIMO技术的流控能力来避免冲突和最大化数据流数目,仿真结果表明,相较于PRP-MAC协议,本发明不仅改善了网络性能,提高了网络吞吐量,减少了控制开销,而且适应于天线多样化环境,网络能力因此得到了很大改善。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。

Claims (10)

1.一种基于流控技术的Adhoc多路访问协议,其实现步骤包括:
基于IEEE802.11中的RTS/CTS机制,采用新的基本时隙结构进行数据传输;
增加CTS-C分组,用于当一个节点不仅收到邻节点发给来的一个RTS分组,也侦听到本节点的两跳邻节点范围内有其他控制分组在传输,则回复发送节点CTS-C分组,通知发送节点在下一时隙以最大允许发送数据流发送数据。
2.如权利要求1所述的一种基于流控技术的Adhoc多路访问协议,其特征在于:每个时隙由若干个微时隙组成,用于实现基于带有避免冲突的载波侦听多址接入的随机媒质接入,从一个时隙中的第一个微时隙开始,第一个微时隙用于传输CTS分组、DATA分组和ACK分组,而其余微时隙可用于RTS分组的随机接入。
3.如权利要求2所述的一种基于流控技术的Adhoc多路访问协议,其特征在于:一个数据分组的传输可能占用多个时隙。
4.如权利要求1所述的一种基于流控技术的Adhoc多路访问协议,其特征在于,其实现步骤还包括计算最大允许发送数据流数目,该最大允许数据流数目由储存在RTS分组中的参数Nmax和接收节点的天线数目共同决定。
5.如权利要求4所述的一种基于流控技术的Adhoc多路访问协议,其特征在于,计算最大允许发送数据流数目的步骤包括:
首先根据发送节点信息设置最大发送数据流上限Nmax_a/Nmax_b/Nmax
判断发送节点的数目,若只有一个发送节点,接收节点回复给发送节点的可允许最大数据流数cts_num没有达到Nmax,且cts_num小于接收天线数,则增加cts_num,直到达到Nmax;若有2个发送节点则判断接收节点回复给2个发送节点的可允许最大数据流数目cts_num_a和cts_num_b是否达到各发送节点的Nmax,若接收节点回复给2个发送节点的可允许最大数据流数目cts_num_a和cts_num_b没有达到各发送节点的Nmax,且cts_num_a和cts_num_b的和没有超过接收天线数,则分别增加cts_num_a和cts_num_b,直到累加和达到接收天线数。
存储计算结果。
6.如权利要求5所述的一种基于流控技术的Adhoc多路访问协议,其特征在于:将计算出来的cts_num_a和cts_num_b均储存在新的CTS-S或CTS-D分组中。
7.如权利要求6所述的一种基于流控技术的Adhoc多路访问协议,其特征在于:为了避免数据分组与CTS-S分组的冲突,将计算出来的数据流数目减1后储存在新增的CTS-C分组中。
8.如权利要求4所述的一种基于流控技术的Adhoc多路访问协议,其特征在于,其实现步骤还包括改进ACK分组。
9.如权利要求8所述的一种基于流控技术的Adhoc多路访问协议,其特征在于:当成功接收到数据后,发送了CTS-S分组或CTS-C分组的接收节点在紧接着的时隙回复发送节点一个ACK分组;发送了CTS-D分组的接收节点等待一个时隙后回复给发送节点一个ACK分组。
10.如权利要求8所述的一种基于流控技术的Adhoc多路访问协议,其特征在于:为提高控制分组成功接收的概率,规定控制分组采用单天线进行传输,而数据分组可采用多天线传输。
CN201510860048.4A 2015-11-30 2015-11-30 一种基于流控技术的Ad hoc多路访问协议 Pending CN105429734A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510860048.4A CN105429734A (zh) 2015-11-30 2015-11-30 一种基于流控技术的Ad hoc多路访问协议

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510860048.4A CN105429734A (zh) 2015-11-30 2015-11-30 一种基于流控技术的Ad hoc多路访问协议

Publications (1)

Publication Number Publication Date
CN105429734A true CN105429734A (zh) 2016-03-23

Family

ID=55507695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510860048.4A Pending CN105429734A (zh) 2015-11-30 2015-11-30 一种基于流控技术的Ad hoc多路访问协议

Country Status (1)

Country Link
CN (1) CN105429734A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302221A (zh) * 2017-07-25 2019-02-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104837211A (zh) * 2015-04-01 2015-08-12 西北工业大学 一种基于mimo传输机制的多信道多址接入方法
CN105101453A (zh) * 2015-07-13 2015-11-25 西北工业大学 一种基于动态空闲信道评估门限的载波侦听方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104837211A (zh) * 2015-04-01 2015-08-12 西北工业大学 一种基于mimo传输机制的多信道多址接入方法
CN105101453A (zh) * 2015-07-13 2015-11-25 西北工业大学 一种基于动态空闲信道评估门限的载波侦听方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈曙光: "MIMO Ad Hoc网络中一种新的流控多址接入协议", 《计算机工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302221A (zh) * 2017-07-25 2019-02-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN109302221B (zh) * 2017-07-25 2020-10-02 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站和相应方法

Similar Documents

Publication Publication Date Title
Temel et al. LODMAC: Location oriented directional MAC protocol for FANETs
Singh et al. Efficient and fair MAC for wireless networks with self-interference cancellation
Tamaki et al. Full duplex media access control for wireless multi-hop networks
CN102695287A (zh) 一种vanet媒体接入控制方法
Chen et al. A-VeMAC: An adaptive vehicular MAC protocol for vehicular ad hoc networks
CN102625367B (zh) 多跳Ad Hoc网络中时隙优化的多信道多址接入控制方法
Pourgolzari et al. A CDMA based MAC protocol for ad hoc networks with directional antennas
KR101238577B1 (ko) 복수 개의 릴레이 노드를 포함하는 무선 메시 네트워크에서 백오프 카운터를 선택하기 위한 방법 및 장치 및 컴퓨터 프로그램 제품
Tu et al. A novel MAC protocol for wireless ad hoc networks with directional antennas
US11784723B2 (en) Method for implementing many-to-one concurrent transmission medium access control (MAC) protocol for underwater acoustic networks
Yang et al. ACK-based adaptive backoff for random access protocols
CN105429734A (zh) 一种基于流控技术的Ad hoc多路访问协议
EP3373691B1 (en) Network system, node, frame communication method, and program
Ni et al. A novel multichannel multiple access protocol for vehicular ad hoc networks
JP5515072B2 (ja) ネットワークシステム、ノード、パケットフォワーディング方法、プログラム及び記録媒体
Kumar A comprehensive analysis of MAC protocols for Manet
Chou et al. A priority contention window mechanism for ad hoc network
Saini Impact of mobility and transmission range on the performance of backoff algorithms for IEEE 802.11-based multi-hop mobile ad hoc networks
Paudel et al. I-DCF: improved DCF for channel access in IEEE 802.11 wireless networks
Lin et al. A collision free MAC protocol using smart antenna in ad hoc networks
El Masri et al. A TDMA-based MAC protocol for wireless mesh networks using directional antennas
Kim Dual Polling Protocol for Improving Performance in Wireless Ad Hoc Networks.
Tomar et al. An efficient channel access method using polling and dynamic priority assignment
Undugodage et al. Achieving transmission fairness in distributed medium access wireless mesh networks: design challenges, guidelines and future directions
Mini et al. Channel allocation for throughput enhancement of IEEE 802.11 MAC based multi-hop Wireless Sensor Networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160323

WD01 Invention patent application deemed withdrawn after publication