CN105427871A - 一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法 - Google Patents

一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法 Download PDF

Info

Publication number
CN105427871A
CN105427871A CN201610031838.6A CN201610031838A CN105427871A CN 105427871 A CN105427871 A CN 105427871A CN 201610031838 A CN201610031838 A CN 201610031838A CN 105427871 A CN105427871 A CN 105427871A
Authority
CN
China
Prior art keywords
layer
composite wire
alloy
impedance effect
giant magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610031838.6A
Other languages
English (en)
Other versions
CN105427871B (zh
Inventor
田斌
李国平
杨帆
张成军
李琼
夏恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Haoyue Technology Co ltd
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201610031838.6A priority Critical patent/CN105427871B/zh
Publication of CN105427871A publication Critical patent/CN105427871A/zh
Application granted granted Critical
Publication of CN105427871B publication Critical patent/CN105427871B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/858Producing a magnetic layer by electro-plating or electroless plating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明涉及一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法,属于磁敏感传感器和磁敏功能材料及其制备的技术领域。一种硬磁/软磁巨磁阻抗效应复合丝,其特征在于由软磁合金微丝、pyrex玻璃层、黄金镀膜层、CoNi合金层组成,软磁合金微丝由Pyrex玻璃层包裹,黄金镀层镀在Pyrex玻璃层上,在黄金镀层上电镀CoNi合金层。该方法工艺简单,成本低,产品灵敏度高。

Description

一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法
技术领域
本发明涉及一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法,属于磁敏感传感器和磁敏功能材料及其制备的技术领域。
背景技术
巨磁阻抗效应是指磁性材料的交流阻抗随着外加直流磁场的变化而发生显著变化的效应。由于巨磁阻抗(GMI)效应具有灵敏度高、反应快和稳定性好等特点,所以其在传感器技术和磁记录技术中具有巨大的应用潜能,特别是研制灵敏度高、稳定性好、低功耗、微型化的磁敏传感器。
发明内容
本发明的目的是提出一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法,该方法工艺简单,成本低,产品灵敏度高。
为实现上述目的,本发明所采取的技术方案是:
一种硬磁/软磁巨磁阻抗效应复合丝(或称一种硬磁/软磁双相合金微丝),其特征在于由软磁合金微丝1、pyrex玻璃层2、黄金镀膜层3、CoNi合金层4组成,软磁合金微丝1由Pyrex玻璃层2包裹,黄金镀层3镀在Pyrex玻璃层2上,在黄金镀层3上电镀CoNi合金层4。
所述的软磁合金微丝1为CoFeNiSiB软磁合金,Pyrex玻璃层2为绝缘层,黄金镀层3采用磁控溅射法制备的薄膜,CoNi合金层4采用电镀方法制备。
所述软磁合金微丝1的直径为15-25μm。pyrex玻璃层2的厚度为2~5μm。黄金镀层(为导电层)3的厚度为200~300nm。CoNi合金层4的厚度为1~20μm。
一种硬磁/软磁巨磁阻抗效应复合丝的制备方法,其特征在于包括如下步骤:在Pyrex玻璃层2包覆软磁合金微丝1表面磁控溅射一层黄金镀层(黄金层)3,再在黄金镀层3上用电镀法电镀CoNi合金层4,得到硬磁/软磁巨磁阻抗效应复合丝(成品)。
具体包括如下步骤:
第一步,在Pyrex玻璃层2包覆软磁合金微丝1表面磁控溅射一层黄金镀层3:采用物理气象沉积法,持续5~7分钟,得到镀层厚度约为200~300nm的黄金镀层;
第二步,在黄金镀层3上电镀(电化学镀)CoNi合金层4:
镀液温度为35~50℃,pH值在3.5~5.6之间,镀层厚度由电镀时间控制,厚度介于1~20μm,施镀时间为1~30min;电镀液配方为:
电镀电流密度为8~20mA/cm2
本发明的有益效果是:
1)、用电镀方法电镀CoNi合金层(CoNi硬磁合金层),工艺简单,成本低,产品性能稳定。
2)、一定频率的驱动电流流过所述的复合丝时,由软磁合金微丝和CoNi合金层之间形成相互作用,在此情况下,如外加一弱磁场,共振频率略有变化,产生较大的巨磁阻抗效应,灵敏度高。
3)、通过改变所述复合丝的长度、镀层厚度、Pyrex玻璃层厚度等可改变复合丝的共振频率,以适应不同的应用场合。由于所述的复合丝工作在共振区,可通过控制巨磁阻抗效应的频率范围,增加了其抗干扰能力。
4)用本发明的方法可以把所述的复合丝的体积做的较小,不需要外加电容,能适应小型化、集成化的技术要求。
附图说明
图1是本发明硬磁/软磁巨磁阻抗效应复合丝的结构示意图。
图中,1为软磁合金微丝,2为pyrex玻璃层,3为黄金镀层,4为CoNi合金镀层。
具体实施方式
现结合附图和实施例详细说明本发明的技术方案。所有的实施例按上述的制备方法的操作步骤操作。每个实施例仅罗列关键的技术数据。
实施例1:
如图1所示,一种硬磁/软磁巨磁阻抗效应复合丝的制备方法,包括如下步骤:
第一步,软磁合金微丝1为CoFeNiB,直径15μm,长度50mm;Pyrex玻璃层2的厚度为5μm;在Pyrex玻璃层2包覆软磁合金微丝1表面磁控溅射一层黄金镀层3:采用物理气象沉积法,持续5分钟,得到镀层厚度约为200nm的黄金镀层;
第二步,在黄金镀层3上电镀(电化学镀)CoNi合金层4,得到硬磁/软磁巨磁阻抗效应复合丝(成品);
镀液温度为35~50℃,pH值在3.5~5.6之间,镀层厚度由电镀时间控制(施镀时间为5min),厚度为3μm;电镀液配方为:
电镀电流密度为8~20mA/cm2
当外加磁场为0~500奥斯特和驱动电流频率为2.24GHz时,阻抗效应幅值为283%,灵敏度为0.57%/奥斯特。
实施例2:
如图1所示,一种硬磁/软磁巨磁阻抗效应复合丝的制备方法,包括如下步骤:
第一步,软磁合金微丝1为CoFeNiB,直径25μm,长度50mm;Pyrex玻璃层2的厚度为2μm;在Pyrex玻璃层2包覆软磁合金微丝1表面磁控溅射一层黄金镀层3:采用物理气象沉积法,持续5分钟,得到镀层厚度约为200nm的黄金镀层;
第二步,在黄金镀层3上电镀(电化学镀)CoNi合金层4,得到硬磁/软磁巨磁阻抗效应复合丝(成品);
镀液温度为35~50℃,pH值在3.5~5.6之间,镀层厚度由电镀时间控制(施镀时间为10min),厚度为5μm;电镀液配方为:
电镀电流密度为8~20mA/cm2
当外加磁场为0~500奥斯特和驱动电流频率为1.44GHz时,阻抗效应幅值为360%,灵敏度为0.72%/奥斯特。
实施例3:
如图1所示,一种硬磁/软磁巨磁阻抗效应复合丝的制备方法,包括如下步骤:
第一步,软磁合金微丝1为CoFeNiB,直径20μm,长度50mm;Pyrex玻璃层2的厚度为3μm;在Pyrex玻璃层2包覆软磁合金微丝1表面磁控溅射一层黄金镀层3:采用物理气象沉积法,持续5分钟,得到镀层厚度约为200nm的黄金镀层;
第二步,在黄金镀层3上电镀(电化学镀)CoNi合金层4,得到硬磁/软磁巨磁阻抗效应复合丝(成品);
镀液温度为35~50℃,pH值在3.5~5.6之间,镀层厚度由电镀时间控制(施镀时间为10min),厚度为5μm;电镀液配方为:
电镀电流密度为8~20mA/cm2
当外加磁场为0~500奥斯特和驱动电流频率为1.87GHz时,阻抗效应幅值为310%,灵敏度为0.62%/奥斯特。

Claims (8)

1.一种硬磁/软磁巨磁阻抗效应复合丝,其特征在于由软磁合金微丝(1)、pyrex玻璃层(2)、黄金镀膜层(3)、CoNi合金层(4)组成,软磁合金微丝(1)由Pyrex玻璃层(2)包裹,黄金镀层(3)镀在Pyrex玻璃层(2)上,在黄金镀层(3)上电镀CoNi合金层(4)。
2.根据权利要求1所述的一种硬磁/软磁巨磁阻抗效应复合丝,其特征在于:所述的软磁合金微丝(1)为CoFeNiSiB软磁合金,Pyrex玻璃层(2)为绝缘层,黄金镀层(3)采用磁控溅射法制备的薄膜,CoNi合金层(4)采用电镀方法制备。
3.根据权利要求1所述的一种硬磁/软磁巨磁阻抗效应复合丝,其特征在于:所述软磁合金微丝(1)的直径为15-25μm。
4.根据权利要求1所述的一种硬磁/软磁巨磁阻抗效应复合丝,其特征在于:pyrex玻璃层(2)的厚度为2~5μm。
5.根据权利要求1所述的一种硬磁/软磁巨磁阻抗效应复合丝,其特征在于:黄金镀层(3)的厚度为200~300nm。
6.根据权利要求1所述的一种硬磁/软磁巨磁阻抗效应复合丝,其特征在于:CoNi合金层(4)的厚度为1~20μm。
7.如权利要求1所述的一种硬磁/软磁巨磁阻抗效应复合丝的制备方法,其特征在于包括如下步骤:在Pyrex玻璃层(2)包覆软磁合金微丝(1)表面磁控溅射一层黄金镀层(3),再在黄金镀层(3)上用电镀法电镀CoNi合金层(4),得到硬磁/软磁巨磁阻抗效应复合丝。
8.根据权利要求7所述的一种硬磁/软磁巨磁阻抗效应复合丝的制备方法,其特征在于:具体包括如下步骤:
第一步,在Pyrex玻璃层(2)包覆软磁合金微丝(1)表面磁控溅射一层黄金镀层(3):采用物理气象沉积法,持续5~7分钟,得到镀层厚度约为200~300nm的黄金镀层;
第二步,在黄金镀层(3)上电镀CoNi合金层(4):
镀液温度为35~50℃,pH值在3.5~5.6之间,镀层厚度由电镀时间控制,厚度介于1~20μm,施镀时间为1~30min;电镀液配方为:
余量为水;
电镀电流密度为8~20mA/cm2
CN201610031838.6A 2016-01-18 2016-01-18 一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法 Expired - Fee Related CN105427871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610031838.6A CN105427871B (zh) 2016-01-18 2016-01-18 一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610031838.6A CN105427871B (zh) 2016-01-18 2016-01-18 一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法

Publications (2)

Publication Number Publication Date
CN105427871A true CN105427871A (zh) 2016-03-23
CN105427871B CN105427871B (zh) 2019-01-18

Family

ID=55506025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610031838.6A Expired - Fee Related CN105427871B (zh) 2016-01-18 2016-01-18 一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法

Country Status (1)

Country Link
CN (1) CN105427871B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109082660A (zh) * 2017-06-13 2018-12-25 刘志红 一种铜/玻璃/铜包覆复合丝及制备方法
CN110565139A (zh) * 2019-09-17 2019-12-13 哈尔滨工业大学 一种具有高阻抗性能的复合结构微丝及其制备方法与应用
WO2021047105A1 (zh) * 2019-09-11 2021-03-18 昆山航磁微电子科技有限公司 Gmi传感器灵敏度改进结构及其操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555048A (zh) * 2003-12-19 2004-12-15 华东师范大学 一种带阻挡层巨磁阻抗效应复合丝及其制备方法
CN101105944A (zh) * 2007-06-01 2008-01-16 华东师范大学 Lc共振巨磁阻抗效应复合丝及其制备方法
CN101526590A (zh) * 2008-03-06 2009-09-09 安徽大学 一种基于巨磁阻技术的高精度弱磁场传感器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555048A (zh) * 2003-12-19 2004-12-15 华东师范大学 一种带阻挡层巨磁阻抗效应复合丝及其制备方法
CN101105944A (zh) * 2007-06-01 2008-01-16 华东师范大学 Lc共振巨磁阻抗效应复合丝及其制备方法
CN101526590A (zh) * 2008-03-06 2009-09-09 安徽大学 一种基于巨磁阻技术的高精度弱磁场传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIN TIAN,MANUEL VAZQUEZ: "LC and ferromagnetic resonance in soft/hard magnetic microwires", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *
DIYONGJIANG,JIANGJIANJUN,DUGANG,TIANBIN,BIESHAOWEI,HEHUAHUI: "Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires", 《TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109082660A (zh) * 2017-06-13 2018-12-25 刘志红 一种铜/玻璃/铜包覆复合丝及制备方法
WO2021047105A1 (zh) * 2019-09-11 2021-03-18 昆山航磁微电子科技有限公司 Gmi传感器灵敏度改进结构及其操作方法
CN110565139A (zh) * 2019-09-17 2019-12-13 哈尔滨工业大学 一种具有高阻抗性能的复合结构微丝及其制备方法与应用

Also Published As

Publication number Publication date
CN105427871B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Kurlyandskaya et al. Giant magnetic impedance of wires with a thin magnetic coating
CN105427871A (zh) 一种硬磁/软磁巨磁阻抗效应复合丝及其制备方法
Cao et al. Effects of pulse reverse electroforming parameters on the thickness uniformity of electroformed copper foil
Wang et al. Preparation of meander thin-film microsensor and investigation the influence of structural parameters on the giant magnetoimpedance effect
Yanai et al. Electroplated Fe-Co-Ni films prepared in ammonium-chloride-based plating baths
Xie et al. Optimized giant magneto-impedance effect in electroless-deposited NiFeP/Cu composite wires
Kockar et al. Electrodeposited NiCoFe films from electrolytes with different Fe ion concentrations
Kuru et al. Electrodeposited NiFeCu/Cu multilayers: effect of Fe ion concentration on properties
Li et al. Microstructure and magnetic properties of micro NiFe alloy arrays for MEMS application
Atalay et al. Giant magnetoimpedance effect in electroplated CoNiFe/Cu wires with varying Ni, Fe and Co content
Kuru et al. Characterizations of electrodeposited NiCoFe ternary alloys: influence of deposition potential
Tebbakh et al. Electrochemical nucleation behaviours and properties of electrodeposited Co–Ni alloy thin films
Velleuer et al. Giant magneto impedance in electroplated NiFeMo/Cu microwires
Zeng et al. Gradient magnetic binary alloy nanowire
Wang et al. Effect of sub-layer thickness on magnetic and giant magnetoresistance properties of Ni–Fe/Cu/Co/Cu multilayered nanowire arrays
Ide et al. Current-perpendicular-to-plane giant magnetoresistance in Co/Cu multilayered nanocylinders electrodeposited into anodized aluminum oxide nanochannels with ultra-large aspect ratio
Liu et al. Giant magneto-impedance and skin effect in CuBe/CoNiP composite wires
Atalay et al. Magnetoimpedance effect of current-annealed CoNiFe/Cu microtubes
El Kammouni et al. Magnetic properties and magnetoimpedance of short CuBe/CoFeNi electroplated microtubes
Bang et al. Effects of saccharine N-propane sulfonate on the microstructures, magnetic properties, and magnetoimpedance of electroplated Ni–Fe Permalloy thin films
Saraç et al. Improvement of some physical and magnetic properties of nanocrystalline Fe15–Ni85/ITO thin films by galvanostatic pretreatment process
Wang et al. Enhancement of giant magnetoimpedance in composite wire with insulator layer
Raj Kumar et al. Structural and magnetoresistive properties of electrodeposited thin films for magnetic sensors applications
CN202865343U (zh) 一种复合结构材料的电流化学镀装置
Zhang et al. Enhanced giant magnetoimpedance in heterogeneous nanobrush

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220426

Address after: 430000 room 127, building 6, Gaonong Biological Park comprehensive service area (II), zone B, No. 888, Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan, Hubei Province

Patentee after: Wuhan Haoyue Technology Co.,Ltd.

Address before: 430074, No. 693 Xiong Chu street, Hongshan District, Hubei, Wuhan

Patentee before: WUHAN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190118

CF01 Termination of patent right due to non-payment of annual fee