CN105425032B - 从电力信号中获取正弦函数倍频序列的方法和系统 - Google Patents

从电力信号中获取正弦函数倍频序列的方法和系统 Download PDF

Info

Publication number
CN105425032B
CN105425032B CN201510891323.9A CN201510891323A CN105425032B CN 105425032 B CN105425032 B CN 105425032B CN 201510891323 A CN201510891323 A CN 201510891323A CN 105425032 B CN105425032 B CN 105425032B
Authority
CN
China
Prior art keywords
sequence
positive
frequency
phase
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510891323.9A
Other languages
English (en)
Other versions
CN105425032A (zh
Inventor
陈世和
李军
王越超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority to CN201510891323.9A priority Critical patent/CN105425032B/zh
Publication of CN105425032A publication Critical patent/CN105425032A/zh
Application granted granted Critical
Publication of CN105425032B publication Critical patent/CN105425032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种从电力信号中获取正弦函数倍频序列的方法和系统,通过一系列操作,对输入电力信号序列的频率进行倍频处理,获得正弦函数倍频序列。将本发明获得的正弦函数倍频序列用于电力信号频率的测量,可显著提高电力信号频率测量的准确度。

Description

从电力信号中获取正弦函数倍频序列的方法和系统
技术领域
本发明涉及电力系统技术领域,特别是涉及一种从电力信号中获取正弦函数倍频序列的方法和系统。
背景技术
电力系统的频率测量、相位测量、幅值测量等在本质上均为正弦参数的测量。傅里叶变换是实现正弦参数测量的基本方法,在电力系统中有广泛的应用。但随着正弦参数测量技术的发展,傅里叶变换存在的问题也越显突出,其难以进一步满足电力系统对正弦参数高准确度计算的要求。
在电力系统正弦参数测量方面,还有一些改进的参数测量方法,如零交法、基于滤波的测量法、基于小波变换法、基于神经网络的测量法、基于DFT(Discrete FourierTransform,离散傅里叶变换)变换的测量法等。由于电网运行额定工频在50Hz(赫兹)附近,属于频率较低的正弦频率,而且在实际的电力信号中存在干扰,例如谐波干扰、电力负荷小范围内随机波动产生的类似白噪声干扰等,在干扰环境下,这些算法普遍存在的测量准确度不高的问题。
发明内容
基于此,有必要针对上述问题,提供一种从电力信号中获取正弦函数倍频序列的方法和系统,能够提高电力信号频率测量的准确度。
为解决上述技术问题,本发明采用如下技术方案:
一种从电力信号中获取正弦函数倍频序列的方法,包括步骤:
根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,获得初步序列长度;
根据所述初步序列长度对电力信号进行采样,获得所述电力信号的初步序列;
对所述初步序列进行频率初测,得到所述电力信号的初步频率,根据所述初步频率得到参考频率;
根据所述预设采样频率和所述参考频率,获得所述电力信号的单位周期序列长度;
将所述预设整数信号周期数和所述单位周期序列长度相乘,获得预处理序列长度;
根据所述预处理序列长度,从所述电力信号的初步序列中获取预处理序列;
对所述预处理序列进行梳状滤波处理,获得梳状滤波序列,其中梳状滤波序列长度为所述预处理序列在进行梳状滤波处理后的剩余长度;
确定所述梳状滤波序列长度与所述单位周期序列长度的比值整数,根据所述比值整数和所述单位周期序列长度获得预设序列长度;
根据所述预设序列长度和预设起始点,从所述梳状滤波序列中获得第一正向序列,根据所述第一正向序列获得第一反褶序列;
根据所述第一正向序列获得第一正相位,根据所述第一反褶序列获得第一反相位;
根据所述第一正相位和所述第一反相位获得第一平均初相位;
根据所述第一平均初相位和预设相位值,获得相位比较值,根据所述相位比较值、所述预设起始点和所述单位周期序列长度,获得新起始点;
根据所述预设序列长度和所述新起始点,从所述梳状滤波序列中获得第二正向序列,根据第二正向序列获得第二反褶序列;
根据所述第二正向序列获得第二正相位,根据所述第二反褶序列获得第二反相位;
根据所述第二正相位和所述第二反相位获得第二平均初相位;
将所述第二正向序列与所述第二反褶序列相加,得到和序列,根据所述和序列和所述第二平均初相位的余弦函数值,获得余弦函数调制序列;
将所述第二正向序列与所述第二反褶序列相减,得到差序列,根据所述差序列和所述第二平均初相位的正弦函数值,获得正弦函数调制序列;
将所述余弦函数调制序列与所述正弦函数调制序列相乘后再乘以2,获得正弦函数倍频序列。
一种从电力信号中获取正弦函数倍频序列的系统,包括:
初步序列长度确定模块,用于根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,获得初步序列长度;
初步序列获取模块,用于根据所述初步序列长度对电力信号进行采样,获得所述电力信号的初步序列;
参考频率确定模块,用于对所述初步序列进行频率初测,得到所述电力信号的初步频率,根据所述初步频率得到参考频率;
单位周期序列长度确定模块,用于根据所述预设采样频率和所述参考频率,获得所述电力信号的单位周期序列长度;
预处理序列长度确定模块,用于将所述预设整数信号周期数和所述单位周期序列长度相乘,获得预处理序列长度;
预处理序列获取模块,用于根据所述预处理序列长度,从所述电力信号的初步序列中获取预处理序列;
梳状滤波序列确定模块,用于对所述预处理序列进行梳状滤波处理,获得梳状滤波序列,其中梳状滤波序列长度为所述预处理序列在进行梳状滤波处理后的剩余长度;
预设序列长度确定模块,用于确定所述梳状滤波序列长度与所述单位周期序列长度的比值整数,根据所述比值整数和所述单位周期序列长度获得预设序列长度;
第一序列获取模块,用于根据所述预设序列长度和预设起始点,从所述梳状滤波序列中获得第一正向序列,根据所述第一正向序列获得第一反褶序列;
第一正反相位确定模块,用于根据所述第一正向序列获得第一正相位,根据所述第一反褶序列获得第一反相位;
第一平均初相位确定模块,用于根据所述第一正相位和所述第一反相位获得第一平均初相位;
新起始点确定模块,用于根据所述第一平均初相位和预设相位值,获得相位比较值,根据所述相位比较值、所述预设起始点和所述单位周期序列长度,获得新起始点;
第二序列获取模块,用于根据所述预设序列长度和所述新起始点,从所述梳状滤波序列中获得第二正向序列,根据第二正向序列获得第二反褶序列;
第二正反相位确定模块,用于根据所述第二正向序列获得第二正相位,根据所述第二反褶序列获得第二反相位;
第二平均初相位确定模块,用于根据所述第二正相位和所述第二反相位获得第二平均初相位;
余弦函数调制序列确定模块,用于将所述第二正向序列与所述第二反褶序列相加,得到和序列,根据所述和序列和所述第二平均初相位的余弦函数值,获得余弦函数调制序列;
正弦函数调制序列确定模块,用于将所述第二正向序列与所述第二反褶序列相减,得到差序列,根据所述差序列和所述第二平均初相位的正弦函数值,获得正弦函数调制序列;
正弦函数倍频序列确定模块,用于将所述余弦函数调制序列与所述正弦函数调制序列相乘后再乘以2,获得正弦函数倍频序列。
本发明从电力信号中获取正弦函数倍频序列的方法和系统,通过一系列操作,对输入电力信号序列的频率进行倍频处理,获得正弦函数倍频序列。将本发明获得的正弦函数倍频序列用于电力信号频率的测量,可显著提高电力信号频率测量的准确度。
附图说明
图1为本发明从电力信号中获取正弦函数倍频序列的方法实施例的流程示意图;
图2为本发明梳状滤波处理在频域幅频特性的示意图;
图3为本发明初步序列、第一正向序列和第一反褶序列的示意图;
图4为本发明从电力信号中获取正弦函数倍频序列的系统实施例的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及取得的效果,下面结合附图及较佳实施例,对本发明的技术方案,进行清楚和完整的描述。
如图1所示,一种从电力信号中获取正弦函数倍频序列的方法,包括步骤:
S101、根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,获得初步序列长度;
S102、根据所述初步序列长度对电力信号进行采样,获得所述电力信号的初步序列;
S103、对所述初步序列进行频率初测,得到所述电力信号的初步频率,根据所述初步频率得到参考频率;
S104、根据所述预设采样频率和所述参考频率,获得所述电力信号的单位周期序列长度;
S105、将所述预设整数信号周期数和所述单位周期序列长度相乘,获得预处理序列长度;
S106、根据所述预处理序列长度,从所述电力信号的初步序列中获取预处理序列;
S107、对所述预处理序列进行梳状滤波处理,获得梳状滤波序列,其中梳状滤波序列长度为所述预处理序列在进行梳状滤波处理后的剩余长度;
S108、确定所述梳状滤波序列长度与所述单位周期序列长度的比值整数,根据所述比值整数和所述单位周期序列长度获得预设序列长度;
S109、根据所述预设序列长度和预设起始点,从所述梳状滤波序列中获得第一正向序列,根据所述第一正向序列获得第一反褶序列;
S110、根据所述第一正向序列获得第一正相位,根据所述第一反褶序列获得第一反相位;
S111、根据所述第一正相位和所述第一反相位获得第一平均初相位;
S112、根据所述第一平均初相位和预设相位值,获得相位比较值,根据所述相位比较值、所述预设起始点和所述单位周期序列长度,获得新起始点;
S113、根据所述预设序列长度和所述新起始点,从所述梳状滤波序列中获得第二正向序列,根据第二正向序列获得第二反褶序列;
S114、根据所述第二正向序列获得第二正相位,根据所述第二反褶序列获得第二反相位;
S115、根据所述第二正相位和所述第二反相位获得第二平均初相位;
S116、将所述第二正向序列与所述第二反褶序列相加,得到和序列,根据所述和序列和所述第二平均初相位的余弦函数值,获得余弦函数调制序列;
S117、将所述第二正向序列与所述第二反褶序列相减,得到差序列,根据所述差序列和所述第二平均初相位的正弦函数值,获得正弦函数调制序列;
S118、将所述余弦函数调制序列与所述正弦函数调制序列相乘后再乘以2,获得正弦函数倍频序列。
实际电力信号是一种以基波成分为主的正弦信号,如无特殊说明,电力信号均指基波信号,电力信号频率均指基波频率。对于步骤S101,电力系统频率范围一般在45Hz(赫兹)-55Hz,所以电力信号频率范围的下限fmin可以取为 45Hz。预设整数信号周期数C可以根据实际需要设置,例如,将C取为17。初步序列长度可以根据式(1)计算:
其中,Nstart为初步序列长度;(int)表示取整;C为预设整数信号周期数; fmin为电力信号频率范围的下限,单位Hz;f为预设采样频率,单位Hz。
对于步骤S102,可以用单基波频率的余弦函数信号表达电力信号,那么初步序列为式(2):
其中,Xstart(n)为初步序列;A为信号幅值,单位v;ωi为信号频率,T为采样间隔时间,f为预设采样频率,单位Hz,n为序列离散数,为初步序列的初相位,Nstart为初步序列长度。
对于步骤S103,可通过零交法、基于滤波的算法、基于小波变换算法、基于神经网络的算法、基于DFT变换的频率算法或基于相位差的频率算法对初步序列进行频率初测,获取初步频率ωo。在一个实施例中,所述参考频率ωs=ωo
对于步骤S104,在一个实施例中,所述电力信号的单位周期序列长度计算,为式(3):
其中,N为单位周期序列长度;(int)为取整数;f为预设采样频率,单位 Hz;ωs为参考频率。所述单位周期序列长度整数化存在1个采样间隔内的误差。
对于步骤S105,所述预处理序列长度为式(4):
Nset=CN (4)
其中,Nset为预处理序列长度;C为预设整数信号周期数;N为单位周期序列长度。
对于步骤S106,在一个实施例中,获取预处理序列,为式(5):
其中,Xset(n)为预处理序列,Xstart(n)为初步序列,Nset为预处理序列长度。
电力信号中存在分次谐波、偶次谐波、奇次谐波等,在混频过程中,所产生的混频干扰频率严重影响正弦参数的计算准确度,进行梳状滤波处理可从源头对混频干扰频率产生的因数进行有效抑制。
对于步骤S107,将2个起始点不同的输入序列相减,可获得梳状的频域幅频滤波特性,简称为梳状滤波处理。将2个输入序列的间隔定义为梳状滤波参数,单级梳状滤波处理表达为式(6):
其中,XL(n)为单级梳状滤波输出序列;Xset(n)为预处理序列;Xset(NL+n)为从NL起始的预处理序列;NL为2个序列间隔或单级梳状滤波参数;Nset为预处理序列长度;N为单位周期序列长度。梳状滤波参数NL取值为单位周期序列长度N的0.5倍,能够对偶次谐波进行抑制和对分次谐波进行衰减。
在一个实施例中,可以通过梳状滤波器对所述预处理序列进行梳状滤波处理。由于参考频率存在误差、梳状滤波参数存在整数化误差,为了提高梳状滤波效果,可以通过8级梳状滤波器进行梳状滤波处理,表达为式(7):
其中,X8L(n)为8级梳状滤波器或梳状滤波序列;Filter[8,NL,Xset(n)]中8代表梳状滤波级数为8,NL为单级梳状滤波参数,Xset(n)为预处理序列;KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,T为采样间隔时间;为梳状滤波序列初相位;Nset为预处理序列长度。
梳状滤波处理需要使用单位周期序列长度N的4倍序列长度。梳状滤波处理在频域幅频特性如图2所示。
对于步骤S108,在一个实施例中,确定所述梳状滤波序列长度与所述单位周期序列长度的比值整数,为式(8):
其中,k为所述比值整数,Nset为预处理序列长度,NL为单级梳状滤波参数, N为单位周期序列长度。
在一个实施例中,预设序列长度计算为式(9):
N=(k-1)N (9)
其中,N为预设序列长度,k为所述比值整数,N为单位周期序列长度。
对于步骤S109,在一个实施例中,预设起始点可以为所述单位周期序列长度的0.5倍,所述第一正向序列,为式(10):
其中,X8L(n)为8级梳状滤波序列,X+start(n)为第一正向序列,Pstart为预设起始点,N为单位周期序列长度,(int)为取整数,A为信号幅值,单位v,ωi为信号频率,KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,T为采样间隔时间,n为序列离散数,为第一正向序列初相位,N为预设序列长度。
在一个实施例中,所述第一反褶序列为式(11):
其中,X-start(-n)为第一反褶序列,X+start(n)为第一正向序列,A为信号幅值,单位v,ωi为信号频率,T为采样间隔时间,n为序列离散数,β1为第一反褶序列初相位,N为预设序列长度。初步序列、第一正向序列和第一反褶序列图形表达如图3所示。
对于步骤S110,在一个实施例中,根据对第一正向序列进行正交混频和积分计算的结果,获得第一正相位;根据对第一反褶序列进行正交混频和积分计算的结果,获得第一反相位。即第一正相位和第一反相位的计算是基于正交混频和积分计算的结果。
在不考虑正交混频的混频干扰频率时,正交混频表达为式(12),积分计算表达为式(13):
其中,R+start(n)为第一正实频混频序列,I+start(n)为第一正虚频混频序列,R-start(-n)为第一反实频混频序列,I-start(-n)为第一反虚频混频序列,cos(ωsTn)或 cos(-ωsTn)为参考频率的离散余弦函数,sin(ωsTn)或sin(-ωsTn)为参考频率的离散正弦函数,Ω为信号频率ωi与参考频率ωs的频差,T为采样间隔时间,n为序列离散数,KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,为第一正向序列初相位,β1为第一正向序列初相位,N为预设序列长度。
其中,R+start为第一正实频积分值,单位无量纲,I+start为第一正虚频积分值,单位无量纲,R-start为第一反实频积分值,单位无量纲,I-start为第一反虚频混频积分值,单位无量纲,Ω为信号频率ωi与参考频率ωs的频差,T为采样间隔时间,n为序列离散数,N为预设序列长度,为第一正向序列初相位,β1为第一反褶序列初相位,N为预设序列长度。
在一个实施例中,第一正相位和第一反相位的计算,表达为式(14):
其中,PH+start为第一正相位,PH-start为第一反相位,R+start为第一正实频积分值,单位无量纲,I+start为第一正虚频积分值,单位无量纲,R-start为第一反实频积分值,单位无量纲,I-start为第一反虚频混频积分值,单位无量纲,Ω为信号频率ωi与参考频率ωs的频差,T为采样间隔时间,N为预设序列长度,为第一正向序列初相位,β1为第一反褶序列初相位。
对于步骤S111,在一个实施例中,第一平均初相位计算方法,表达为式(15):
其中,PHstart-avg为第一平均初相位,PH+start为第一正相位,PH-start为第一反相位,为第一正向序列初相位,β1为第一反褶序列初相位。
对于步骤S112,在一个实施例中,所述预设相位值可以为±π/4;根据所述第一平均初相位和预设相位值,获得相位比较值的步骤可以包括:
若所述第一平均初相位大于等于0小于等于π/2,根据π/4减去所述第一平均初相位获得相位比较值;
若所述第一平均初相位大于等于-π/2小于等于0,根据-π/4减去所述第一平均初相位获得相位比较值。
具体为式(16):
其中,△PHcom为相位比较值,单位rad,PHstart-avg为第一平均初相位。
在一个实施例中,所述新起始点计算,为式(17):
其中,Pnew为新起始点,单位无量纲,Pstart为预设起始点,△PHcom为相位比较值,单位rad,N为单位周期序列长度,(int)为取整数。
对于步骤S113,第二正向序列和第二反褶序列为式(18):
其中,X8L(n)为8级梳状滤波序列,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,Pnew为新起始点,单位无量纲,KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,为第二正向序列初相位,β2为第二反褶序列初相位,ωi为信号频率,T为采样间隔时间,n为序列离散数,N为预设序列长度。
对于步骤S114,在一个实施例中,根据对第二正向序列进行正交混频和数字滤波的结果,获得第二正相位;根据对第二反褶序列进行正交混频和数字滤波的结果,获得第二反相位。即第二正相位和第二反相位的计算方法,是基于正交混频和数字滤波计算的结果。所述数字滤波由2种滤波参数的6级矩形窗算术平均滤波器所构成。
在不考虑正交混频的混频干扰频率时,正交混频表达为式(19),2种滤波参数的6级矩形窗算术平均滤波器滤波计算表达为式(20):
其中,R+end(n)为第二正实频混频序列,I+end(n)为第二正虚频混频序列,R-end (-n)为第二反实频混频序列,I-end(-n)为第二反虚频混频序列,cos(ωsTn)或 cos(-ωsTn)为参考频率的离散余弦函数,sin(ωsTn)或sin(-ωsTn)为参考频率的离散正弦函数,KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,Ω为信号频率ωi与参考频率ωs的频差,ωi为信号频率,T为采样间隔时间,n为序列离散数,为第一正向序列初相位,β1为第一反褶序列初相位,N为预设序列长度。
其中,R+end为第二正实频数字滤波终值,单位无量纲;I+end为第二正虚频数字滤波终值,单位无量纲;R-end为第二反数字滤波终值,单位无量纲;I-end为第二反虚频数字滤波终值,单位无量纲;KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,Ω为信号频率ωi与参考频率ωs的频差;K(Ω)为数字滤波在频差Ω的幅值增益,单位无量纲;T为采样间隔时间;为第二正向序列初相位;β2为第二反褶序列初相位;ND1为滤波参数1,即对ND1个连续离散值相加,然后取其算术平均值作为本次滤波值输出;ND2为滤波参数2,即对ND2个连续离散值相加,然后取其算术平均值作为本次滤波值输出;ND为数字滤波使用序列长度,数量上为6级矩形窗算术平均滤波器滤波参数的总和,小于等于预设序列长度N。
在一个实施例中,滤波参数ND1取值为所述参考频率的单位周期序列长度的1.5倍,目的对1/3分次谐波产生的混频干扰频率进行深度抑制;滤波参数 ND2取值为所述参考频率的单位周期序列长度的2倍,目的对直流、1/2分次、次谐波等产生的混频干扰频率进行深度抑制。2种滤波参数的6级矩形窗算术平均滤波器滤波计算需要使用信号周期序列长度的10.5倍。
滤波参数ND1和滤波参数ND2计算为式(21):
其中,ND1为数字滤波参数1,单位无量纲,(int)为取整数,ND2为数字滤波参数2,单位无量纲,N为单位周期序列长度。
在一个实施例中,第二正相位和第二反相位的计算方法,表达为式(22):
其中,PH+end为第二正相位,PH-end为第二反相位,R+end为第二正实频积分值,单位无量纲,I+end为第二正虚频积分值,单位无量纲,R-end为第二反实频积分值,单位无量纲,I-end为第二反虚频混频积分值,单位无量纲,Ω为信号频率ωi与参考频率ωs的频差,T为采样间隔时间,ND为数字滤波使用序列长度,为第二正向序列初相位,β2为第二反褶序列初相位。
对于步骤S115,第二平均初相位计算方法,表达为式(23):
其中,PHend-avg为第二平均初相位,PH+end为第二正相位,PH-end为第二反相位,为第二正向序列初相位,β2为第二正向序列初相位。
对于步骤S116,余弦函数调制序列表达为式(24):
其中,Xcos(n)为余弦函数调制序列;X+end(n)为第二正向序列;X-end(-n)为第二反褶序列;PHend-avg为第二平均初相位;A KLi)为余弦函数调制序列幅值,单位v;为余弦函数调制序列初相位,KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,ωi为信号频率,T为采样间隔时间,n为序列离散数, N为预设序列长度,为第二正向序列初相位,β2为第二反褶序列初相位。
对于步骤S117,正弦函数调制序列表达为式(25):
其中,Xsin(n)为正弦函数调制序列,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,PHend-avg为第二平均初相位,A KLi)为正弦函数调制序列幅值,单位v,为余弦函数调制序列初相位,KLi)为梳状滤波处理在信号频率ωi的无量纲幅值增益,ωi信号频率,T为采样间隔时间,n为序列离散数,N 为预设序列长度,为第二正向序列初相位,β2为第二反褶序列初相位。
对于步骤S118,正弦函数倍频序列表达为式(26):
其中,X2sin(n)为正弦函数倍频序列。
基于同一发明构思,本发明还提供一种从电力信号中获取正弦函数倍频序列的系统,下面结合附图对本发明系统的具体实施方式做详细描述。
如图4所示,一种从电力信号中获取正弦函数倍频序列的系统,包括:
初步序列长度确定模块101,用于根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,获得初步序列长度;
初步序列获取模块102,用于根据所述初步序列长度对电力信号进行采样,获得所述电力信号的初步序列;
参考频率确定模块103,用于对所述初步序列进行频率初测,得到所述电力信号的初步频率,根据所述初步频率得到参考频率;
单位周期序列长度确定模块104,用于根据所述预设采样频率和所述参考频率,获得所述电力信号的单位周期序列长度;
预处理序列长度确定模块105,用于将所述预设整数信号周期数和所述单位周期序列长度相乘,获得预处理序列长度;
预处理序列获取模块106,用于根据所述预处理序列长度,从所述电力信号的初步序列中获取预处理序列;
梳状滤波序列确定模块107,用于对所述预处理序列进行梳状滤波处理,获得梳状滤波序列,其中梳状滤波序列长度为所述预处理序列在进行梳状滤波处理后的剩余长度;
预设序列长度确定模块108,用于确定所述梳状滤波序列长度与所述单位周期序列长度的比值整数,根据所述比值整数和所述单位周期序列长度获得预设序列长度;
第一序列获取模块109,用于根据所述预设序列长度和预设起始点,从所述梳状滤波序列中获得第一正向序列,根据所述第一正向序列获得第一反褶序列;
第一正反相位确定模块110,用于根据所述第一正向序列获得第一正相位,根据所述第一反褶序列获得第一反相位;
第一平均初相位确定模块111,用于根据所述第一正相位和所述第一反相位获得第一平均初相位;
新起始点确定模块112,用于根据所述第一平均初相位和预设相位值,获得相位比较值,根据所述相位比较值、所述预设起始点和所述单位周期序列长度,获得新起始点;
第二序列获取模块113,用于根据所述预设序列长度和所述新起始点,从所述梳状滤波序列中获得第二正向序列,根据第二正向序列获得第二反褶序列;
第二正反相位确定模块114,用于根据所述第二正向序列获得第二正相位,根据所述第二反褶序列获得第二反相位;
第二平均初相位确定模块115,用于根据所述第二正相位和所述第二反相位获得第二平均初相位;
余弦函数调制序列确定模块116,用于将所述第二正向序列与所述第二反褶序列相加,得到和序列,根据所述和序列和所述第二平均初相位的余弦函数值,获得余弦函数调制序列;
正弦函数调制序列确定模块117,用于将所述第二正向序列与所述第二反褶序列相减,得到差序列,根据所述差序列和所述第二平均初相位的正弦函数值,获得正弦函数调制序列;
正弦函数倍频序列确定模块118,用于将所述余弦函数调制序列与所述正弦函数调制序列相乘后再乘以2,获得正弦函数倍频序列。
在一个实施例中,所述余弦函数调制序列确定模块116根据表达式获得余弦函数调制序列Xcos(n),其中,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,PHend-avg为第二平均初相位。
在一个实施例中,所述正弦函数调制序列确定模块117可以根据表达式获得正弦函数调制序列Xsin(n),其中,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,PHend-avg为第二平均初相位。
在一个实施例中,所述第一正反相位确定模块110根据对第一正向序列进行正交混频和积分计算的结果,获得第一正相位,根据对第一反褶序列进行正交混频和积分计算的结果,获得第一反相位。
在一个实施例中,所述第二正反相位确定模块114根据对第二正向序列进行正交混频和数字滤波的结果,获得第二正相位,根据对第二反褶序列进行正交混频和数字滤波的结果,获得第二反相位。
在一个实施例中,所述梳状滤波序列确定模块107可以通过梳状滤波器对所述预处理序列进行梳状滤波处理。
本发明系统其它技术特征与本发明方法相同,在此不予赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种从电力信号中获取正弦函数倍频序列的方法,其特征在于,包括步骤:
根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,获得初步序列长度;
根据所述初步序列长度对电力信号进行采样,获得所述电力信号的初步序列;
对所述初步序列进行频率初测,得到所述电力信号的初步频率,根据所述初步频率得到参考频率;
根据所述预设采样频率和所述参考频率,获得所述电力信号的单位周期序列长度;
将所述预设整数信号周期数和所述单位周期序列长度相乘,获得预处理序列长度;
根据所述预处理序列长度,从所述电力信号的初步序列中获取预处理序列;
对所述预处理序列进行梳状滤波处理,获得梳状滤波序列,其中梳状滤波序列长度为所述预处理序列在进行梳状滤波处理后的剩余长度;
确定所述梳状滤波序列长度与所述单位周期序列长度的比值整数,根据所述比值整数和所述单位周期序列长度获得预设序列长度;
根据所述预设序列长度和预设起始点,从所述梳状滤波序列中获得第一正向序列,根据所述第一正向序列获得第一反褶序列;
根据所述第一正向序列获得第一正相位,根据所述第一反褶序列获得第一反相位;
根据所述第一正相位和所述第一反相位获得第一平均初相位;
根据所述第一平均初相位和预设相位值,获得相位比较值,根据所述相位比较值、所述预设起始点和所述单位周期序列长度,获得新起始点;
根据所述预设序列长度和所述新起始点,从所述梳状滤波序列中获得第二正向序列,根据第二正向序列获得第二反褶序列;
根据所述第二正向序列获得第二正相位,根据所述第二反褶序列获得第二反相位;
根据所述第二正相位和所述第二反相位获得第二平均初相位;
将所述第二正向序列与所述第二反褶序列相加,得到和序列,根据所述和序列和所述第二平均初相位的余弦函数值,获得余弦函数调制序列;根据表达式获得余弦函数调制序列Xcos(n),其中,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,PHend-avg为第二平均初相位;
将所述第二正向序列与所述第二反褶序列相减,得到差序列,根据所述差序列和所述第二平均初相位的正弦函数值,获得正弦函数调制序列;根据表达式获得正弦函数调制序列Xsin(n),其中,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,PHend-avg为第二平均初相位;
将所述余弦函数调制序列与所述正弦函数调制序列相乘后再乘以2,获得正弦函数倍频序列。
2.根据权利要求1所述的从电力信号中获取正弦函数倍频序列的方法,其特征在于,根据对第一正向序列进行正交混频和积分计算的结果,获得第一正相位;
根据对第一反褶序列进行正交混频和积分计算的结果,获得第一反相位;
根据对第二正向序列进行正交混频和数字滤波的结果,获得第二正相位;
根据对第二反褶序列进行正交混频和数字滤波的结果,获得第二反相位。
3.根据权利要求1或2任意一项所述的从电力信号中获取正弦函数倍频序列的方法,其特征在于,通过梳状滤波器对所述预处理序列进行梳状滤波处理。
4.一种从电力信号中获取正弦函数倍频序列的系统,其特征在于,包括:
初步序列长度确定模块,用于根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,获得初步序列长度;
初步序列获取模块,用于根据所述初步序列长度对电力信号进行采样,获得所述电力信号的初步序列;
参考频率确定模块,用于对所述初步序列进行频率初测,得到所述电力信号的初步频率,根据所述初步频率得到参考频率;
单位周期序列长度确定模块,用于根据所述预设采样频率和所述参考频率,获得所述电力信号的单位周期序列长度;
预处理序列长度确定模块,用于将所述预设整数信号周期数和所述单位周期序列长度相乘,获得预处理序列长度;
预处理序列获取模块,用于根据所述预处理序列长度,从所述电力信号的初步序列中获取预处理序列;
梳状滤波序列确定模块,用于对所述预处理序列进行梳状滤波处理,获得梳状滤波序列,其中梳状滤波序列长度为所述预处理序列在进行梳状滤波处理后的剩余长度;
预设序列长度确定模块,用于确定所述梳状滤波序列长度与所述单位周期序列长度的比值整数,根据所述比值整数和所述单位周期序列长度获得预设序列长度;
第一序列获取模块,用于根据所述预设序列长度和预设起始点,从所述梳状滤波序列中获得第一正向序列,根据所述第一正向序列获得第一反褶序列;
第一正反相位确定模块,用于根据所述第一正向序列获得第一正相位,根据所述第一反褶序列获得第一反相位;
第一平均初相位确定模块,用于根据所述第一正相位和所述第一反相位获得第一平均初相位;
新起始点确定模块,用于根据所述第一平均初相位和预设相位值,获得相位比较值,根据所述相位比较值、所述预设起始点和所述单位周期序列长度,获得新起始点;
第二序列获取模块,用于根据所述预设序列长度和所述新起始点,从所述梳状滤波序列中获得第二正向序列,根据第二正向序列获得第二反褶序列;
第二正反相位确定模块,用于根据所述第二正向序列获得第二正相位,根据所述第二反褶序列获得第二反相位;
第二平均初相位确定模块,用于根据所述第二正相位和所述第二反相位获得第二平均初相位;
余弦函数调制序列确定模块,用于将所述第二正向序列与所述第二反褶序列相加,得到和序列,根据所述和序列和所述第二平均初相位的余弦函数值,获得余弦函数调制序列;所述余弦函数调制序列确定模块根据表达式获得余弦函数调制序列Xcos(n),其中,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,PHend-avg为第二平均初相位;
正弦函数调制序列确定模块,用于将所述第二正向序列与所述第二反褶序列相减,得到差序列,根据所述差序列和所述第二平均初相位的正弦函数值,获得正弦函数调制序列;所述正弦函数调制序列确定模块根据表达式获得正弦函数调制序列Xsin(n),其中,X+end(n)为第二正向序列,X-end(-n)为第二反褶序列,PHend-avg为第二平均初相位;
正弦函数倍频序列确定模块,用于将所述余弦函数调制序列与所述正弦函数调制序列相乘后再乘以2,获得正弦函数倍频序列。
5.根据权利要求4所述的从电力信号中获取正弦函数倍频序列的系统,其特征在于,所述第一正反相位确定模块根据对第一正向序列进行正交混频和积分计算的结果,获得第一正相位,根据对第一反褶序列进行正交混频和积分计算的结果,获得第一反相位;所述第二正反相位确定模块根据对第二正向序列进行正交混频和数字滤波的结果,获得第二正相位,根据对第二反褶序列进行正交混频和数字滤波的结果,获得第二反相位。
6.根据权利要求4或5任意一项所述的从电力信号中获取正弦函数倍频序列的系统,其特征在于,所述梳状滤波序列确定模块通过梳状滤波器对所述预处理序列进行梳状滤波处理。
CN201510891323.9A 2015-12-04 2015-12-04 从电力信号中获取正弦函数倍频序列的方法和系统 Active CN105425032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510891323.9A CN105425032B (zh) 2015-12-04 2015-12-04 从电力信号中获取正弦函数倍频序列的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510891323.9A CN105425032B (zh) 2015-12-04 2015-12-04 从电力信号中获取正弦函数倍频序列的方法和系统

Publications (2)

Publication Number Publication Date
CN105425032A CN105425032A (zh) 2016-03-23
CN105425032B true CN105425032B (zh) 2018-03-20

Family

ID=55503364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510891323.9A Active CN105425032B (zh) 2015-12-04 2015-12-04 从电力信号中获取正弦函数倍频序列的方法和系统

Country Status (1)

Country Link
CN (1) CN105425032B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441871A (en) * 1967-01-05 1969-04-29 Gen Electric Co Ltd Oscillator system selectively operable as frequency measuring device or automatic frequency control
US3675124A (en) * 1970-10-28 1972-07-04 Sperry Rand Corp Apparatus for measuring frequency modulation noise signals and for calibrating same
DE3327876A1 (de) * 1982-08-02 1984-03-01 Raytheon Co., 02173 Lexington, Mass. Frequenzmesseinrichtung
JP2015025726A (ja) * 2013-07-26 2015-02-05 東芝三菱電機産業システム株式会社 周波数検出装置、周波数検出方法および電力変換装置
CN104502700A (zh) * 2014-12-29 2015-04-08 广东电网有限责任公司电力科学研究院 电力信号的正弦参数测量方法和系统
CN104502706A (zh) * 2014-12-29 2015-04-08 广东电网有限责任公司电力科学研究院 电力信号的谐波幅值测量方法和系统
CN104635045A (zh) * 2015-02-05 2015-05-20 广东电网有限责任公司电力科学研究院 基于相位调制的电力信号频率检测方法和系统
CN104635044A (zh) * 2015-02-05 2015-05-20 广东电网有限责任公司电力科学研究院 基于幅值调制的电力信号频率检测方法和系统
CN105067880A (zh) * 2015-09-18 2015-11-18 广东电网有限责任公司电力科学研究院 对电力信号进行正交调制的方法和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441871A (en) * 1967-01-05 1969-04-29 Gen Electric Co Ltd Oscillator system selectively operable as frequency measuring device or automatic frequency control
US3675124A (en) * 1970-10-28 1972-07-04 Sperry Rand Corp Apparatus for measuring frequency modulation noise signals and for calibrating same
DE3327876A1 (de) * 1982-08-02 1984-03-01 Raytheon Co., 02173 Lexington, Mass. Frequenzmesseinrichtung
JP2015025726A (ja) * 2013-07-26 2015-02-05 東芝三菱電機産業システム株式会社 周波数検出装置、周波数検出方法および電力変換装置
CN104502700A (zh) * 2014-12-29 2015-04-08 广东电网有限责任公司电力科学研究院 电力信号的正弦参数测量方法和系统
CN104502706A (zh) * 2014-12-29 2015-04-08 广东电网有限责任公司电力科学研究院 电力信号的谐波幅值测量方法和系统
CN104635045A (zh) * 2015-02-05 2015-05-20 广东电网有限责任公司电力科学研究院 基于相位调制的电力信号频率检测方法和系统
CN104635044A (zh) * 2015-02-05 2015-05-20 广东电网有限责任公司电力科学研究院 基于幅值调制的电力信号频率检测方法和系统
CN105067880A (zh) * 2015-09-18 2015-11-18 广东电网有限责任公司电力科学研究院 对电力信号进行正交调制的方法和系统

Also Published As

Publication number Publication date
CN105425032A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN104635044B (zh) 基于幅值调制的电力信号频率检测方法和系统
CN104635045B (zh) 基于相位调制的电力信号频率检测方法和系统
CN105425031B (zh) 从电力信号中获取零初相位基准正交倍频序列方法和系统
CN105425032B (zh) 从电力信号中获取正弦函数倍频序列的方法和系统
CN105403768B (zh) 从电力信号中获取余弦函数倍频序列的方法和系统
CN105548693B (zh) 获取零初相位基准正弦函数倍频序列的方法和系统
CN105388359B (zh) 从电力信号中获取正交倍频序列的方法和系统
CN105548688B (zh) 根据零初相位基准余弦函数序列进行频率测量方法和系统
CN105425040B (zh) 基于零初相位基准余弦函数倍频序列频率测量方法和系统
CN105301356B (zh) 获取零初相位基准余弦函数倍频序列的方法和系统
CN105372490B (zh) 基于零初相位基准正交倍频序列的频率测量的方法和系统
CN105548692B (zh) 根据零初相位基准正交序列进行频率测量的方法和系统
CN105548690B (zh) 基于零初相位基准正弦函数倍频序列频率测量方法和系统
CN105548687B (zh) 从电力信号中获取任意初相位正交序列的方法和系统
CN105548703B (zh) 从电力信号中获取任意初相位正弦函数序列的方法和系统
CN105548694B (zh) 根据零初相位基准正弦函数序列进行频率测量方法和系统
CN105372489B (zh) 从电力信号中获取任意初相位余弦函数序列的方法和系统
CN105548699B (zh) 获取电力信号的提高频率基准正弦函数序列的方法和系统
CN105067885B (zh) 将电力信号转换为零初相位信号序列的方法和系统
CN105548698B (zh) 电力信号频率微调方法和系统
CN105548691B (zh) 获取电力信号的提高频率正弦函数序列的方法和系统
CN105548706B (zh) 获取电力信号的降低频率正弦函数序列的方法和系统
CN105467212B (zh) 获取电力信号的提高频率余弦函数序列的方法和系统
CN105548689B (zh) 获取电力信号的降低频率基准正交序列的方法和系统
CN105425036B (zh) 获取电力信号的降低频率余弦函数序列的方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant