CN105405133A - Remote sensing image alteration detection method - Google Patents

Remote sensing image alteration detection method Download PDF

Info

Publication number
CN105405133A
CN105405133A CN201510742564.7A CN201510742564A CN105405133A CN 105405133 A CN105405133 A CN 105405133A CN 201510742564 A CN201510742564 A CN 201510742564A CN 105405133 A CN105405133 A CN 105405133A
Authority
CN
China
Prior art keywords
sigma
omega
image
remote sensing
kernel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510742564.7A
Other languages
Chinese (zh)
Other versions
CN105405133B (en
Inventor
石爱业
高桂荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201510742564.7A priority Critical patent/CN105405133B/en
Publication of CN105405133A publication Critical patent/CN105405133A/en
Application granted granted Critical
Publication of CN105405133B publication Critical patent/CN105405133B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Measurement Of Radiation (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种遥感影像变化检测方法,包括:获取两时相高分辨率光学遥感影像X1和X2;对X1和X2进行影像配准;利用多元变化检测方法X1和X2进行辐射归一化校正;根据辐射归一化校正后的X1和X2分别计算变化矢量幅值XM和光谱角信息XSA;根据XM利用Bayes原理和最大期望算法计算得到最优分割阈值T;根据T和XM选择伪训练样本区域;将XM和XSA组合作为核FCM的输入,根据所述伪训练样本区域对核FCM结合空间邻域信息模型进行最优模型参数值选择;根据选择的最优模型参数值,采用核FCM结合空间邻域信息的方法,确定光学遥感影像的变化区域和非变化区域。本发明更稳健、精度更高。

The invention discloses a method for detecting changes in remote sensing images, which includes: acquiring two-phase high-resolution optical remote sensing images X 1 and X 2 ; performing image registration on X 1 and X 2 ; using multivariate change detection methods for X 1 and X 2 Carry out radiation normalization correction; calculate the change vector amplitude X M and spectral angle information X SA according to X 1 and X 2 after radiation normalization correction; calculate the optimal Segmentation threshold T; select a pseudo training sample area according to T and X M ; combine X M and X SA as the input of the kernel FCM, and perform an optimal model parameter value on the kernel FCM combined with the spatial neighborhood information model according to the pseudo training sample area Selection: According to the selected optimal model parameter value, the method of combining kernel FCM with spatial neighborhood information is used to determine the changing area and non-changing area of the optical remote sensing image. The invention is more stable and has higher precision.

Description

一种遥感影像变化检测方法A Method of Remote Sensing Image Change Detection

技术领域technical field

本发明涉及遥感影像变化检测技术领域,尤其涉及一种遥感影像变化检测方法。The invention relates to the technical field of remote sensing image change detection, in particular to a remote sensing image change detection method.

背景技术Background technique

随着多时相高分辨率遥感数据的不断积累以及空间数据库的相继建立,如何从这些遥感数据中提取和检测变化信息已成为遥感科学和地理信息科学的重要研究课题。根据同一区域不同时相的遥感影像,可以提取城市、环境等动态变化的信息,为资源管理与规划、环境保护等部门提供科学决策的依据。我国“十二五”将加大拓展实施“十一五”已启动实施的高分辨率对地观测工程,关注包括高分辨率遥感目标与空间环境特征分析及高可靠性自动解译等基础理论与关键技术研究,正在成为解决国家安全和社会经济发展重大需求的研究焦点。With the continuous accumulation of multi-temporal high-resolution remote sensing data and the successive establishment of spatial databases, how to extract and detect change information from these remote sensing data has become an important research topic in remote sensing science and geographic information science. According to remote sensing images of different time phases in the same area, dynamic information such as cities and environments can be extracted to provide scientific decision-making basis for resource management and planning, environmental protection and other departments. my country's "Twelfth Five-Year Plan" will increase and expand the implementation of high-resolution earth observation projects that have been launched during the "Eleventh Five-Year Plan", focusing on basic theories including high-resolution remote sensing target and space environment feature analysis and high-reliability automatic interpretation And key technology research is becoming the focus of research to solve the major needs of national security and social and economic development.

遥感影像的变化检测就是从不同时期的遥感数据中,定量地分析和确定地表变化的特征与过程。各国学者从不同的角度和应用研究提出了许多有效的检测算法,如变化矢量分析法(ChangeVectorAnalysis,CVA)、基于FuzzyC-means(FCM)的聚类方法等。其中,传统的基于FCM的多时相光学遥感变化检测,多先进行CVA变换,然后对变化矢量的幅值进行FCM聚类,进而得到变化检测结果。该类技术中,使用FCM的不足是仅适用于球状或椭球状聚类,且对噪声及其野值(Outlier)极为敏感。另外,仅仅使用变化矢量的幅值,使得原始多光谱信息没有得到充分的挖掘,不够稳健、精度不高。Change detection of remote sensing images is to quantitatively analyze and determine the characteristics and process of surface changes from remote sensing data of different periods. Scholars from various countries have proposed many effective detection algorithms from different angles and application research, such as Change Vector Analysis (ChangeVectorAnalysis, CVA), clustering method based on Fuzzy C-means (FCM), etc. Among them, the traditional FCM-based multi-temporal optical remote sensing change detection usually performs CVA transformation first, and then performs FCM clustering on the magnitude of the change vector, and then obtains the change detection result. In this type of technology, the disadvantage of using FCM is that it is only suitable for spherical or ellipsoidal clustering, and it is extremely sensitive to noise and its outlier (Outlier). In addition, only using the magnitude of the change vector makes the original multispectral information not fully mined, which is not robust enough and the accuracy is not high.

针对上述问题,许多学者试图通过在FCM目标函数中加上不同的空间邻域的约束来解决,但是高分辨率影像检测环境的复杂化以及目标先验信息匮乏等,导致这些算法都存在着一定的局限性,精度不高。为此,有必要研究新的高分辨率可见光遥感图像变化检测技术来有效克服上述难点。In response to the above problems, many scholars have tried to solve them by adding different spatial neighborhood constraints to the FCM objective function, but the complexity of the high-resolution image detection environment and the lack of prior information of the target lead to certain limitations in these algorithms. limitations, the accuracy is not high. Therefore, it is necessary to study new high-resolution visible light remote sensing image change detection technology to effectively overcome the above difficulties.

发明内容Contents of the invention

本发明所要解决的技术问题在于,提供一种遥感影像变化检测方法,该方法是一种联合CVA和SAM的自适应核FCM的多时相遥感影像变化检测方法,本发明变化检测结果更加稳健、精度较高。The technical problem to be solved by the present invention is to provide a remote sensing image change detection method, which is a multi-temporal remote sensing image change detection method combined with the adaptive kernel FCM of CVA and SAM. The change detection result of the present invention is more robust and accurate. higher.

为了解决上述技术问题,本发明提供了一种遥感影像变化检测方法,,包括:In order to solve the above technical problems, the present invention provides a remote sensing image change detection method, including:

获取两时相高分辨率光学遥感影像X1和X2Acquire two-temporal high-resolution optical remote sensing images X 1 and X 2 ;

对光学遥感影像X1和X2进行影像配准;Perform image registration on optical remote sensing images X 1 and X 2 ;

利用多元变化检测方法对光学遥感影像X1和X2进行辐射归一化校正;Perform radiometric normalization correction on optical remote sensing images X 1 and X 2 using multivariate change detection method;

根据辐射归一化校正后的光学遥感影像X1和X2分别计算变化矢量幅值XM和光谱角信息XSACalculate the change vector magnitude X M and spectral angle information X SA respectively according to the optical remote sensing images X 1 and X 2 corrected by radiation normalization;

根据变化矢量幅值XM利用Bayes原理和最大期望算法计算得到最优分割阈值T;According to the change vector magnitude X M , the optimal segmentation threshold T is calculated by using the Bayes principle and the maximum expectation algorithm;

根据最优分割阈值T和变化矢量幅值XM选择伪训练样本区域;Select the pseudo training sample area according to the optimal segmentation threshold T and the change vector magnitude X M ;

将XM和XSA组合作为核FCM的输入,根据所述伪训练样本区域对核FCM结合空间邻域信息模型进行最优模型参数值选择;Combining X M and X SA as the input of kernel FCM, according to the pseudo-training sample area, the kernel FCM is combined with the spatial neighborhood information model to select the optimal model parameter value;

根据选择的最优模型参数值,采用核FCM结合空间邻域信息的方法,确定光学遥感影像的变化区域和非变化区域。According to the selected optimal model parameter values, the changing area and non-changing area of the optical remote sensing image are determined by using kernel FCM combined with spatial neighborhood information.

实施本发明,具有如下有益效果:本发明联合多时相遥感影像的变化矢量幅值和多时相的光谱角映射图(SpectralAngleMapper,SAM)作为核FCM的输入,再基于核FCM结合空间邻域信息的方法,获取最终的变化检测结果。其中,核FCM目标函数中的核参数等,通过基于CVA技术获取的伪训练样本来选择,变化检测结果更加稳健、精度较高。Implementing the present invention has the following beneficial effects: the present invention combines the change vector magnitude of multi-temporal remote sensing images and the spectral angle map (SpectralAngleMapper, SAM) of multi-temporal phases as the input of kernel FCM, and then based on the kernel FCM combined with the spatial neighborhood information method to get the final change detection result. Among them, the kernel parameters in the kernel FCM objective function are selected through pseudo training samples obtained based on CVA technology, and the change detection results are more robust and have higher precision.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1是本发明提供的遥感影像变化检测方法的一个实施例的流程示意图;Fig. 1 is a schematic flow chart of an embodiment of a remote sensing image change detection method provided by the present invention;

图2是原始高分辨率光学遥感影像图;Figure 2 is the original high-resolution optical remote sensing image;

图3是本发明方法与其他方法的实验结果对比图Fig. 3 is the comparison chart of the experimental results of the inventive method and other methods

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

图1是本发明提供的遥感影像变化检测方法的一个实施例的流程示意图,本发明是一种多时相遥感影像变化检测方法,主要适用于高分辨率光学遥感影像,如图1所示,本发明包括步骤:Fig. 1 is a schematic flow chart of an embodiment of the remote sensing image change detection method provided by the present invention. The present invention is a multi-temporal remote sensing image change detection method, which is mainly applicable to high-resolution optical remote sensing images. As shown in Fig. 1, the present invention The invention includes the steps of:

S101、获取两时相高分辨率光学遥感影像X1和X2S101. Acquire two-temporal high-resolution optical remote sensing images X 1 and X 2 .

其中,X1、X2是同一区域不同时相的两幅高分辨率光学遥感影像。Among them, X 1 and X 2 are two high-resolution optical remote sensing images of the same area with different time phases.

S102、对光学遥感影像X1和X2进行影像配准。 S102 . Perform image registration on the optical remote sensing images X1 and X2.

具体的,步骤S102具体包括步骤:Specifically, step S102 specifically includes steps:

S1021、采用ENVI14.8遥感软件对光学遥感影像X1和X2进行几何粗校正。S1021. Using ENVI14.8 remote sensing software to perform rough geometric correction on the optical remote sensing images X 1 and X 2 .

几何粗校正具体操作步骤为:(1)显示基准影像和待校正影像;(2)采集地面控制点GCPs;GCPs应均匀分布在整幅图像内,GCPs的数目至少大于等于9;(3)计算误差;(4)选择多项式模型;(5)采用双线性插值进行重采样输出。其中的双线性差值法为:若求未知函数f在点P=(x,y)的值,假设我们已知函数f在Q11=(x1,y1),Q12=(x1,y2),Q21=(x2,y1),及Q22=(x2,y2)四个点的值。如果选择一个坐标系统使得这四个点的坐标分别为(0,0)、(0,1)、(1,0)和(1,1),那么双线性插值公式就可以表示为:The specific operation steps of geometric coarse correction are: (1) display the reference image and the image to be corrected; (2) collect ground control points GCPs; GCPs should be evenly distributed in the whole image, and the number of GCPs should be at least greater than or equal to 9; Error; (4) choose a polynomial model; (5) use bilinear interpolation for resampling output. Among them, the bilinear difference method is: If we want to find the value of the unknown function f at point P=(x,y), assuming that we know the function f at Q 11 =(x 1 ,y 1 ), Q 12 =(x 1 , y 2 ), Q 21 =(x 2 , y 1 ), and Q 22 =(x 2 , y 2 ) the values of four points. If you choose a coordinate system so that the coordinates of these four points are (0,0), (0,1), (1,0) and (1,1), then the bilinear interpolation formula can be expressed as:

f(x,y)≈f(0,0)(1-x)(1-y)+f(1,0)x(1-y)+f(0,1)(1-x)y+f(1,1)xy。f(x,y)≈f(0,0)(1-x)(1-y)+f(1,0)x(1-y)+f(0,1)(1-x)y+ f(1,1)xy.

S1022、利用自动匹配与三角剖分法对几何粗校正后的X1和X2进行几何精校正。S1022. Perform geometric fine correction on X 1 and X 2 after geometric rough correction by using automatic matching and triangulation method.

其中,三角剖分法为,采用逐点插入法构建Delaunay三角网,对每一个三角形,利用其三个顶点的行列号与其对应的基准影像同名点的地理坐标来确定该三角形内部的仿射变换模型参数,对待校正影像进行纠正,得到校正后的遥感影像。Among them, the triangulation method is to use the point-by-point insertion method to construct the Delaunay triangulation network, and for each triangle, use the row and column numbers of its three vertices and the geographic coordinates of the corresponding point of the same name in the reference image to determine the affine transformation inside the triangle The model parameters are used to correct the image to be corrected to obtain the corrected remote sensing image.

S103、利用多元变化检测方法(MultivariateAlterationDetection,MAD)对光学遥感影像X1和X2进行辐射归一化校正。S103. Using a multivariate change detection method (MultivariateAlterationDetection, MAD) to perform radiation normalization correction on the optical remote sensing images X 1 and X 2 .

具体的,步骤S103具体包括步骤:Specifically, step S103 specifically includes steps:

S1031、获取光学遥感影像X1和X2各波段亮度值的线性组合,得到变化信息增强的差异影像;S1031. Obtain a linear combination of brightness values in each band of the optical remote sensing images X 1 and X 2 to obtain a difference image with enhanced change information;

S1032、根据所述差异影像通过阈值确定变化区域和未变化区域;S1032. Determine a changed area and an unchanged area by thresholding according to the difference image;

S1033、通过未变化区域对应的两时相像元对的映射方程,完成相对辐射校正。S1033. Complete the relative radiation correction through the mapping equation of the two-temporal pixel pair corresponding to the unchanged area.

S104、根据辐射归一化校正后的光学遥感影像X1和X2分别计算变化矢量幅值XM和光谱角信息XSAS104. Calculate the change vector magnitude X M and the spectral angle information X SA respectively according to the optical remote sensing images X 1 and X 2 corrected by radiation normalization.

具体的,步骤S104包括步骤:Specifically, step S104 includes steps:

S1041、根据辐射归一化校正后的光学遥感影像X1和X2计算得到变化矢量幅值XMS1041. Calculate and obtain the change vector magnitude X M according to the optical remote sensing images X 1 and X 2 corrected by radiation normalization.

其中, X M ( i , j ) = Σ b = 1 B ( X 1 b ( i , j ) - X 2 b ( i , j ) ) 2 , 式中,B表示每一个时相遥感影像的波段数目,(i,j)是影像的坐标,X1b表示X1的b波段影像,X2b表示X2的b波段影像;in, x m ( i , j ) = Σ b = 1 B ( x 1 b ( i , j ) - x 2 b ( i , j ) ) 2 , In the formula, B represents the number of bands of each temporal remote sensing image, (i, j) is the coordinates of the image, X 1b represents the b-band image of X 1 , and X 2b represents the b-band image of X 2 ;

S1042、根据辐射归一化校正后的光学遥感影像X1和X2计算得到变化矢量幅值XMS1042. Calculate the change vector magnitude X M according to the optical remote sensing images X 1 and X 2 corrected by radiation normalization,

其中, X S A ( i , j ) = a r c c o s ( Σ b = 1 B ( X 1 b ( i , j ) X 2 b ( i , j ) ) Σ b = 1 B X 1 b 2 ( i , j ) Σ b = 1 B X 2 b 2 ( i , j ) ) . in, x S A ( i , j ) = a r c c o the s ( Σ b = 1 B ( x 1 b ( i , j ) x 2 b ( i , j ) ) Σ b = 1 B x 1 b 2 ( i , j ) Σ b = 1 B x 2 b 2 ( i , j ) ) .

S105、根据变化矢量幅值XM利用Bayes原理和最大期望算法(Expectation-Maximization,EM)计算得到最优分割阈值T。S105. Calculate an optimal segmentation threshold T by using the Bayesian principle and an Expectation-Maximization (EM) algorithm according to the change vector magnitude X M .

具体的,步骤S105具体包括步骤:Specifically, step S105 specifically includes steps:

S1051、采用最大期望算法估计XM影像上未变化类ωn的均值mn和方差σn,变化类ωc的均值mc和方差为σc,其中,S1051. Estimate the mean value m n and variance σ n of the unchanged class ω n on the XM image by using the maximum expectation algorithm, and the mean value m c and variance of the changed class ω c are σ c , where,

mm nno tt ++ 11 == {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω nno )) pp tt (( Xx (( ii ,, jj || ωω nno )) )) pp tt (( Xx (( ii ,, jj )) )) Xx (( ii ,, jj )) }} // {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω nno )) pp tt (( Xx (( ii ,, jj || ωω nno )) )) pp tt (( Xx (( ii ,, jj )) )) }}

(( σσ nno 22 )) tt ++ 11 == {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω nno )) pp tt (( Xx (( ii ,, jj || ωω nno )) )) pp tt (( Xx (( ii ,, jj )) )) [[ Xx (( ii ,, jj )) -- mm nno tt ]] }} // {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω nno )) pp tt (( Xx (( ii ,, jj || ωω nno )) )) pp tt (( Xx (( ii ,, jj )) )) }}

mm cc tt ++ 11 == {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω cc )) pp tt (( Xx (( ii ,, jj || ωω cc )) )) pp tt (( Xx (( ii ,, jj )) )) Xx (( ii ,, jj )) }} // {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω cc )) pp tt (( Xx (( ii ,, jj || ωω cc )) )) pp tt (( Xx (( ii ,, jj )) )) }}

(( σσ cc 22 )) tt ++ 11 == {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω cc )) pp tt (( Xx (( ii ,, jj || ωω cc )) )) pp tt (( Xx (( ii ,, jj )) )) [[ Xx (( ii ,, jj )) -- mm cc tt ]] }} // {{ ΣΣ Xx (( ii ,, jj )) ∈∈ Xx Mm pp tt (( ωω cc )) pp tt (( Xx (( ii ,, jj || ωω cc )) )) pp tt (( Xx (( ii ,, jj )) )) }}

式中,t表示迭代次数,t上标表示当前内容的第t次迭代时的值,例如,表示mn第t+1次迭代时的值,其他表示类似,表示第t+1次迭代时的值, p t + 1 ( ω n ) = Σ X ( i , j ) ∈ X M p t ( ω n ) p t ( X ( i , j | ω n ) ) p t ( X ( i , j ) ) I J , p t + 1 ( ω c ) = Σ X ( i , j ) ∈ X M p t ( ω c ) p t ( X ( i , j | ω c ) ) p t ( X ( i , j ) ) I J , I和J分别表示影像的行数和列数,表示XM影像上未变化类ωn服从的高斯分布,表示XM影像上变化类ωc服从的高斯分布;In the formula, t represents the number of iterations, and the superscript t represents the value of the t-th iteration of the current content, for example, Indicates the value of m n at the t+1 iteration, and other representations are similar, express The value at the t+1th iteration, p t + 1 ( ω no ) = Σ x ( i , j ) ∈ x m p t ( ω no ) p t ( x ( i , j | ω no ) ) p t ( x ( i , j ) ) I J , p t + 1 ( ω c ) = Σ x ( i , j ) ∈ x m p t ( ω c ) p t ( x ( i , j | ω c ) ) p t ( x ( i , j ) ) I J , I and J represent the number of rows and columns of the image, respectively, Denotes the Gaussian distribution of the unchanged class ω n on the X M image, Indicates the Gaussian distribution that the variation class ω c obeys on the X M image;

S1052、根据Bayes最小误差准则,求解公式 ( σ n 2 - σ c 2 ) T 2 + 2 ( m n σ c 2 - m c σ n 2 ) T + m c 2 σ n 2 - m n 2 σ c 2 - 2 σ n 2 σ c 2 l n [ σ c p ( ω n ) σ n p ( ω c ) ] = 0 , 得到最优分割阈值T。S1052, according to the Bayes minimum error criterion, solve the formula ( σ no 2 - σ c 2 ) T 2 + 2 ( m no σ c 2 - m c σ no 2 ) T + m c 2 σ no 2 - m no 2 σ c 2 - 2 σ no 2 σ c 2 l no [ σ c p ( ω no ) σ no p ( ω c ) ] = 0 , Get the optimal segmentation threshold T.

S106、根据最优分割阈值T和变化矢量幅值XM选择伪训练样本区域。S106. Select a pseudo-training sample area according to the optimal segmentation threshold T and the variation vector magnitude X M .

具体的,步骤S106包括步骤:Specifically, step S106 includes the steps of:

S1061、根据最优分割阈值T和变化矢量幅值XM选择未变化类伪训练集样本为 S1061. According to the optimal segmentation threshold T and the change vector magnitude X M , select the unchanging pseudo-training set samples as

S1062、根据最优分割阈值T和变化矢量幅值XM选择变化类伪训练集样本为其中,δ为XM动态范围的15%。S1062, according to the optimal segmentation threshold T and the change vector magnitude X M , select the pseudo-training set sample of the change class as where δ is 15% of the dynamic range of XM .

S107、将XM和XSA组合作为核FCM的输入,根据所述伪训练样本区域对核FCM结合空间邻域信息模型进行最优模型参数值选择。S107. Taking the combination of X M and X SA as the input of the kernel FCM, and selecting an optimal model parameter value for the kernel FCM combined with the spatial neighborhood information model according to the pseudo training sample area.

具体的,步骤S107具体包括步骤:Specifically, step S107 specifically includes steps:

S1071、将XM和XSA组合作为核FCM的输入,构建核FCM结合空间邻域信息模型为: J m = Σ j = 1 C Σ k = 1 N u j k m ( 1 - K ( X M S ( k ) , v j ) ) + α Σ j = 1 C Σ k = 1 N u j k m ( 1 - K ( X ‾ M S ( k ) , v j ) ) , S1071. Combining X M and X SA as the input of the kernel FCM, constructing the kernel FCM combined with the spatial neighborhood information model is: J m = Σ j = 1 C Σ k = 1 N u j k m ( 1 - K ( x m S ( k ) , v j ) ) + α Σ j = 1 C Σ k = 1 N u j k m ( 1 - K ( x ‾ m S ( k ) , v j ) ) ,

式中,C是聚类数目,N是样本的总数,表示第k样本对于第j类聚类中心的模糊隶属度,m为隶属度的加权指数,参数α控制惩罚效果,为XM的局部均值影像和XSA的局部均值影像的组合, K ( x , y ) = exp { - ( x - y ) 2 g 2 } . In the formula, C is the number of clusters, N is the total number of samples, Indicates the fuzzy membership degree of the kth sample to the jth cluster center, m is the weighted index of the membership degree, The parameter α controls the penalty effect, is the combination of the local mean image of X M and the local mean image of X SA , K ( x , the y ) = exp { - ( x - the y ) 2 g 2 } .

S1072、设定参数α和核参数g取值范围,利用伪训练样本集,搜索变化指数Cindex为最小时的α和g的值作为最优模型参数值。S1072. Set the value ranges of the parameter α and the kernel parameter g, and use the dummy training sample set to search for the values of α and g when the change index C index is the smallest as the optimal model parameter values.

其中,变化指数Cindex=Dindex/kTkT表示模型参数在伪训练样本集上的Kappa系数,Nn(α,g)表示在给定α和g时利用目标函数最小化获取的整个影像的非变化像素个数;Nc(α,g)表示在给定α和g时,整个影像的变化像素个数;TNn(α,g)表示在给定α和g时,伪训练样本集中的非变化像素个数;TNc(α,g)表示在给定α和g时,伪训练样本集中的变化像素个数。Wherein, the change index C index =D index /k T , k T represents the Kappa coefficient of the model parameters on the pseudo-training sample set, N n (α, g) represents the number of non-changing pixels of the entire image obtained by minimizing the objective function when α and g are given; N c (α ,g) indicates the number of changing pixels in the entire image when α and g are given; TN n (α,g) indicates the number of non-changing pixels in the pseudo-training sample set when α and g are given; TN c ( α,g) represents the number of changed pixels in the pseudo-training sample set when α and g are given.

S108、根据选择的最优模型参数值,采用核FCM结合空间邻域信息的方法,确定光学遥感影像的变化区域和非变化区域。S108. According to the selected optimal model parameter values, the changing area and the non-changing area of the optical remote sensing image are determined by using kernel FCM combined with spatial neighborhood information.

具体的的,步骤S108具体包括:Specifically, step S108 specifically includes:

S1081、设定核FCM结合空间邻域信息模型中的聚类数目C=2,作为初始的未变化类和变化类的中心,选择和变化矢量幅值XM最小值和最大值相对应的矢量;设隶属度的加权指数m=2,ε为大于0的常量,参数α和核参数g的值为选定的所述最优模型参数值;S1081. Set the number of clusters C=2 in the kernel FCM combined with the spatial neighborhood information model, as the center of the initial unchanged class and the changed class, and select the vector corresponding to the minimum value and maximum value of the change vector amplitude X M ; The weighted index m=2 of the degree of membership, ε is a constant greater than 0, and the values of parameter α and kernel parameter g are the selected optimal model parameter values;

S1082、计算XM,XSA的局部窗口均值,窗口大小设置为3×3;S1082. Calculate the local window mean value of X M and X SA , and set the window size to 3×3;

S1083、采用式 u j k = ( ( 1 - K ( X M S ( k ) , v j ) ) + α ( 1 - K ( X ‾ M S ( k ) , v j ) ) ) - 1 / ( m - 1 ) Σ j = 1 C ( ( 1 - K ( X M S ( k ) , v j ) ) + α ( 1 - K ( X ‾ M S ( k ) , v j ) ) ) - 1 / ( m - 1 ) 更新模糊划分矩阵;S1083, adopted u j k = ( ( 1 - K ( x m S ( k ) , v j ) ) + α ( 1 - K ( x ‾ m S ( k ) , v j ) ) ) - 1 / ( m - 1 ) Σ j = 1 C ( ( 1 - K ( x m S ( k ) , v j ) ) + α ( 1 - K ( x ‾ m S ( k ) , v j ) ) ) - 1 / ( m - 1 ) Update the fuzzy partition matrix;

S1084、采用式 v j = Σ k = 1 N u j k m ( K ( X M S ( k ) , v j ) X M S ( k ) + α K ( X ‾ M S ( k ) , v j ) X ‾ M S ( k ) ) Σ k = 1 N u j k m ( K ( X M S ( k ) , v j ) + α K ( X ‾ M S ( k ) , v j ) ) 更新聚类中心;S1084, adopted v j = Σ k = 1 N u j k m ( K ( x m S ( k ) , v j ) x m S ( k ) + α K ( x ‾ m S ( k ) , v j ) x ‾ m S ( k ) ) Σ k = 1 N u j k m ( K ( x m S ( k ) , v j ) + α K ( x ‾ m S ( k ) , v j ) ) Update the cluster center;

S1085、重复更新模糊划分矩阵和聚类中心直到相邻两次迭代的聚类中心聚类小于ε;S1085. Repeatedly update the fuzzy partition matrix and cluster centers until the cluster centers of two adjacent iterations are smaller than ε;

S1086、根据模糊划分矩阵ujk确定最终的变化检测图,得到光学遥感影像的变化区域和非变化区域。S1086. Determine the final change detection map according to the fuzzy partition matrix u jk , and obtain the changed area and the non-changed area of the optical remote sensing image.

本发明的效果可通过以下实验结果与分析进一步说明:Effect of the present invention can be further illustrated by following experimental results and analysis:

本发明的实验数据为法国Littoral地区的多时相SPOT高分辨影像数据,图像大小为400×400,使用B1、B2和B3三个波段。为了验证本发明的有效性,将本发明变化检测方法与下述变化检测方法进行比对:The experimental data of the present invention is multi-temporal SPOT high-resolution image data in the Littoral area of France, the image size is 400×400, and three wave bands B1, B2 and B3 are used. In order to verify the effectiveness of the present invention, the change detection method of the present invention is compared with the following change detection methods:

(1)基于CVA的EM方法(CVA-EM)[意大利的BruzzoneL.等在文章“Automaticanalysisofdifferenceimageforunsupervisedchangedetection”(IEEETransactionsonGeoscienceandRemoteSensing,2000,38(3):1171-1182.)中所提的检测方法]。(1) CVA-based EM method (CVA-EM) [the detection method proposed in the article "Automatic analysis of difference image for unsupervised change detection" (IEEE Transactions on Geoscience and Remote Sensing, 2000, 38 (3): 1171-1182.) by Bruzzone L. et al. from Italy].

(2)FCM结合空间邻域信息的分类方法(FCM-S)[Chensongchan等在文章“RobustImageSegmentationUsingFCMWithSpatialConstraintsBasedonNewKernel-InducedDistanceMeasure”(IEEETransactionsonSystems,Man,andCybernetics—PartB:Cybernetics,2004,34(4):1907-1916.)中所提的方法](2) Classification method of FCM combined with spatial neighborhood information (FCM-S) [Chensongchan et al. in the article "Robust Image Segmentation Using FCM With Spatial Constraints Based on New Kernel-Induced Distance Measure" (IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2004, 34(4): 1907-1916.) method mentioned in]

(3)本发明方法。(3) The method of the present invention.

检测性能用错检数FP、漏检数FN、总错误数OE和Kappa系数四个指标来衡量。FP、FN和OE越接近于0、Kappa系数越接近于1,表明变化检测方法的性能越好。检测结果如表1所示。由图2、图3和表1可见,本发明所提的检测方法性能优于其他两种检测方法,这表明本发明所提的变化检测方法是有效的。The detection performance is measured by four indicators: the number of false detections FP, the number of missed detections FN, the total number of errors OE and the Kappa coefficient. The closer FP, FN and OE are to 0, and the closer the Kappa coefficient is to 1, it indicates that the performance of the change detection method is better. The test results are shown in Table 1. It can be seen from Fig. 2, Fig. 3 and Table 1 that the performance of the detection method proposed by the present invention is better than the other two detection methods, which shows that the change detection method proposed by the present invention is effective.

表1Littoral地区的多时相SPOT5影像变化检测结果比较Table 1 Comparison of multi-temporal SPOT5 image change detection results in Littoral area

方法method FPFP FNFN OEOE kk CVA-EMCVA-EM 79197919 38823882 1180111801 0.7050.705 FCM-SFCM-S 18221822 69286928 87508750 0.7370.737 本发明方法The method of the invention 25112511 46894689 72007200 0.7970.797 理想ideal 00 00 00 11

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.

在本申请所提供的几个实施例中,应该理解到,所揭露的方法可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。In the several embodiments provided in this application, it should be understood that the disclosed method can be implemented in other ways. For example, the system embodiments described above are only illustrative, and professionals can further realize that, in combination with the units and algorithm steps of the examples described in the embodiments disclosed herein, electronic hardware, computer software, or two In order to clearly illustrate the interchangeability of hardware and software, the composition and steps of each example have been generally described in terms of functions in the above description. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (8)

1. A method for detecting remote sensing image change is characterized by comprising the following steps:
obtaining two-time-phase high-resolution optical remote sensing image X1And X2
To optical remote sensing image X1And X2Carrying out image registration;
optical remote sensing image X by using multivariate change detection method1And X2Carrying out radiation normalization correction;
optical remote sensing image X after normalization correction according to radiation1And X2Are respectively provided withCalculating the magnitude X of the variation vectorMAnd spectral angular information XSA
According to the magnitude X of the variation vectorMCalculating to obtain an optimal segmentation threshold value T by using a Bayes principle and a maximum expectation algorithm;
according to the optimal segmentation threshold value T and the variation vector amplitude value XMSelecting a pseudo-training sample region;
mixing XMAnd XSACombining the input data as the kernel FCM, and selecting the optimal model parameter value of the kernel FCM combined with the spatial neighborhood information model according to the pseudo training sample region;
and determining a change region and a non-change region of the optical remote sensing image by adopting a method of combining kernel FCM with space neighborhood information according to the selected optimal model parameter value.
2. The method for detecting changes in remote-sensing images of claim 1, wherein the pair of optical remote-sensing images X1And X2Performing image registration, specifically comprising:
optical remote sensing image X by adopting ENVI14.8 remote sensing software1And X2Carrying out geometric rough correction;
roughly correcting the geometry of the X by automatic matching and triangulation1And X2And carrying out geometric fine correction.
3. A method for detecting changes in remote-sensing images as claimed in claim 1, characterized in that said optical remote-sensing image X is detected by a multivariate change detection method1And X2Performing radiation normalization correction, specifically comprising:
obtaining optical remote sensing image X1And X2Linearly combining the brightness values of all the wave bands to obtain a difference image with enhanced change information;
determining a changed area and an unchanged area according to the difference image through a threshold;
and finishing the relative radiation correction through a mapping equation of the two-time phase pixel corresponding to the unchanged area.
4. The method for detecting changes in remote-sensing images of claim 1, wherein the optical remote-sensing image X corrected by radiation normalization is used1And X2Respectively calculating the variation vector amplitude XMAnd spectral angular information XSAThe method specifically comprises the following steps:
optical remote sensing image X after normalization correction according to radiation1And X2Calculating to obtain the amplitude X of the variation vectorMWherein X M ( i , j ) = Σ b = 1 B ( X 1 b ( i , j ) - X 2 b ( i , j ) ) 2 , wherein B represents the number of wave bands of each time phase remote sensing image, (i, j) is the coordinate of the image, X1bRepresents X1B band image of (1), X2bRepresents X2B-band images of (1);
optical remote sensing image X after normalization correction according to radiation1And X2Calculating to obtain the amplitude X of the variation vectorMWherein X S A ( i , j ) = a r c c o s ( Σ b = 1 B ( X 1 b ( i , j ) X 2 b ( i , j ) ) / Σ b = 1 B X 1 b 2 ( i , j ) Σ b = 1 B X 2 b 2 ( i , j ) ) .
5. the method for detecting changes in remote-sensing images of claim 1, wherein said vector magnitude X varies according to changesMCalculating to obtain an optimal segmentation threshold value T by using a Bayes principle and a maximum expectation algorithm, and specifically comprising the following steps of:
estimating X using a maximum expectation algorithmMUnchanged class omega on imagenMean value m ofnSum variance σnOf the variation class omegacMean value m ofcThe sum variance is σcWherein
m n t + 1 = { Σ X ( i , j ) ∈ X M p t ( ω n ) p t ( X ( i , j | ω n ) ) p t ( X ( i , j ) ) X ( i , j ) } / { Σ X ( i , j ) ∈ X M p t ( ω n ) p t ( X ( i , j | ω n ) ) p t ( X ( i , j ) ) }
( σ n 2 ) t + 1 = { Σ X ( i , j ) ∈ X M p t ( ω n ) p t ( X ( i , j | ω n ) ) p t ( X ( i , j ) ) [ X ( i , j ) - m n t ] } / { Σ X ( i , j ) ∈ X M p t ( ω n ) p t ( X ( i , j | ω n ) ) p t ( X ( i , j ) ) }
m c t + 1 = { Σ X ( i , j ) ∈ X M p t ( ω c ) p t ( X ( i , j | ω c ) ) p t ( X ( i , j ) ) X ( i , j ) } / { Σ X ( i , j ) ∈ X M p t ( ω c ) p t ( X ( i , j | ω c ) ) p t ( X ( i , j ) ) }
( σ c 2 ) t + 1 = { Σ X ( i , j ) ∈ X M p t ( ω c ) p t ( X ( i , j | ω c ) ) p t ( X ( i , j ) ) [ X ( i , j ) - m c t ] } / { Σ X ( i , j ) ∈ X M p t ( ω c ) p t ( X ( i , j | ω c ) ) p t ( X ( i , j ) ) }
wherein t represents the number of iterations, t superscript represents the value at the t-th iteration of the current content,
p t + 1 ( ω n ) = Σ X ( i , j ) ∈ X M p t ( ω n ) p t ( X ( i , j | ω n ) ) p t ( X ( i , j ) ) I J , p t + 1 ( ω c ) = Σ X ( i , j ) ∈ X M p t ( ω c ) p t ( X ( i , j | ω c ) ) p t ( X ( i , j ) ) I J ,
i and J represent the number of rows and columns of the image respectively,represents XMUnchanged class omega on imagenThe gaussian distribution that is obeyed to,represents XMVariation class omega on imagecA gaussian distribution obeyed;
solving a formula according to Bayes minimum error criterion ( σ n 2 - σ c 2 ) T 2 + 2 ( m n σ c 2 - m c σ n 2 ) T + m c 2 σ n 2 - m n 2 σ c 2 - 2 σ n 2 σ c 2 l n [ σ c p ( ω n ) σ n p ( ω c ) ] = 0 , And obtaining an optimal segmentation threshold value T.
6. The method for detecting changes in remote-sensing images of claim 1, wherein said determining is based on an optimal segmentation threshold T and a change vector magnitude XMSelecting a pseudo-training sample region, specifically comprising:
according to the optimal segmentation threshold value T and the variation vector amplitude value XMSelecting unchanged pseudo training set samples as
According to the optimal segmentation threshold value T and the variation vector amplitude value XMSelecting a change-like pseudo-training setThe sample is
Wherein is XM15% of the dynamic range.
7. The method for detecting changes in remote-sensing images of claim 1, wherein said detecting X is performed by a computerMAnd XSACombining the kernel FCM and the pseudo training sample region to be used as input of the kernel FCM, and performing optimal model parameter selection on the kernel FCM and the spatial neighborhood information model according to the pseudo training sample region, wherein the optimal model parameter selection specifically comprises the following steps:
mixing XMAnd XSAThe combination is used as the input of a kernel FCM, and the kernel FCM and space neighborhood information combination model is constructed as follows:
J m = Σ j = 1 C Σ k = 1 N u j k m ( 1 - K ( X M S ( k ) , v j ) ) + α Σ j = 1 C Σ k = 1 N u j k m ( 1 - K ( X ‾ M S ( k ) , v j ) ) , where C is the number of clusters, N is the total number of samples,representing the fuzzy membership of the kth sample to the jth class center, m being the weighted index of the membership, ujk∈[0,1]And isThe parameter α controls the penalty effect,is XMLocal mean image and XSAThe local mean value image of (a) is combined,
setting the value ranges of the parameter α and the kernel parameter g, and searching the change index C by using a pseudo training sample setindexα and g as the minimum value as the optimal model parameter value, wherein the change index Cindex=Dindex/kTkTKappa coefficient, N, representing model parameters on a pseudo-training sample setn(α, g) shows minimizing the number of unchanged pixels of the entire image acquired using the objective function given α and g, Nc(α, g) shows the number of pixels that change for the entire image given α and g, TNn(α, g) indicates the number of unchanged pixels in the pseudo-training sample set given α and g, TNc(α, g) shows the number of changed pixels in the pseudo training sample set given α and g.
8. The method for detecting changes in remote-sensing images according to claim 7, wherein the determining of the changed area and the unchanged area of the high-resolution optical remote-sensing image by using a method of combining kernel FCM with spatial neighborhood information according to the selected optimal model parameter values specifically comprises:
setting the clustering number C of the kernel FCM in combination with the spatial neighborhood information model to be 2, taking the clustering number C as the center of the initial unchanged class and the initial changed class, and selecting and changing the vector amplitude XMSetting a weighting index m of the membership degree to be 2, wherein the weighting index m is a constant greater than 0, and the values of the parameter α and the kernel parameter g are selected as the optimal model parameter values;
calculating XM,XSAThe window size is set to 3 × 3;
adopt the formula u j k = ( ( 1 - K ( X M S ( k ) , v j ) ) + α ( 1 - K ( X ‾ M S ( k ) , v j ) ) ) - 1 / ( m - 1 ) Σ j = 1 C ( ( 1 - K ( X M S ( k ) , v j ) ) + α ( 1 - K ( X ‾ M S ( k ) , v j ) ) ) - 1 / ( m - 1 ) Updating the fuzzy partition matrix;
adopt the formula v j = Σ k = 1 N u j k m ( K ( X M S ( k ) , v j ) X M S ( k ) + α K ( X ‾ M S ( k ) , v j ) X ‾ M S ( k ) ) Σ k = 1 N u j k m ( K ( X M S ( k ) , v j ) + α K ( X ‾ M S ( k ) , v j ) ) Updating the clustering center;
repeatedly updating the fuzzy partition matrix and the clustering center until the clustering center of two adjacent iterations is smaller than the threshold;
partition matrix u from the blurjkAnd determining a final change detection image to obtain a change area and a non-change area of the optical remote sensing image.
CN201510742564.7A 2015-11-04 2015-11-04 A kind of remote sensing image variation detection method Expired - Fee Related CN105405133B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510742564.7A CN105405133B (en) 2015-11-04 2015-11-04 A kind of remote sensing image variation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510742564.7A CN105405133B (en) 2015-11-04 2015-11-04 A kind of remote sensing image variation detection method

Publications (2)

Publication Number Publication Date
CN105405133A true CN105405133A (en) 2016-03-16
CN105405133B CN105405133B (en) 2018-01-19

Family

ID=55470600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510742564.7A Expired - Fee Related CN105405133B (en) 2015-11-04 2015-11-04 A kind of remote sensing image variation detection method

Country Status (1)

Country Link
CN (1) CN105405133B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373120A (en) * 2016-09-09 2017-02-01 河海大学 Multi-temporal remote sensing image change detection method based on non-negative matrix decomposition and nucleus FCM
CN106372612A (en) * 2016-09-09 2017-02-01 河海大学 Multi-temporal remote sensing image change detection method combining FCM with MRF model
CN106384352A (en) * 2016-09-09 2017-02-08 河海大学 Multi-temporal remote sensing image change detection method based on fusion strategy and FCM
CN106646469A (en) * 2016-12-21 2017-05-10 中国科学院遥感与数字地球研究所 SAR (Synthetic Aperture Radar) ship detection optimization method based on variation coefficient method
CN107248172A (en) * 2016-09-27 2017-10-13 中国交通通信信息中心 A kind of remote sensing image variation detection method based on CVA and samples selection
CN107346549A (en) * 2017-06-09 2017-11-14 中国矿业大学 A kind of multi-class change dynamic threshold detection method using remote sensing image multiple features
CN107480634A (en) * 2017-08-12 2017-12-15 天津市测绘院 A kind of geographical national conditions ground mulching monitoring method based on multistage target classification
CN107481235A (en) * 2017-08-24 2017-12-15 河海大学 The multi-temporal remote sensing image change detecting method that a kind of mathematical morphology filter converts with reference to card side
CN107578040A (en) * 2017-09-30 2018-01-12 中南大学 A House Change Detection Method Based on Pulse-Coupled Neural Network
CN107688777A (en) * 2017-07-21 2018-02-13 同济大学 A kind of urban green space extracting method for cooperateing with multi-source Remote Sensing Images
CN107992891A (en) * 2017-12-01 2018-05-04 西安电子科技大学 Based on spectrum vector analysis multi-spectral remote sensing image change detecting method
CN109146933A (en) * 2017-06-28 2019-01-04 中国石油化工股份有限公司 Multiple dimensioned digital cores modeling method and computer readable storage medium
CN109191503A (en) * 2018-08-23 2019-01-11 河海大学 Remote sensing image variation detection method and system based on condition random field
CN109300115A (en) * 2018-09-03 2019-02-01 河海大学 An object-oriented multispectral high-resolution remote sensing image change detection method
CN109934799A (en) * 2016-09-09 2019-06-25 河海大学 Multi-Temporal Difference Image Modulus Calculation and Change Detection Method
CN110232302A (en) * 2018-03-06 2019-09-13 香港理工大学深圳研究院 A kind of change detecting method of integrated gray value, spatial information and classification knowledge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760888A (en) * 2005-11-03 2006-04-19 复旦大学 Method for recognizing change of earth's surface by using satellite SAR carried images at multiple time phases
CN101950361A (en) * 2010-09-06 2011-01-19 中国科学院遥感应用研究所 Adaptive extraction method of remote sensing image thematic information based on spectrum matching degree
CN103150580A (en) * 2013-03-18 2013-06-12 武汉大学 Method and device for Hyperspectral image semi-supervised classification
CN104200458A (en) * 2014-07-30 2014-12-10 浙江工业大学 MeanShift based high-resolution remote sensing image segmentation distance measurement optimization method
CN104751166A (en) * 2013-12-30 2015-07-01 中国科学院深圳先进技术研究院 Spectral angle and Euclidean distance based remote-sensing image classification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760888A (en) * 2005-11-03 2006-04-19 复旦大学 Method for recognizing change of earth's surface by using satellite SAR carried images at multiple time phases
CN101950361A (en) * 2010-09-06 2011-01-19 中国科学院遥感应用研究所 Adaptive extraction method of remote sensing image thematic information based on spectrum matching degree
CN103150580A (en) * 2013-03-18 2013-06-12 武汉大学 Method and device for Hyperspectral image semi-supervised classification
CN104751166A (en) * 2013-12-30 2015-07-01 中国科学院深圳先进技术研究院 Spectral angle and Euclidean distance based remote-sensing image classification method
CN104200458A (en) * 2014-07-30 2014-12-10 浙江工业大学 MeanShift based high-resolution remote sensing image segmentation distance measurement optimization method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
TAUQIR AHMED MOUGHAL AND FUSHENG YU: "An Automatic Unsupervised Method Based on Context-Sensitive Spectral Angle Mapper for Change Detection of Remote Sensing Images", 《ADMA2014》 *
余先川 等: "一种基于光谱角和光谱距离自动加权融合分类方法", 《地质学刊》 *
孙艳丽 等: "光谱角-欧氏距离的高光谱图像辐射归一化", 《遥感学报》 *
赵磊 等: "基于模糊C均值聚类和了邻域分析的无监督多通道遥感图像变化检测", 《数据采集与处理》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373120A (en) * 2016-09-09 2017-02-01 河海大学 Multi-temporal remote sensing image change detection method based on non-negative matrix decomposition and nucleus FCM
CN106372612A (en) * 2016-09-09 2017-02-01 河海大学 Multi-temporal remote sensing image change detection method combining FCM with MRF model
CN106384352A (en) * 2016-09-09 2017-02-08 河海大学 Multi-temporal remote sensing image change detection method based on fusion strategy and FCM
CN109934799A (en) * 2016-09-09 2019-06-25 河海大学 Multi-Temporal Difference Image Modulus Calculation and Change Detection Method
CN109934799B (en) * 2016-09-09 2021-06-25 南京工程学院 Multi-Temporal Difference Image Modulus Calculation and Change Detection Method
CN106373120B (en) * 2016-09-09 2019-01-08 河海大学 Multi-temporal remote sensing image change detecting method based on Non-negative Matrix Factorization and core FCM
CN107248172A (en) * 2016-09-27 2017-10-13 中国交通通信信息中心 A kind of remote sensing image variation detection method based on CVA and samples selection
CN106646469B (en) * 2016-12-21 2019-01-29 中国科学院遥感与数字地球研究所 SAR ship detection optimization method based on VC Method
CN106646469A (en) * 2016-12-21 2017-05-10 中国科学院遥感与数字地球研究所 SAR (Synthetic Aperture Radar) ship detection optimization method based on variation coefficient method
CN107346549A (en) * 2017-06-09 2017-11-14 中国矿业大学 A kind of multi-class change dynamic threshold detection method using remote sensing image multiple features
CN107346549B (en) * 2017-06-09 2020-04-14 中国矿业大学 A dynamic threshold detection method for multi-category changes using multi-features of remote sensing images
CN109146933A (en) * 2017-06-28 2019-01-04 中国石油化工股份有限公司 Multiple dimensioned digital cores modeling method and computer readable storage medium
CN109146933B (en) * 2017-06-28 2020-12-01 中国石油化工股份有限公司 Multi-scale digital core modeling method and computer-readable storage medium
CN107688777A (en) * 2017-07-21 2018-02-13 同济大学 A kind of urban green space extracting method for cooperateing with multi-source Remote Sensing Images
CN107480634A (en) * 2017-08-12 2017-12-15 天津市测绘院 A kind of geographical national conditions ground mulching monitoring method based on multistage target classification
CN107481235A (en) * 2017-08-24 2017-12-15 河海大学 The multi-temporal remote sensing image change detecting method that a kind of mathematical morphology filter converts with reference to card side
CN107578040A (en) * 2017-09-30 2018-01-12 中南大学 A House Change Detection Method Based on Pulse-Coupled Neural Network
CN107992891A (en) * 2017-12-01 2018-05-04 西安电子科技大学 Based on spectrum vector analysis multi-spectral remote sensing image change detecting method
CN107992891B (en) * 2017-12-01 2022-01-25 西安电子科技大学 Multispectral remote sensing image change detection method based on spectral vector analysis
CN110232302A (en) * 2018-03-06 2019-09-13 香港理工大学深圳研究院 A kind of change detecting method of integrated gray value, spatial information and classification knowledge
CN109191503A (en) * 2018-08-23 2019-01-11 河海大学 Remote sensing image variation detection method and system based on condition random field
CN109300115A (en) * 2018-09-03 2019-02-01 河海大学 An object-oriented multispectral high-resolution remote sensing image change detection method
CN109300115B (en) * 2018-09-03 2021-11-30 河海大学 Object-oriented multispectral high-resolution remote sensing image change detection method

Also Published As

Publication number Publication date
CN105405133B (en) 2018-01-19

Similar Documents

Publication Publication Date Title
CN105405133B (en) A kind of remote sensing image variation detection method
CN105389817B (en) A kind of two phase remote sensing image variation detection methods
WO2022041598A1 (en) Remote sensing image segmentation method and system, terminal, and storage medium
Lv et al. Novel piecewise distance based on adaptive region key-points extraction for LCCD with VHR remote-sensing images
CN105551031B (en) Multi-temporal remote sensing image change detecting method based on FCM and evidence theory
Wang et al. Fast subpixel mapping algorithms for subpixel resolution change detection
Cao et al. A new change-detection method in high-resolution remote sensing images based on a conditional random field model
CN105354841B (en) A kind of rapid remote sensing image matching method and system
CN107481235A (en) The multi-temporal remote sensing image change detecting method that a kind of mathematical morphology filter converts with reference to card side
Pigoli et al. Kriging prediction for manifold-valued random fields
Fadel et al. Loch: A neighborhood-based multidimensional projection technique for high-dimensional sparse spaces
CN107203761B (en) Road width estimation method based on high-resolution satellite image
CN106447653A (en) Method for detecting change of multi-temporal and multispectral image based on spatial constraint chi-squared transform
CN106373120B (en) Multi-temporal remote sensing image change detecting method based on Non-negative Matrix Factorization and core FCM
CN106469452A (en) The multi-temporal remote sensing image change detecting method of the card side's conversion based on space constraint
CN104268574A (en) SAR image change detecting method based on genetic kernel fuzzy clustering
CN106650571B (en) A kind of multi-temporal remote sensing image change detecting method converted based on adaptive card side
CN109300115B (en) Object-oriented multispectral high-resolution remote sensing image change detection method
Martínez et al. Probing the geometry of data with diffusion fréchet functions
CN105354845B (en) A kind of semi-supervised change detecting method of remote sensing image
CN106485693A (en) Card side converts the multi-temporal remote sensing image change detecting method with reference to MRF model
CN106384352A (en) Multi-temporal remote sensing image change detection method based on fusion strategy and FCM
Song et al. Small UAV based multi-viewpoint image registration for monitoring cultivated land changes in mountainous terrain
Greco et al. P-spline smoothing for spatial data collected worldwide
Hao et al. Superpixel-based active contour model for unsupervised change detection from satellite images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180119

CF01 Termination of patent right due to non-payment of annual fee