CN105405100B - A kind of sparse driving SAR image rebuilds regularization parameter automatic selecting method - Google Patents
A kind of sparse driving SAR image rebuilds regularization parameter automatic selecting method Download PDFInfo
- Publication number
- CN105405100B CN105405100B CN201510762325.8A CN201510762325A CN105405100B CN 105405100 B CN105405100 B CN 105405100B CN 201510762325 A CN201510762325 A CN 201510762325A CN 105405100 B CN105405100 B CN 105405100B
- Authority
- CN
- China
- Prior art keywords
- sar image
- regularization
- image reconstruction
- norm
- regularization parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 abstract description 10
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004321 preservation Methods 0.000 abstract description 2
- 238000010187 selection method Methods 0.000 abstract description 2
- 230000001629 suppression Effects 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 238000002790 cross-validation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013398 bayesian method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10044—Radar image
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种稀疏驱动SAR图像重建正则化参数的自动选择方法。在正则化图像重建中,正则化参数的选择是一个非常重要的问题。对于非二次型正则化参数的选择,常规选择方法能力有限,为了得到高质量的重建图像,常常需要对正则化参数进行人工选择。为了解决上述问题,本发明在研究L曲线法的基础上,提出了一种稀疏驱动SAR图像重建正则化参数自动选择的数值计算方法。本发明的有益效果是实现了稀疏驱动SAR图像重建正则化参数的自动选择。利用本方法求解稀疏驱动SAR图像重建正则化参数不仅计算量小,而且在噪声抑制和特征保持之间提供了一个较好的平衡,能够得到更为合理的重建图像。The invention discloses a method for automatically selecting regularization parameters for sparsely driven SAR image reconstruction. In regularized image reconstruction, the choice of regularization parameters is a very important issue. For the selection of non-quadratic regularization parameters, conventional selection methods have limited capabilities. In order to obtain high-quality reconstructed images, it is often necessary to manually select regularization parameters. In order to solve the above problems, the present invention proposes a numerical calculation method for automatic selection of regularization parameters for sparsely driven SAR image reconstruction on the basis of studying the L -curve method. The beneficial effect of the present invention is that the automatic selection of the regularization parameter for sparsely driven SAR image reconstruction is realized. Using this method to solve the regularization parameters of sparsely driven SAR image reconstruction not only has a small amount of calculation, but also provides a better balance between noise suppression and feature preservation, and a more reasonable reconstructed image can be obtained.
Description
技术领域technical field
本发明涉及一种稀疏驱动SAR(Synthetic aperture radar,合成孔径雷达)图像重建正则化参数自动选择方法。The invention relates to a method for automatically selecting regularization parameters for sparse-driven SAR (Synthetic aperture radar, synthetic aperture radar) image reconstruction.
背景技术Background technique
传统SAR成像技术分辨率低,存在相干斑噪声和旁瓣影响,严重影响SAR图像在自动目标检测和目标识别等任务中的应用。近年来,研究人员相继提出了一些新的SAR图像重建方法,其中基于稀疏驱动的SAR图像重建方法,其基本思想是通过正则化求解,达到增强SAR图像特征的目的。一般来说,基于正则化的图像重建方法都是通过设法平衡数据保真度和先验知识获得所求问题稳定解的,其稳定性通过一个标量参数即正则化参数来实现。因此在正则化图像重建中,正则化参数的选择是一个非常重要的问题。目前,研究人员提出了几种基于统计思想的正则化参数选择方法,如Stein无偏风险估计法、广义交叉验证法、贝叶斯方法以及L曲线法,其中最著名和广泛使用的是Tikhonov正则化方法。Tikhonov正则化方法是一种二次正则化方法。在Tikhonov正则化方法中,二次型优化问题由一组线性方程组成的,具有封闭解,可实现正则化参数的自动选择,大大降低了图像重建的运算量。鉴于图像稀疏表示所具有的优势,目前将正则化约束引入稀疏图像重建问题变得越来越普遍。将非二次正则化约束引入稀疏问题可以提高所求问题的稀疏性。然而,非二次型约束的引入会导致优化问题没有封闭解,从而需要使用迭代数值计算方法对问题进行求解。因此,与二次型相比,非二次型约束下正则化参数的选择更加复杂。对于非二次型正则化参数的选择,常规的Stein无偏风险估计法、广义交叉验证法和L曲线法的能力有限,为了得到高质量的稀疏驱动SAR重建图像,往往需要对正则化参数进行人工选择。为了解决上述问题,本发明在研究L曲线法的基础上,提出了一种稀疏驱动SAR图像重建正则化参数自动选择的数值计算方法。Traditional SAR imaging technology has low resolution, coherent speckle noise and side lobe effects, which seriously affect the application of SAR images in tasks such as automatic target detection and target recognition. In recent years, researchers have successively proposed some new SAR image reconstruction methods. Among them, the SAR image reconstruction method based on sparseness drive, its basic idea is to achieve the purpose of enhancing the characteristics of SAR image through regularization solution. In general, image reconstruction methods based on regularization obtain a stable solution to the problem by trying to balance data fidelity and prior knowledge, and its stability is achieved by a scalar parameter, the regularization parameter. Therefore, in regularized image reconstruction, the selection of regularization parameters is a very important issue. At present, researchers have proposed several regularization parameter selection methods based on statistical ideas, such as Stein unbiased risk estimation method, generalized cross-validation method, Bayesian method and L -curve method, among which the most famous and widely used is Tikhonov regularization method. The Tikhonov regularization method is a quadratic regularization method. In the Tikhonov regularization method, the quadratic optimization problem is composed of a set of linear equations with closed solutions, which can realize the automatic selection of regularization parameters and greatly reduce the computational load of image reconstruction. Given the advantages afforded by image sparse representations, it is becoming increasingly common to introduce regularization constraints into sparse image reconstruction problems. Introducing non-quadratic regularization constraints to sparse problems can improve the sparsity of the desired problem. However, the introduction of non-quadratic constraints will lead to no closed solution to the optimization problem, so iterative numerical calculation methods are required to solve the problem. Therefore, the choice of regularization parameters under non-quadratic constraints is more complicated than quadratic. For the selection of non-quadratic regularization parameters, the conventional Stein unbiased risk estimation method, generalized cross-validation method and L -curve method have limited capabilities. In order to obtain high-quality sparsely driven SAR reconstruction images, regularization parameters are often required artificial selection. In order to solve the above problems, the present invention proposes a numerical calculation method for automatic selection of regularization parameters for sparsely driven SAR image reconstruction on the basis of studying the L -curve method.
(一)稀疏驱动SAR图像重建原理(1) Sparse-driven SAR image reconstruction principle
基于正则化的SAR图像重建主要基于如下SAR观测过程:SAR image reconstruction based on regularization is mainly based on the following SAR observation process:
(1) (1)
其中H为离散复值SAR图像重建算子,w为加性高斯白噪声,g和f分别为实测数据和真实反射场景。为了强调反射场景的稀疏性,我们将SAR图像重建问题表示成如下的优化问题:Where H is the discrete complex-valued SAR image reconstruction operator, w is the additive Gaussian white noise, g and f are the measured data and the real reflection scene, respectively. To emphasize the sparsity of reflective scenes, we formulate the SAR image reconstruction problem as the following optimization problem:
(2) (2)
其中是正则化参数,表示求f的l p 范数,其定义为,这里f i 是f的第i个元素,n是f中元素的个数。(2)式中的第一项称为数据保真项,它包含SAR观测模型(1)及观察几何信息。第二项称为正则化项或边界约束项,我们利用它可将先验信息引入到图像重建中。当正则化项中的p = 2时,就是著名的Tikhonov正则化方法。与Tikhonov正则化方法不同,本发明中的边界约束项旨在引入稀疏先验信息,因此除了p = 2,我们还会选择其它的p值。当时,最小l p 范数重建在重建结果图像中会产生局部能量聚集,因而提高了重建图像的稀疏性。使用边界约束项的目的是抑制图像伪影,增加散射的分辨力,从而产生一个稀疏的结果图像。实验已经证明,这种稀疏约束可以产生超分辨率的重建结果图像。in is the regularization parameter, Indicates to find the l p norm of f , which is defined as , where f i is the ith element of f , and n is the number of elements in f . The first item in the formula (2) is called the data fidelity item, which includes the SAR observation model (1) and observation geometry information. The second term is called the regularization term or bounding constraint term, and we use it to introduce prior information into image reconstruction. When p = 2 in the regularization term, it is the famous Tikhonov regularization method. Different from the Tikhonov regularization method, the boundary constraint term in the present invention aims to introduce sparse prior information, so we will choose other p values besides p = 2. when When , the minimum l p norm reconstruction will produce local energy accumulation in the reconstructed result image, thus improving the sparsity of the reconstructed image. The purpose of using the Boundary Constraints item is to suppress image artifacts and increase the resolution of the scatter, resulting in a sparse resulting image. Experiments have demonstrated that this sparsity constraint can produce super-resolution reconstructed resulting images.
为了避免当f i 为零时目标函数不可微的问题,我们对l p 范数进行近似,将目标函数(2)修改为:To avoid the problem that the objective function is not differentiable when fi is zero, we approximate the lp norm and modify the objective function (2) as:
(3) (3)
其中是一个很小的标量。在实验中,我们根据经验折中考虑,选择。in is a small scalar. In the experiment, we consider a compromise based on experience, choose .
我们的目标是求出估计值。当p > 1,所求问题是一个凸优化问题。求对f的梯度,有:Our goal is to find an estimate . When p > 1, the desired problem is a convex optimization problem. beg For the gradient of f , there are:
(4) (4)
其中是一个对角加权矩阵,它的第i个对角元素是。设梯度等于零,对于任何p值,该优化问题的解是一个驻点,因此满足如下等式:in is a diagonal weighting matrix whose ith diagonal element is . Let the gradient equal to zero, for any value of p , the solution of the optimization problem is a stagnation point, so the following equation is satisfied:
(5) (5)
的第i个对角元素根据随空间变化的惩罚项对第i个像素的强度进行加权。由于加权矩阵取决于,但方程(5)对于不是线性的,因此(5)式没有封闭解,但我们可以利用定点迭代方法进行求解,迭代过程的每一步都包含求解如下的线性问题: The i -th diagonal element of y weights the intensity of the i -th pixel according to a penalty term that varies with space. Since the weighting matrix depends on , but equation (5) for is not linear, so formula (5) has no closed solution, but we can use the fixed-point iterative method to solve it, and each step of the iterative process includes solving the following linear problem:
(6) (6)
其中是第k次迭代所获得的解。虽然(6)式对于原则上可产生一个封闭解,但这需要求解一个很大矩阵的逆矩阵。因此我们利用梯度下降法采用数值方法求解方程组(6)。in is the solution obtained at the kth iteration. Although (6) for In principle a closed solution can be produced, but this requires solving the inverse of a very large matrix. Therefore, we use the gradient descent method to numerically solve the equations (6).
(二)L曲线法(2) L -curve method
目标函数(3)中包含一个标量参数即正则化参数,它在场景重建中具有重要作用。当参数较小时,数据保真项,即目标函数(3)中的第一项,对目标函数(3)的解起支配作用;当参数较大时,目标函数(3)中的第二项,即基于l p 范数的惩罚项对目标函数(3)的解的作用增大。为了获得高质量精确重建的SAR图像,必须选择一个合适的值,使数据保真项和惩罚项这两项的作用得到较好的平衡。本发明将基于数据驱动方式,采用改进的L曲线法(L-curve)对正则化参数进行自动选择。The objective function (3) contains a scalar parameter, the regularization parameter , which plays an important role in scene reconstruction. when parameter When is small, the data fidelity term, namely the first term in the objective function (3), plays a dominant role in the solution of the objective function (3); when the parameter When is larger, the second item in the objective function (3), that is, the penalty item based on the l p norm, has a greater effect on the solution of the objective function (3). In order to obtain high-quality and accurately reconstructed SAR images, it is necessary to choose a suitable value, so that the effects of the data fidelity item and the penalty item can be better balanced. The present invention will use the improved L -curve method (L-curve) to adjust the regularization parameters based on the data-driven approach. Make an automatic selection.
L曲线法的定义是:在双对数坐标系中,范数与其相应的残差范数的比值,其中以正则化参数为其参数。在实际应用中,L曲线通常表现为如附图1所示的L型曲线。一般认为,L型曲线的拐角位置是选择参数的良好区域,选择该区域的参数可以实现中正则化误差和扰动误差之间的平衡。利用L曲线法选择正则化参数正是基于这一特性。尽管看起来直观简单,但L曲线拐角位置的计算并不容易。目前确定拐角位置的方法主要有计算曲率最大的点、计算最接近参考位置(例如原点)的点和计算斜率为-1的直线的切点等。下面我们将采用L曲线优化求解方法对稀疏驱动SAR图像重建的正则化参数进行自动选择,并给出其实现步骤。The definition of the L -curve method is: in the log-logarithmic coordinate system, the norm The corresponding residual norm The ratio of , where the regularization parameter as its parameter. In practical applications, the L -curve usually appears as an L -shaped curve as shown in FIG. 1 . It is generally believed that the corner position of the L -shaped curve is a selection parameter A good area of , choosing the parameters of this area can achieve The balance between regularization error and perturbation error. The choice of regularization parameters using the L -curve method is based on this property. Although it seems intuitive and simple, the calculation of the corner position of the L -curve is not easy. The current method of determining the corner position mainly includes calculating the point with the largest curvature, calculating the point closest to the reference position (such as the origin), and calculating the tangent point of a straight line with a slope of -1, etc. In the following, we will use the L -curve optimization solution method to automatically select the regularization parameters for sparse-driven SAR image reconstruction, and give its implementation steps.
发明内容Contents of the invention
为了克服上述稀疏驱动SAR图像重建正则化参数选择方法的不足,本发明提供了一种L曲线优化求解方法,给出了其实现步骤,从而实现稀疏驱动SAR图像重建正则化参数的自动选择。In order to overcome the shortcomings of the method for selecting regularization parameters for sparsely driven SAR image reconstruction, the present invention provides an L -curve optimization solution method, and provides its implementation steps, so as to realize the automatic selection of regularization parameters for sparsely driven SAR image reconstruction.
本发明所采用的具体技术方案即正则化参数优化求解算法如下:The specific technical scheme adopted in the present invention is the regularization parameter optimization solution algorithm as follows:
(1)设正则化参数的搜索区间为;(1) Set regularization parameters The search interval for ;
(2)取搜索区间的初始下界和上界分别为和;(2) Take the initial lower bound and upper bound of the search interval as and ;
(3)计算的值,,和,其中k和l为迭代次数,为预先设定的步长;(3) calculation the value of , , and , where k and l are the number of iterations, is a preset step size;
(4)计算L曲线上过,,和点的切线的斜率,,和,其中微分采用数值方法进行计算;(4) Calculate the L curve , , and the slope of the tangent to the point , , and , where the differential is calculated numerically;
(5)如果 (5) if
那么,k=k+1So , k = k +1
否则 otherwise
同样地,Similarly,
如果 if
那么,l=l+1So , l = l +1
否则 otherwise
重复步骤(3)-(5),进一步缩小搜索区间;Repeat steps (3)-(5) to further narrow the search interval;
(6)取参考点(x 0, y 0),它是和处切线的交点;(6) Take the reference point ( x 0 , y 0 ), which is and the intersection of the tangent lines at;
(7)按照黄金分割率确定两个测试值;(7) According to the golden ratio Determine the two test values ;
(8)计算残差范数和解范数,其中i=1, 2;H为离散复值SAR图像重建算子,g和f分别为实测数据和真实反射场景,上标2和p分别表示2次幂和p次幂,下标2和p分别表示求矩阵的2-范数和p-范数;(8) Calculate the residual norm Reconciliation norm , where i =1, 2; H is the discrete complex-valued SAR image reconstruction operator, g and f are the measured data and the real reflection scene, respectively, the superscript 2 and p represent the power of 2 and the power of p respectively, and the subscripts 2 and p represents the 2 - norm and p- norm of the matrix, respectively;
(9)计算点和参考点(x 0, y 0)之间的距离,这里ln表示取自然对数,其底数为e;(9) Calculation point and the distance between the reference point ( x 0 , y 0 ) , where ln represents natural logarithm, whose base is e ;
(10)利用黄金分割搜索法确定一个新的区间,即(10) Use the golden section search method to determine a new interval ,Right now
如果d 1 >d 2 if d 1 > d 2
那么 So
否则;otherwise ;
(11),重复步骤(7)-(11),直到区间I足够小。(11) , repeat steps (7)-(11) until the interval I is small enough.
与现有技术相比,本发明的有益效果是实现了稀疏驱动SAR图像重建正则化参数的自动选择。利用该方法求解稀疏驱动SAR图像重建正则化参数不仅计算量小,而且在噪声抑制和特征保持之间,该方法提供了一个较好的平衡,能得到更为合理的重建图像。需要指出的是,虽然本发明主要致力于解决稀疏驱动SAR图像重建问题,但它完全可以应用于其它复值l p 范数正则化图像重建问题。Compared with the prior art, the beneficial effect of the present invention is that the automatic selection of the regularization parameter for sparsely driven SAR image reconstruction is realized. Using this method to solve the regularization parameters of sparsely driven SAR image reconstruction not only has a small amount of calculation, but also provides a better balance between noise suppression and feature preservation, and a more reasonable reconstructed image can be obtained. It should be pointed out that although the present invention is mainly dedicated to solving the problem of sparsely driven SAR image reconstruction, it can be fully applied to other complex-valued l p norm regularized image reconstruction problems.
附图说明Description of drawings
说明书附图1为L曲线及正则化参数搜索示意图。Attached Figure 1 of the specification is a schematic diagram of L curve and regularization parameter search.
具体实施方式Detailed ways
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面结合说明书附图1对本发明进一步说明。In order to make the technical means, creative features, work flow, and use methods of the present invention achieve the purpose and effect easy to understand, the present invention will be further described below in conjunction with accompanying drawing 1 of the description.
本发明确定稀疏驱动SAR图像重建正则化参数的优化算法步骤如下:The present invention determines the optimization algorithm steps of sparsely driven SAR image reconstruction regularization parameters as follows:
(1)设正则化参数的搜索区间为;(1) Set regularization parameters The search interval for ;
(2)取搜索区间的初始下界和上界分别为和;(2) Take the initial lower bound and upper bound of the search interval as and ;
(3)计算的值,,和,其中k和l为迭代次数,为预先设定的步长;(3) calculation the value of , , and , where k and l are the number of iterations, is a preset step size;
(4)计算L曲线上过,,和点的切线的斜率,,和,其中微分采用数值方法进行计算;(4) Calculate the L curve , , and the slope of the tangent to the point , , and , where the differential is calculated numerically;
(5)如果 (5) if
那么,k=k+1So , k = k +1
否则 otherwise
同样地,Similarly,
如果 if
那么,l=l+1So , l = l +1
否则 otherwise
重复步骤(3)-(5),进一步缩小搜索区间;Repeat steps (3)-(5) to further narrow the search interval;
(6)取参考点(x 0, y 0),它是和处切线的交点;(6) Take the reference point ( x 0 , y 0 ), which is and the intersection of the tangent lines at;
(7)按照黄金分割率确定两个测试值;(7) According to the golden ratio Determine the two test values ;
(8)计算残差范数和解范数,其中i=1, 2;H为离散复值SAR图像重建算子,g和f分别为实测数据和真实反射场景,上标2和p分别表示2次幂和p次幂,下标2和p分别表示求矩阵的2-范数和p-范数;(8) Calculate the residual norm Reconciliation norm , where i =1, 2; H is the discrete complex-valued SAR image reconstruction operator, g and f are the measured data and the real reflection scene, respectively, the superscript 2 and p represent the power of 2 and the power of p respectively, and the subscripts 2 and p represents the 2 - norm and p- norm of the matrix, respectively;
(9)计算点和参考点(x 0, y 0)之间的距离,这里ln表示取自然对数,其底数为e;(9) Calculation point and the distance between the reference point ( x 0 , y 0 ) , where ln represents natural logarithm, whose base is e ;
(10)利用黄金分割搜索法确定一个新的区间,即(10) Use the golden section search method to determine a new interval ,Right now
如果d 1 >d 2 if d 1 > d 2
那么 So
否则;otherwise ;
(11),重复步骤(7)-(11),直到区间I足够小。(11) , repeat steps (7)-(11) until the interval I is small enough.
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments, and what described in the above-mentioned embodiments and the description only illustrates the principles of the present invention, and the present invention will also have other functions without departing from the spirit and scope of the present invention. Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510762325.8A CN105405100B (en) | 2015-11-11 | 2015-11-11 | A kind of sparse driving SAR image rebuilds regularization parameter automatic selecting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510762325.8A CN105405100B (en) | 2015-11-11 | 2015-11-11 | A kind of sparse driving SAR image rebuilds regularization parameter automatic selecting method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105405100A CN105405100A (en) | 2016-03-16 |
CN105405100B true CN105405100B (en) | 2018-06-12 |
Family
ID=55470568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510762325.8A Expired - Fee Related CN105405100B (en) | 2015-11-11 | 2015-11-11 | A kind of sparse driving SAR image rebuilds regularization parameter automatic selecting method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105405100B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106023085A (en) * | 2016-06-12 | 2016-10-12 | 西南科技大学 | SURE golden section automatic search algorithm for sparsely constrained SAR image reconstruction regularization parameters |
CN106056538A (en) * | 2016-06-12 | 2016-10-26 | 西南科技大学 | Sparse constraint SAR image reconstruction regularization parameter GCV golden section automatic search algorithm |
CN107765225A (en) * | 2017-10-27 | 2018-03-06 | 中国人民解放军国防科技大学 | Sparse Regularized SAR Image Sidelobe Suppression Method Based on Log Metric |
CN107942326B (en) * | 2017-11-14 | 2021-02-02 | 西南交通大学 | A two-dimensional active millimeter-wave imaging method with high versatility |
CN110082764B (en) * | 2019-04-26 | 2023-04-07 | 西安电子科技大学 | SAR image imaging method based on robust regularization analytic method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104915549A (en) * | 2015-05-25 | 2015-09-16 | 同济大学 | InSAR interferometric phase unwrapping method based on semi-parametric model |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8666180B2 (en) * | 2009-12-04 | 2014-03-04 | Stc.Unm | System and methods of compressed sensing as applied to computer graphics and computer imaging |
-
2015
- 2015-11-11 CN CN201510762325.8A patent/CN105405100B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104915549A (en) * | 2015-05-25 | 2015-09-16 | 同济大学 | InSAR interferometric phase unwrapping method based on semi-parametric model |
Non-Patent Citations (2)
Title |
---|
《基于斑点方差估计得非下采样Contourlet域SAR图像去噪》;常霞 等;《电子学报》;20100630;第38卷(第6期);第1328-1333页 * |
《基于模型函数与L-曲线的正则化参数选取方法》;胡彬 等;《江西师范大学学报(自然科学版)》;20141130;第38卷(第6期);第569-573页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105405100A (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105405100B (en) | A kind of sparse driving SAR image rebuilds regularization parameter automatic selecting method | |
CN109191476B (en) | Novel biomedical image automatic segmentation method based on U-net network structure | |
Liu et al. | Learning to infer implicit surfaces without 3d supervision | |
CN109669049B (en) | Particle image velocity measurement method based on convolutional neural network | |
Li et al. | Learning deep implicit functions for 3D shapes with dynamic code clouds | |
CN107507135B (en) | Image reconstruction method based on coding aperture and target | |
CN109993825A (en) | A 3D reconstruction method based on deep learning | |
CN110389391B (en) | An analytical extension method of gravity and magnetic potential field based on spatial domain | |
CN109903319B (en) | Multi-resolution-based fast iteration closest point registration algorithm | |
CN109756690A (en) | A Lightweight Video Interpolation Method Based on Feature-Level Optical Flow | |
CN105678757A (en) | Object displacement measurement method | |
Qu et al. | Visual cross-image fusion using deep neural networks for image edge detection | |
CN110097599A (en) | A kind of workpiece position and orientation estimation method based on partial model expression | |
CN111951292B (en) | Object surface reflection attribute extraction method, device, equipment and storage medium | |
CN109741358B (en) | A Superpixel Segmentation Method Based on Adaptive Hypergraph Learning | |
CN111275250B (en) | Strong current region sea surface temperature forecasting method based on anisotropy | |
CN113378472A (en) | Mixed boundary electromagnetic backscattering imaging method based on generation countermeasure network | |
CN110363713A (en) | Hyperspectral image denoising method based on recursive sample scaling and bilinear factorization | |
CN107067458B (en) | Visualization method for enhancing texture advection | |
Köster et al. | Screen Space Particle Selection. | |
Liu et al. | Arctangent entropy: a new fast threshold segmentation entropy for light colored character image on semiconductor chip surface | |
Szirmay-Kalos | Filtering and gradient estimation for distance fields by quadratic regression | |
CN103077522B (en) | Improved registration method for image with obvious local deformation | |
CN108376390B (en) | A Dynamic Perceptual Smoothing Filtering Algorithm | |
CN113362470A (en) | Point cloud Poisson surface reconstruction method applying adaptive density estimator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180612 Termination date: 20211111 |
|
CF01 | Termination of patent right due to non-payment of annual fee |