CN105403800A - Electric power system parameter determination method and device - Google Patents
Electric power system parameter determination method and device Download PDFInfo
- Publication number
- CN105403800A CN105403800A CN201511021104.1A CN201511021104A CN105403800A CN 105403800 A CN105403800 A CN 105403800A CN 201511021104 A CN201511021104 A CN 201511021104A CN 105403800 A CN105403800 A CN 105403800A
- Authority
- CN
- China
- Prior art keywords
- characteristic curve
- rated
- load characteristic
- data
- air gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000005284 excitation Effects 0.000 claims abstract description 65
- 238000007689 inspection Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 7
- 230000008030 elimination Effects 0.000 claims description 6
- 238000003379 elimination reaction Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
本发明提供了一种电力系统参数的确定方法及装置,属于电网励磁技术领域。所述方法包括:获取实测的发电机或励磁机的空载特性曲线数据,并建立空载特性曲线;根据所述空载特性曲线建立气隙线;根据所述气隙线和空载特性曲线上的1.0倍额定值点和1.2倍额定值点的数据获得饱和系数;根据所述气隙线上的额定励磁电流和转子电阻获得额定励磁电压标准值。本发明能通过将获取的空载特性曲线数据建立空载特性曲线,并建立具有统一斜率的气隙线,从而能够准确获得包括饱和系数、额定励磁电压标准值在内的1.05倍额定值直至1.2倍额定值范围内的电力系统参数。
The invention provides a method and a device for determining parameters of a power system, which belong to the technical field of power grid excitation. The method includes: obtaining the measured no-load characteristic curve data of the generator or exciter, and establishing the no-load characteristic curve; establishing an air gap line according to the no-load characteristic curve; according to the air gap line and the no-load characteristic curve The saturation coefficient is obtained from the data of 1.0 times the rated value point and 1.2 times the rated value point; the standard value of the rated excitation voltage is obtained according to the rated excitation current and rotor resistance on the air gap line. The present invention can establish the no-load characteristic curve through the obtained no-load characteristic curve data, and establish the air gap line with a uniform slope, so as to accurately obtain 1.05 times the rated value including the saturation coefficient and the rated excitation voltage standard value up to 1.2 Power system parameters within the range of twice the rated value.
Description
技术领域technical field
本发明涉及一种电力系统参数的确定方法及装置,属于电网励磁技术领域。The invention relates to a method and a device for determining parameters of a power system, belonging to the technical field of power grid excitation.
背景技术Background technique
目前,电力系统稳定分析及仿真程序所依据的数据来源主要包括:利用Execl办公软件绘制现场实测数据的图形,以及利用故障录波器记录现场实测数据并绘制的曲线图等。At present, the data sources on which the power system stability analysis and simulation programs are based mainly include: using the Excel office software to draw the graphs of the field measured data, and using the fault recorder to record the field measured data and draw curves, etc.
当利用Excel办公软件绘制图形时,由于现场实测数据有误差,因此无法绘制平滑的特性曲线,使气隙线被绘制成折线而不是直线,导致斜率不一致。而当利用故障录波器记录数据绘制曲线时,由于缺少必要的测点,导致无法录到大于1.05倍的额定值数据,因此也就无法计算1.2倍额定值时的特性参数。When using the Excel office software to draw graphics, due to errors in the field measured data, it is impossible to draw a smooth characteristic curve, so that the air gap line is drawn as a broken line instead of a straight line, resulting in inconsistent slopes. However, when using the fault recorder to record data and draw curves, due to the lack of necessary measuring points, it is impossible to record data greater than 1.05 times the rated value, so it is impossible to calculate the characteristic parameters at 1.2 times the rated value.
发明内容Contents of the invention
本发明为解决现有的电力系统参数确定技术存在的无法绘制平滑的特效曲线以及无法确定1.05倍额定值直至1.2倍额定值的特效参数的问题,进而提出了一种电力系统参数的确定方法及装置,具体包括如下的技术方案:In order to solve the problems existing in the existing power system parameter determination technology that the smooth special effect curve cannot be drawn and the special effect parameters from 1.05 times the rated value to 1.2 times the rated value cannot be determined, the present invention further proposes a method for determining power system parameters and The device specifically includes the following technical solutions:
一种电力系统参数的确定方法,包括:A method for determining parameters of a power system, comprising:
获取实测的发电机或励磁机的空载特性曲线数据,并建立空载特性曲线;Obtain the measured no-load characteristic curve data of the generator or exciter, and establish the no-load characteristic curve;
根据所述空载特性曲线建立气隙线;establishing an air gap line according to the no-load characteristic curve;
根据所述气隙线和空载特性曲线上的1.0倍额定值点和1.2倍额定值点的数据获得饱和系数;Obtain the saturation coefficient according to the data of the 1.0 times rated value point and 1.2 times rated value point on the air gap line and the no-load characteristic curve;
根据所述气隙线上的额定励磁电流和转子电阻获得额定励磁电压标准值。The standard value of the rated excitation voltage is obtained according to the rated excitation current on the air gap line and the rotor resistance.
一种电力系统参数的确定装置,包括:A device for determining parameters of a power system, comprising:
空载特效曲线建立单元,用于获取实测的发电机或励磁机的空载特性曲线数据,并建立空载特性曲线;The no-load special effect curve establishment unit is used to obtain the measured no-load characteristic curve data of the generator or exciter, and establish the no-load characteristic curve;
气隙线建立单元,用于根据所述空载特性曲线建立气隙线;an air gap line establishing unit, configured to establish an air gap line according to the no-load characteristic curve;
饱和系数获取单元,用于根据所述气隙线和空载特性曲线上的1.0倍额定值点和1.2倍额定值点的数据获得饱和系数;A saturation coefficient acquisition unit, configured to obtain the saturation coefficient according to the air gap line and the data of 1.0 times the rated value point and 1.2 times the rated value point on the no-load characteristic curve;
标准电压获取单元,用于根据所述气隙线上的额定励磁电流和转子电阻获得额定励磁电压标准值。The standard voltage acquisition unit is used to obtain a standard value of the rated excitation voltage according to the rated excitation current on the air gap line and the rotor resistance.
本发明的有益效果是:通过将获取的空载特性曲线数据建立空载特性曲线,并建立具有统一斜率的气隙线,从而能够准确获得包括饱和系数、额定励磁电压标准值在内的1.05倍额定值直至1.2倍额定值范围内的电力系统参数。The beneficial effects of the present invention are: by establishing the no-load characteristic curve with the obtained no-load characteristic curve data, and establishing an air gap line with a uniform slope, it is possible to accurately obtain 1.05 times including the saturation coefficient and the standard value of the rated excitation voltage Power system parameters within the range up to 1.2 times the rated value.
附图说明Description of drawings
图1以示例的方式示出了电力系统参数的确定方法的流程图。Fig. 1 shows a flowchart of a method for determining power system parameters by way of example.
图2是实施例一提供的电力系统参数的确定方法的流程图。Fig. 2 is a flow chart of the method for determining power system parameters provided by Embodiment 1.
图3是实施例一提供的对空载特性曲线数据进行数据检验的流程图。Fig. 3 is a flow chart of performing data inspection on the no-load characteristic curve data provided by the first embodiment.
图4是实施例一提供的1.05倍额定值的空载特性曲线图。Fig. 4 is a no-load characteristic curve of 1.05 times the rated value provided by the first embodiment.
图5是实施例一提供的1.2倍额定值的空载特性曲线图。Fig. 5 is a no-load characteristic curve of 1.2 times the rated value provided by the first embodiment.
图6是实施例一提供的根据空载特性曲线在该坐标系中相应位置建立的气隙线示意图。Fig. 6 is a schematic diagram of the air gap line established at the corresponding position in the coordinate system according to the no-load characteristic curve provided by the first embodiment.
图7是实施例一提供的确定额定励磁电压标准值的流程图。Fig. 7 is a flow chart of determining the standard value of the rated excitation voltage provided by the first embodiment.
图8是实施例二提供的电力系统参数的确定装置的结构图。Fig. 8 is a structural diagram of the device for determining the parameters of the power system provided by the second embodiment.
具体实施方式detailed description
本发明的实施例提出了一种电力系统参数的确定方法,结合图1所示,该方法包括:Embodiments of the present invention propose a method for determining power system parameters, as shown in FIG. 1, the method includes:
步骤11,获取实测的发电机或励磁机的空载特性曲线数据,并建立空载特性曲线。Step 11, obtain the measured no-load characteristic curve data of the generator or exciter, and establish the no-load characteristic curve.
对于通过从现场录波器导入或手工录入实测的发电机或励磁机的空载特性曲线数据,可利用DELPHI程序语言中的CHART控件绘制出空载特性曲线。For the no-load characteristic curve data of the generator or exciter measured by importing from the field recorder or manually inputting, the no-load characteristic curve can be drawn by using the CHART control in the DELPHI programming language.
其中,对该空载特性曲线数据进行数据检验并将噪点消除的过程可以包括:首先根据该空载特性曲线数据确定至少两个点的斜率值,然后根据该至少两个点的斜率值确定是否存在噪点,若确定至少一个噪点,则通过该空载特性曲线数据拟合获得拟合数据点,并将该空载特性曲线数据中的噪点替换为该拟合数据点。Wherein, the process of performing data inspection on the no-load characteristic curve data and eliminating noise points may include: first determining the slope values of at least two points according to the no-load characteristic curve data, and then determining whether to Noise points exist, and if at least one noise point is determined, fitting data points are obtained by fitting the no-load characteristic curve data, and the noise points in the no-load characteristic curve data are replaced by the fitting data points.
另外,还可以预先设定一个额定励磁电压的最大值以及一个额定励磁电流的最大值,当确定的参数达到该最大值时,则停止本次参数确定流程。In addition, a maximum value of a rated excitation voltage and a maximum value of a rated excitation current may also be preset, and when the determined parameter reaches the maximum value, the current parameter determination process is stopped.
步骤12,根据空载特性曲线建立气隙线。Step 12, establish an air gap line according to the no-load characteristic curve.
其中,建立气隙线的过程可以包括:根据现场实测空载特性曲线时得到的数据,当机端电压上升至0.3标幺值前的某段曲线为直线时,则获取机端电压0.3标幺值处的额定电压值和额定电流值,即可计算出该直线的斜率,根据该斜率获得的直线即为气隙线。Among them, the process of establishing the air gap line may include: according to the data obtained when the no-load characteristic curve is measured on site, when the terminal voltage rises to 0.3 p.u. The slope of the straight line can be calculated from the rated voltage value and rated current value at the value, and the straight line obtained according to the slope is the air gap line.
步骤13,根据气隙线和空载特性曲线上的1.0倍额定值点和1.2倍额定值点的数据获得饱和系数。Step 13, obtain the saturation coefficient according to the data of the air gap line and the 1.0 times rated value point and 1.2 times rated value point on the no-load characteristic curve.
其中,可首先在1.0倍额定值点选取数据,然后再在1.2倍额定值点选取数据,最后根据两组数据获得饱和系数。Among them, the data can be selected at the point of 1.0 times the rated value first, and then the data can be selected at the point of 1.2 times the rated value, and finally the saturation coefficient can be obtained according to the two sets of data.
步骤14,根据气隙线上的额定励磁电流和转子电阻获得额定励磁电压标准值。Step 14, obtain the standard value of the rated excitation voltage according to the rated excitation current on the air gap line and the rotor resistance.
其中,确定额定励磁电压标准值的过程可以包括:首先根据发电机额定电压和发电机额定电流获得转子电阻值,然后确定该发电机额定电压在该气隙线上对应的励磁电流值,最后根据该转子电阻值和该励磁电流值确定空载励磁电压标准值。Among them, the process of determining the standard value of the rated excitation voltage may include: first obtain the rotor resistance value according to the rated voltage of the generator and the rated current of the generator, then determine the excitation current value corresponding to the rated voltage of the generator on the air gap line, and finally according to The rotor resistance value and the excitation current value determine the no-load excitation voltage standard value.
下面通过具体的实施例对所述的电力系统参数的确定方法进行详细说明:The method for determining the parameters of the power system will be described in detail below through specific embodiments:
实施例一Embodiment one
本实施例以“发电机空载特性”曲线分析为例,对所述的电力系统参数的确定方法进行说明,结合图2所示,所述方法包括:In this embodiment, the analysis of the "generator no-load characteristic" curve is taken as an example to illustrate the method for determining the parameters of the power system. In combination with that shown in Figure 2, the method includes:
步骤21,确定空载特性曲线的横坐标和纵坐标。Step 21, determine the abscissa and ordinate of the no-load characteristic curve.
其中,横坐标和纵坐标可根据所要分析的发电机的额定励磁电压和额定励磁电流的大小确定,例如可将额定励磁电压的最小值设置为0V、最大值设置为30kV,将额定励磁电流的最小值设置为0A、最大值设置为2000A。Among them, the abscissa and ordinate can be determined according to the rated excitation voltage and rated excitation current of the generator to be analyzed, for example, the minimum value of the rated excitation voltage can be set to 0V, the maximum value can be set to 30kV, and the rated excitation current can be set to The minimum value is set to 0A and the maximum value is set to 2000A.
另外,还可以将横坐标设置为额定励磁电流,将纵坐标设置为额定励磁电压,以及在最大值与最小值之间设置若干个刻度值,例如将200A设置为一个额定励磁电流刻度,将1kV设置为一个额定励磁电压刻度。In addition, you can also set the abscissa as the rated excitation current, the ordinate as the rated excitation voltage, and set several scale values between the maximum value and the minimum value, for example, set 200A as a rated excitation current scale, set 1kV Set to a rated excitation voltage scale.
步骤22,获取实测的发电机或励磁机的空载特性曲线数据并进行数据检验。Step 22, acquiring the measured no-load characteristic curve data of the generator or exciter and performing data inspection.
进行空载特性曲线数据检验的作用是检验出数据中的噪点,以保证气隙线的斜率一致性,使得气隙线是一条直线,而不是折线。其中,对空载特性曲线数据进行数据检验的过程结合图3所示,包括:The function of the no-load characteristic curve data inspection is to inspect the noise in the data to ensure the consistency of the slope of the air gap line, so that the air gap line is a straight line instead of a broken line. Among them, the process of data inspection on the no-load characteristic curve data is shown in Figure 3, including:
步骤221,从空载特性曲线数据中选取点(Ugn-1,Ifn-1)和(Ugn,Ifn),并计算出两个点的斜率K1。Step 221 , select points (Ug n-1 , If n-1 ) and (Ug n , If n ) from the no-load characteristic curve data, and calculate the slope K 1 of the two points.
步骤222,从空载特性曲线数据中选取点(Ugn,Ifn)和(Ugn+1,Ifn+1),并计算出两个点的斜率K2。Step 222, select points (Ug n , If n ) and (Ug n+1 , If n+1 ) from the no-load characteristic curve data, and calculate the slope K 2 of the two points.
步骤223,比较K1和K2,如果K1≥K2,则点(Ugn+1,Ifn+1)不是噪点,如果K1<K2,则点(Ugn+1,Ifn+1)是噪点。Step 223, compare K 1 and K 2 , if K 1 ≥ K 2 , then the point (Ugn+1, Ifn+1) is not a noise point, if K 1 <K 2 , then the point (Ugn+1, Ifn+1) is noise.
步骤224,通过最小二乘法拟合出斜率为K1的直线上的新的点(U`gn+1,I`fn+1),以替换掉原噪点(Ugn+1,Ifn+1)。Step 224, fit new points (U`g n+1 , I`f n+1 ) on a straight line with a slope of K 1 by the least square method to replace the original noise points (Ug n+1 , If n +1 ).
另外,在进行数据检验前,还可以将原始数据进行保留,以备后续流程中使用。In addition, before data inspection, the original data can also be retained for use in subsequent processes.
步骤23,根据消除噪点后的空载特性曲线数据建立空载特性曲线。Step 23, establishing a no-load characteristic curve according to the no-load characteristic curve data after the noise point has been eliminated.
在将空载特性曲线数据中的全部数据点进行检验并消除噪点后,即可根据消除噪点后的空载特性曲线数据建立空载特性曲线。例如,可以在最大额定励磁电压值为30kV、最大额定励磁电流值为2000A、纵坐标刻度为1kV、横坐标刻度为200A的坐标系内建立如图4所示的1.05倍额定值的空载特性曲线,然后根据该空载特性曲线的曲线变化趋势拟合出额定值在1.05倍至1.2倍的空载特性曲线。其中,图5所示的是1.2倍额定值的空载特性曲线。After all the data points in the no-load characteristic curve data are checked and the noise points are eliminated, the no-load characteristic curve can be established according to the no-load characteristic curve data after the noise points have been eliminated. For example, the no-load characteristics of 1.05 times the rated value as shown in Figure 4 can be established in the coordinate system where the maximum rated excitation voltage value is 30kV, the maximum rated excitation current value is 2000A, the ordinate scale is 1kV, and the abscissa scale is 200A curve, and then fit the no-load characteristic curve with a rated value of 1.05 times to 1.2 times according to the curve change trend of the no-load characteristic curve. Among them, Figure 5 shows the no-load characteristic curve of 1.2 times the rated value.
步骤24,根据空载特性曲线建立气隙线。Step 24, establishing an air gap line according to the no-load characteristic curve.
在由步骤21建立的坐标系中,根据空载特性曲线在该坐标系中相应位置建立如图6所述的气隙线。In the coordinate system established by step 21, the air gap line as shown in FIG. 6 is established at the corresponding position in the coordinate system according to the no-load characteristic curve.
步骤25,根据气隙线和空载特性曲线上的1.0倍额定值点和1.2倍额定值点的数据获得饱和系数。Step 25, obtain the saturation coefficient according to the air gap line and the data of the 1.0 times the rated value point and the 1.2 times the rated value point on the no-load characteristic curve.
其中,1.0倍饱和系数可通过以下公式获得:Among them, the 1.0 times saturation coefficient can be obtained by the following formula:
Sg1.0=(Ifa-Ifb)/IfbSg1.0=(Ifa-Ifb)/Ifb
式中的Ifa表示1.0倍额定电压值的空载特性曲线上对应的额定电流值,Ifb表示1.0倍额定电压值的气隙线上对应的额定电流值;Ifa in the formula indicates the corresponding rated current value on the no-load characteristic curve of 1.0 times the rated voltage value, and Ifb indicates the corresponding rated current value on the air gap line of 1.0 times the rated voltage value;
1.2倍饱和系数可通过以下公式获得:The 1.2 times saturation factor can be obtained by the following formula:
Sg1.2=(Ifa’-Ifb’)/Ifb’Sg1.2=(Ifa'-Ifb')/Ifb'
式中的Ifa’表示1.2倍额定电压值的空载特性曲线上对应的额定电流值;Ifb’表示1.2倍额定电压值的气隙线上对应的额定电流值。Ifa' in the formula represents the rated current value corresponding to the no-load characteristic curve of 1.2 times the rated voltage value; Ifb' represents the rated current value corresponding to the air gap line of 1.2 times the rated voltage value.
步骤26,根据气隙线上的额定励磁电流和转子电阻获得额定励磁电压标准值。Step 26, obtain the standard value of the rated excitation voltage according to the rated excitation current on the air gap line and the rotor resistance.
其中,确定额定励磁电压标准值的过程如图7所示,包括:Among them, the process of determining the standard value of the rated excitation voltage is shown in Figure 7, including:
步骤261,根据发电机额定电压和发电机额定电流获得转子电阻值。Step 261, obtain the rotor resistance value according to the generator rated voltage and the generator rated current.
该转子电阻值Rfb可通过以下公式计算获得:Rfb=Ugn/Ifn。其中的Ugn表示发电机额定电压,Ifn表示发电机额定电流。The rotor resistance value Rf b can be calculated by the following formula: Rf b =Ug n /If n . Among them, Ug n represents the rated voltage of the generator, and If n represents the rated current of the generator.
步骤262,确定发电机额定电压在气隙线上对应的励磁电流值。Step 262, determine the excitation current value corresponding to the rated voltage of the generator on the air gap line.
在获取发电机额定电压Ugn后,可在步骤24建立的气隙线上对应点确定励磁电流Ifb。After obtaining the rated voltage Ug n of the generator, the excitation current If b can be determined at the corresponding point on the air gap line established in step 24 .
步骤263,根据转子电阻值和励磁电流值确定空载励磁电压标准值。Step 263: Determine the standard value of the no-load excitation voltage according to the rotor resistance value and the excitation current value.
空载励磁电压标准值可通过以下公式计算获得:Ufb=Ifb*Rfb,其中的Ufb表示空载励磁电压标准值。The standard value of the no-load excitation voltage can be calculated by the following formula: Uf b =If b *Rf b , where Uf b represents the standard value of the no-load excitation voltage.
本实施例提出的是“发电机空载特性”的分析方法,如“励磁机空载特性”和“励磁机负载特性”等分析的方法与“发电机空载特性”的分析方法相似,因此不再敷述。What this embodiment proposes is the analysis method of "generator no-load characteristics", such as "exciter no-load characteristics" and "exciter load characteristics" and other analysis methods are similar to the analysis method of "generator no-load characteristics", so No more descriptions.
采用本实施例提供的技术方案,通过将获取的空载特性曲线数据建立空载特性曲线,并建立具有统一斜率的气隙线,从而能够准确获得包括饱和系数、额定励磁电压标准值在内的1.05倍额定值直至1.2倍额定值范围内的电力系统参数。By adopting the technical solution provided in this embodiment, by establishing the no-load characteristic curve with the obtained no-load characteristic curve data, and establishing an air gap line with a uniform slope, the parameters including the saturation coefficient and the standard value of the rated excitation voltage can be accurately obtained. Power system parameters within the range of 1.05 times the rated value to 1.2 times the rated value.
实施例二Embodiment two
本实施例提供了一种电力系统参数的确定装置,结合图8所示,包括:This embodiment provides a device for determining parameters of a power system, as shown in FIG. 8 , including:
空载特效曲线建立单元81,用于获取实测的发电机或励磁机的空载特性曲线数据,并建立空载特性曲线;The no-load special effect curve establishment unit 81 is used to obtain the measured no-load characteristic curve data of the generator or exciter, and establish the no-load characteristic curve;
气隙线建立单元82,用于根据空载特性曲线建立气隙线;An air gap line establishing unit 82, configured to establish an air gap line according to the no-load characteristic curve;
饱和系数获取单元83,用于根据气隙线和空载特性曲线上的1.0倍额定值点和1.2倍额定值点的数据获得饱和系数;A saturation coefficient acquisition unit 83, configured to obtain the saturation coefficient according to the data of the 1.0 times the rated value point and the 1.2 times the rated value point on the air gap line and the no-load characteristic curve;
标准电压获取单元84,用于根据气隙线上的额定励磁电流和转子电阻获得额定励磁电压标准值。The standard voltage obtaining unit 84 is used to obtain the standard value of the rated excitation voltage according to the rated excitation current on the air gap line and the rotor resistance.
其中,在空载特效曲线建立单元81中包括:Wherein, the no-load special effect curve establishment unit 81 includes:
噪点消除子单元,用于对所述空载特性曲线数据进行数据检验并将噪点消除;A noise elimination subunit, configured to perform data inspection on the no-load characteristic curve data and eliminate noise;
气隙线数据获取子单元,用于根据消除噪点后的空载特性曲线数据获得气隙线数据;The air gap line data acquisition subunit is used to obtain the air gap line data according to the no-load characteristic curve data after the noise point is eliminated;
气隙线建立单元,用于根据所述气隙线数据建立气隙线。The air-gap line establishing unit is configured to establish the air-gap line according to the air-gap line data.
其中,在噪点消除子单元中包括:Among them, the noise elimination subunit includes:
斜率确定模块,用于根据所述空载特性曲线数据确定至少两个点的斜率值;a slope determination module, configured to determine slope values of at least two points according to the no-load characteristic curve data;
噪点确定模块,用于根据所述至少两个点的斜率值确定是否存在噪点;A noise determination module, configured to determine whether there is noise according to the slope values of the at least two points;
噪点消除模块,用于若确定至少一个噪点,则通过所述空载特性曲线数据拟合获得拟合数据点,并将所述空载特性曲线数据中的噪点替换为所述拟合数据点。A noise point elimination module, configured to obtain fitting data points by fitting the no-load characteristic curve data if at least one noise point is determined, and replace the noise points in the no-load characteristic curve data with the fitting data points.
其中,在标准电压获取单元84中包括:Wherein, the standard voltage acquisition unit 84 includes:
电阻值确定子单元,用于根据发电机额定电压和发电机额定电流获得转子电阻值;The resistance value determination subunit is used to obtain the rotor resistance value according to the rated voltage of the generator and the rated current of the generator;
励磁电流值确定子单元,用于确定所述发电机额定电压在所述气隙线上对应的励磁电流值;An excitation current value determining subunit, configured to determine an excitation current value corresponding to the rated voltage of the generator on the air gap line;
励磁电压值确定子单元,用于根据所述转子电阻值和所述励磁电流值确定所述空载励磁电压标准值。The excitation voltage value determination subunit is configured to determine the no-load excitation voltage standard value according to the rotor resistance value and the excitation current value.
其中,所述装置还包括:Wherein, the device also includes:
极值确定单元,用于确定所述额定励磁电流和额定励磁电压的最大值。The extreme value determination unit is used to determine the maximum values of the rated excitation current and the rated excitation voltage.
采用本实施例提供的技术方案,通过将获取的空载特性曲线数据建立空载特性曲线,并建立具有统一斜率的气隙线,从而能够准确获得包括饱和系数、额定励磁电压标准值在内的1.05倍额定值直至1.2倍额定值范围内的电力系统参数。By adopting the technical solution provided in this embodiment, by establishing the no-load characteristic curve with the obtained no-load characteristic curve data, and establishing an air gap line with a uniform slope, the parameters including the saturation coefficient and the standard value of the rated excitation voltage can be accurately obtained. Power system parameters within the range of 1.05 times the rated value to 1.2 times the rated value.
本具体实施方式是对本发明的技术方案进行清楚、完整地描述,其中的实施例仅仅是本发明的一部分实施例,而并不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有经过创造性劳动的前提下所获得的所有其它实施方式都属于本发明的保护范围。This specific embodiment is a clear and complete description of the technical solutions of the present invention, and the embodiments therein are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other implementation manners obtained by those skilled in the art without creative efforts belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511021104.1A CN105403800A (en) | 2015-12-30 | 2015-12-30 | Electric power system parameter determination method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511021104.1A CN105403800A (en) | 2015-12-30 | 2015-12-30 | Electric power system parameter determination method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105403800A true CN105403800A (en) | 2016-03-16 |
Family
ID=55469406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511021104.1A Pending CN105403800A (en) | 2015-12-30 | 2015-12-30 | Electric power system parameter determination method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105403800A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105808967A (en) * | 2016-04-06 | 2016-07-27 | 国家电网公司 | Exciter saturation coefficient computing method based on secant iteration method |
CN111257749A (en) * | 2018-11-30 | 2020-06-09 | 华中科技大学 | A method for offline measurement of linear induction motor parameters |
CN111832754A (en) * | 2019-07-19 | 2020-10-27 | 郑州大学 | Abnormal detection method of pressure feedback signal in constant pressure water supply system |
CN112383252A (en) * | 2020-10-30 | 2021-02-19 | 华北电力科学研究院有限责任公司 | Per unit method and device for double-fed generator set excitation control system |
CN115598530A (en) * | 2022-11-29 | 2023-01-13 | 南方电网调峰调频发电有限公司(Cn) | Method and device for evaluating no-load characteristic of generator, electronic equipment and storage medium |
CN117148147A (en) * | 2023-10-26 | 2023-12-01 | 南方电网调峰调频发电有限公司 | Motor performance parameter determining method based on DC attenuation method of any rotor position |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101272116A (en) * | 2008-04-30 | 2008-09-24 | 山东电力研究院 | A Modeling Method for Generator Excitation System |
CN102110179A (en) * | 2009-12-29 | 2011-06-29 | 上海电气集团股份有限公司 | Method for simulating permanent-magnetic linear synchronous motor |
CN202166727U (en) * | 2011-01-11 | 2012-03-14 | 华北电力科学研究院有限责任公司 | Generator set excitation system characteristic monitoring system |
CN102510256A (en) * | 2011-10-31 | 2012-06-20 | 上海电气电站设备有限公司 | Method for conveniently drawing characteristic curve of generator |
CN103630779A (en) * | 2013-11-22 | 2014-03-12 | 南方电网科学研究院有限责任公司 | Actual measurement method for parameters of brushless excitation system |
-
2015
- 2015-12-30 CN CN201511021104.1A patent/CN105403800A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101272116A (en) * | 2008-04-30 | 2008-09-24 | 山东电力研究院 | A Modeling Method for Generator Excitation System |
CN102110179A (en) * | 2009-12-29 | 2011-06-29 | 上海电气集团股份有限公司 | Method for simulating permanent-magnetic linear synchronous motor |
CN202166727U (en) * | 2011-01-11 | 2012-03-14 | 华北电力科学研究院有限责任公司 | Generator set excitation system characteristic monitoring system |
CN102510256A (en) * | 2011-10-31 | 2012-06-20 | 上海电气电站设备有限公司 | Method for conveniently drawing characteristic curve of generator |
CN103630779A (en) * | 2013-11-22 | 2014-03-12 | 南方电网科学研究院有限责任公司 | Actual measurement method for parameters of brushless excitation system |
Non-Patent Citations (2)
Title |
---|
卢恩贵: "《电机及电力拖动》", 30 September 2011 * |
高亮: "《超超临界火电机组培训系列教材 电气分册》", 31 January 2013 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105808967A (en) * | 2016-04-06 | 2016-07-27 | 国家电网公司 | Exciter saturation coefficient computing method based on secant iteration method |
CN105808967B (en) * | 2016-04-06 | 2018-01-02 | 国家电网公司 | Exciter saturation coefficient computational methods based on secant iterative method |
CN111257749A (en) * | 2018-11-30 | 2020-06-09 | 华中科技大学 | A method for offline measurement of linear induction motor parameters |
CN111832754A (en) * | 2019-07-19 | 2020-10-27 | 郑州大学 | Abnormal detection method of pressure feedback signal in constant pressure water supply system |
CN112383252A (en) * | 2020-10-30 | 2021-02-19 | 华北电力科学研究院有限责任公司 | Per unit method and device for double-fed generator set excitation control system |
CN112383252B (en) * | 2020-10-30 | 2022-05-06 | 华北电力科学研究院有限责任公司 | Per unit method and device for double-fed generator set excitation control system |
CN115598530A (en) * | 2022-11-29 | 2023-01-13 | 南方电网调峰调频发电有限公司(Cn) | Method and device for evaluating no-load characteristic of generator, electronic equipment and storage medium |
CN117148147A (en) * | 2023-10-26 | 2023-12-01 | 南方电网调峰调频发电有限公司 | Motor performance parameter determining method based on DC attenuation method of any rotor position |
CN117148147B (en) * | 2023-10-26 | 2024-03-05 | 南方电网调峰调频发电有限公司 | Motor performance parameter determining method based on DC attenuation method of any rotor position |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105403800A (en) | Electric power system parameter determination method and device | |
CN101540487B (en) | A configuration method of high-voltage transmission line insulators | |
CN104300530A (en) | Method and device for estimating grid properties of an electrical power grid | |
CN106776480B (en) | A Method for Eliminating Outliers in Field Measurement of Radio Interference | |
CN106605150A (en) | Transformer parameter estimation using terminal measurements | |
CN104614616B (en) | Match detection method and device of generator-transformer unit protection setting value and excitation limiter setting value | |
CN103675728B (en) | The measuring method of closed magnetic path magnetic core remanent magnetism | |
CN111581864B (en) | A method and device for separating loss of a saturated reactor for a converter valve | |
CN104215669A (en) | Method for measuring moisture content of transformer insulation system | |
CN106844901B (en) | Structural part residual strength evaluation method based on multi-factor fusion correction | |
WO2021097888A1 (en) | Motor transient distortion measurement method and system | |
JP6161783B2 (en) | Method for obtaining impedance of power transmission / distribution network by computer support, power generation apparatus and computer program for implementing the method | |
CN105678640B (en) | A Prediction Method of DC Current Distribution in AC Grid Considering Transformer Saturation | |
JP6499829B2 (en) | Method and apparatus for determining wire resistance | |
CN112180177B (en) | Power frequency electromagnetic field evaluation method and system fusing measured data | |
CN104267243B (en) | The measuring method and device of synchronous generator built-in potential and reactance parameter | |
CN103245839B (en) | Method for measuring performance of electrical power insulation equipment and method for measuring inherent phase shifting of current sensor | |
CN112231981B (en) | Method for establishing large-scale electromagnetic transient simulation example | |
CN110492816B (en) | Online identification method for saturation coefficient of parameter of electrically excited synchronous motor | |
CN105548882B (en) | Generator no-load characteristic linearity range discrimination method based on linear condensation degree | |
CN105116303B (en) | A kind of method for estimating test number (TN) needed for 50% sparking voltage test | |
CN105024387B (en) | A kind of device for realizing parameters of power system stabilizer Self-tuning System | |
CN114722659B (en) | A method for calculating the non-uniform coefficient of the electric field between electrodes | |
CN110161363A (en) | Running state of transformer vibration sound detection method and system based on dominant frequency token state | |
CN105553477B (en) | A method of testing analog-to-digital converter RHF1201 based on FLEX |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160316 |
|
RJ01 | Rejection of invention patent application after publication |