CN105402078B - 高传动效率的螺旋型永磁轴承容错结构洋流发电机 - Google Patents

高传动效率的螺旋型永磁轴承容错结构洋流发电机 Download PDF

Info

Publication number
CN105402078B
CN105402078B CN201510760954.7A CN201510760954A CN105402078B CN 105402078 B CN105402078 B CN 105402078B CN 201510760954 A CN201510760954 A CN 201510760954A CN 105402078 B CN105402078 B CN 105402078B
Authority
CN
China
Prior art keywords
permanent
tolerant
screw type
fault
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510760954.7A
Other languages
English (en)
Other versions
CN105402078A (zh
Inventor
吴爱华
茅靖峰
吴国庆
张旭东
吴树谦
朱维南
程莹
顾梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201510760954.7A priority Critical patent/CN105402078B/zh
Publication of CN105402078A publication Critical patent/CN105402078A/zh
Application granted granted Critical
Publication of CN105402078B publication Critical patent/CN105402078B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/1825Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation
    • F03B13/183Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation of a turbine-like wom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/06Bearing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/121Blades, their form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

本发明公开了一种高传动效率的螺旋型永磁轴承容错结构洋流发电机,包括戈尔洛夫螺旋型垂直轴涡轮机、低速永磁直驱多相容错发电机、全永磁悬浮轴承、密封轴承、联轴器、刹车副、功能部件舱和桩基;所述戈尔洛夫螺旋型垂直轴涡轮机的主轴依次通过联轴器、密封轴承、全永磁悬浮轴承与低速永磁直驱多相容错发电机的转子转轴相连;低速永磁直驱多相容错发电机、全永磁悬浮轴承和刹车副安装于功能部件舱内,密封轴承安装于功能部件舱的转轴出口处;桩基与功能部件舱相连。本发明具有启动流速低、传动效率高、带故障运行能力强、发电转矩平滑、模块化程度高、机械结构简单牢固、易维护等特点。

Description

高传动效率的螺旋型永磁轴承容错结构洋流发电机
本申请是申请号:201410169377.X、申请日:2014.4.24、名称“螺旋型永磁轴承容错结构洋流发电机组”的分案申请。
技术领域
本发明涉及一种螺旋型永磁轴承容错结构洋流发电机组。
背景技术
洋流能是指流动的海水所具有的动能,其与流速的平方和流量成正比,具有能量密度大、可预测性强、载荷(流向)稳定和储量丰富等优点。全世界洋流能的理论估算值约为108kW量级,而中国沿海洋流能的年均功率理论值约为1.4×107kW,属于世界上功率密度最大的地区之一,具有良好的开发价值。
已有多位学者就洋流发电提出一些新的方法,如何玉林等人在专利CN201010286167.0中提出的“海上风力及洋流发电系统”,李勇强等人在专利CN201310083144.3中提出的“集聚风发电和洋流发电于一体的发电系统”,叶凡在专利CN201210075937.6中提出的“一种全密封紧凑型漂浮式洋流发电系统”,以及杨科等人在专利CN201210564751.7中提出的“一种深海能源综合利用系统”等,这些方法均对洋流发电系统提出了新的结构或新的装置,以使洋流利用率达到更高、更好的效果。
洋流的流速较低,因此,洋流发电机组涡轮机的额定启动流速需要设计得较低。此外,较小的传动主轴机械磨损损耗、较强的发电机电气可靠性、较高的整机机组模块化程度、较简单牢固的机械结构等,均是洋流发电机组设计中需要考虑达到的性能指标。
戈尔洛夫螺旋型垂直轴涡轮机最早由波士顿东北大学的亚历山大.M.戈尔洛夫教授于1995年提出,其螺旋式结构可使叶片曲线在轴向上的几何分布和载荷分布联系均匀,每个叶片的升力和阻力的力量之和不随旋转角度而突然改变,所以叶片结构和材料的峰值压力小,额定启动速度低、自启动能力强,运行振动和噪声小。目前该涡轮机主要应用于垂直轴风力发电系统中,但从工作原理上,将其应用于低流速的洋流流体发电中也具有一致的良好特性。
全永磁悬浮轴承具有无机械摩擦、无接触磨损、无需润滑等优点,较电磁悬浮轴承结构更简单,稳定性更好,可以有效降低旋转主轴的粘滞阻力、消除机械磨损损耗、提高传动机械效率。而对于流速低、流向稳定、流量变化平缓、载荷较为稳定的洋流发电应用环境,全永磁悬浮轴承部件可以通过较为简化的电磁参数设计即达到较好的支撑效果。
低速永磁直驱多相容错发电机,各相发电相绕组独立控制,较传统的三相发电机,其相绕组的短/断路故障抑制能力强,通过在线切除故障相绕组,可实现不对称情况下的缺相连续运行,并有着高功率密度、强电气可靠性、高模块化特点和良好的转矩平滑特性。为此,将其应用于洋流发电领域可以提高整机电气带故障运行能力,降低发电设备整机失效的几率。
发明内容
本发明的目的在于提供一种结构合理,传动效率高、带故障运行能力强的螺旋型永磁轴承容错结构洋流发电机组。
本发明的技术解决方案是:
一种螺旋型永磁轴承容错结构洋流发电机组,其特征是:包括戈尔洛夫螺旋型垂直轴涡轮机、低速永磁直驱多相容错发电机、全永磁悬浮轴承、密封轴承、联轴器、刹车副、功能部件舱和桩基;所述戈尔洛夫螺旋型垂直轴涡轮机的主轴依次通过联轴器、密封轴承、全永磁悬浮轴承与低速永磁直驱多相容错发电机的转子转轴相连;低速永磁直驱多相容错发电机、全永磁悬浮轴承和刹车副安装于功能部件舱内,密封轴承安装于功能部件舱的转轴出口处;桩基与功能部件舱相连;所述戈尔洛夫螺旋型垂直轴涡轮机、低速永磁直驱多相容错发电机、全永磁悬浮轴承和桩基的数量比为k:(k+1):2(k+1):(k+1);所述(k+1)个低速永磁直驱多相容错发电机之间的安装“错相”角度为2π/(mk),式中m为发电机相数。
所述全永磁悬浮轴承采用被动型斥力悬浮结构,包括外固定套筒、内旋转套筒,在外固定套筒内侧设置外固定隔磁环,在内旋转套筒外周设置内旋转隔磁环,在外固定隔磁环、内旋转隔磁环之间设置外固定永磁环、内旋转永磁环,在外固定永磁环、内旋转永磁环之间设置径向悬浮气隙,内旋转套筒内设置内转轴,在外固定套筒上设置辅助机械轴承;所述外固定永磁环的永磁磁场强度根据洋流流向、戈尔洛夫螺旋型垂直轴涡轮机浮力和整机轴重而非均匀充磁。
所述戈尔洛夫螺旋型垂直轴涡轮机水平安装,其主轴两端各拖动一台低速永磁直驱多相容错发电机。
所述低速永磁直驱多相容错发电机的转子转轴为双伸轴结构。
所述桩基固定在海床上或固定于可操纵的水平横梁上。
与现有技术相比本发明的优点在于:
(1)在水轮机特性方面,采用戈尔洛夫螺旋型垂直轴涡轮机部件,具有额定启动流速低、叶片转速低、转矩平稳、无需洋流迎向装置、无水流涡穴现象等特点,而且中空的涡轮结构和低速的叶片旋转特点不会对附近水生物造成较大的威胁。
(2)在轴承特性方面,采用全永磁悬浮轴承部件和机械轴承相结合的传动方式,在较强的机械支撑稳定性基础上,有效降低了机械轴承的载荷,减小了摩擦粘滞阻力,提高了传动效率;而且平稳的洋流流速及其较单一的流动方向,简化了此类全永磁悬浮轴承的磁体结构参数设计;另因海水水温的冷却作用,永磁体不易发生高温退磁故障。
(3)在发电特性方面,采用低速永磁直驱多相容错发电机部件,各相发电相绕组独立控制,较传统的三相发电机,其相绕组的短/断路故障抑制能力强,通过在线切除故障相绕组,可实现不对称情况下的缺相连续运行,并有着高功率密度、强电气可靠性、高模块化特点和良好的转矩平滑特性。
(4)机械安装特性方面,戈尔洛夫螺旋型垂直轴涡轮机采用水平放置方式,其两端通过桩基固定,机械方面受力均匀、结构牢固,电气方面可连接双台发电机,提高了发电的可靠性;低速永磁直驱多相容错发电机均匀“错相”安装,有效降低了整机的齿槽效应和磁阻效应,使得应用“相数较小的简单结构发电机”即可得到整机转矩脉动小、平滑性好、启动力矩小的良好特性。
(5)在模块化特性方面,机组的发电形式采用模块化并联结构,各水轮机之间和各发电机之间机械连接结构简单,可独立拆卸、组装和维修;电气关联性弱,故障容错运行能力强,增减容量调整方便。
(6)在制造成本方面,模块化的总体结构,减少了机组扩容和维护的成本;无需洋流迎向装置,降低了装置制造成本;应用“相数较小的简单结构发电机”,降低了发电机制造成本,提高了机组的性价比。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为本发明一个实施例的总体结构图。
图2为功能部件舱的内部连接图。
图3为戈尔洛夫螺旋型垂直轴涡轮机结构图。
图4为全永磁悬浮轴承剖面图。
图5为低速永磁直驱多相容错发电机原理图。
图6为多个低速永磁直驱多相容错发电机“错相”安装示意图。
具体实施方式
以一种k=2,m=4结构的固定安装于海床上的螺旋型永磁轴承容错结构洋流发电机组为例,结合附图对本发明作进一步说明。
所述的一种螺旋型永磁轴承容错结构洋流发电机组由戈尔洛夫螺旋型垂直轴涡轮机1、低速永磁直驱多相容错发电机2、全永磁悬浮轴承3、密封轴承4、联轴器5、刹车副6、功能部件舱7、桩基8组成。
参见附图1,戈尔洛夫螺旋型垂直轴涡轮机1的主轴通过联轴器5和密封轴承4与功能部件舱7相连,功能部件舱7的转轴出口安装密封轴承4,功能部件舱7安装于桩基8上,桩基8固定于海床9上或固定于可操纵的水平横梁上。由于本例中k=2,因此,戈尔洛夫螺旋型垂直轴涡轮机1的总数量为2,桩基8和功能部件舱7的总数量均为3。本例中,三个功能部件舱7可依此编号为#1、#2和#3。
参见附图2,三个功能部件舱中均安装有低速永磁直驱多相容错发电机2和全永磁悬浮轴承3,这两类部件通过基座10固定在各自的功能部件舱7中,通过联轴器5同轴相连。其中,编号为#2的功能部件舱中,因为其左右两端均要与一个戈尔洛夫螺旋型垂直轴涡轮机1的主轴连接,为此,安装了刹车副6,以供机组切机检修或是洋流流速过高时的停机保护操作。
根据附图1和附图2可知,本例中k=2,戈尔洛夫螺旋型垂直轴涡轮机1、低速永磁直驱多相容错发电机2、全永磁悬浮轴承3和桩基4的数量比为2:3:6:3。
参见附图3,戈尔洛夫螺旋型垂直轴涡轮机1由旋翼叶毂301、叶片302和主轴303组成。安装时,戈尔洛夫螺旋型垂直轴涡轮机1水平放置,其主轴303两端分别通过联轴器等部件与两个功能部件舱内的两个低速永磁直驱多相容错发电机的转子转轴相连。
参见附图4,全永磁悬浮轴承3由外固定套筒401、内旋转套筒402、外固定永磁环403、内旋转永磁环404、外固定隔磁环405、内旋转隔磁环406、辅助机械轴承407和内转轴408组成。所述全永磁悬浮轴承采用被动型斥力悬浮结构,包括外固定套筒、内旋转套筒,在外固定套筒内侧设置外固定隔磁环,在内旋转套筒外周设置内旋转隔磁环,在外固定隔磁环、内旋转隔磁环之间设置外固定永磁环、内旋转永磁环,在外固定永磁环、内旋转永磁环之间设置径向悬浮气隙,内旋转套筒内设置内转轴,在外固定套筒上设置辅助机械轴承;外固定永磁环403和内旋转永磁环404内的箭头方向代表充磁方向。外固定隔磁环405和内旋转隔磁环406起到隔磁屏蔽作用。正常工作时,外固定套筒401通过基座10固定在功能部件舱7内,静止不动,内转轴408与重力方向G垂直,外固定永磁环403和内旋转永磁环404之间具有悬浮气隙409。由“同极相斥”原理可知,该全永磁悬浮轴承3可以保证在无外力扰动条件下,径向悬浮气隙409保持恒定,内转轴408可以相对于外固定套筒401无摩擦地旋转。辅助机械轴承407作为保护装置,可以保证悬浮功能发生意外故障时,整机转轴支撑的可靠性。
为了克服整机轴重和涡轮机浮力的影响,外固定永磁环403在重力方向上的永磁磁场强度需要适当增强,以使得其与内旋转永磁环404之间的永磁悬浮力,在重力方向上较其他方向上更大。该永磁悬浮力差值大小与整机轴重和涡轮机浮力之差相关。特别地,为了抑制在洋流流动方向上,通过涡轮机对全永磁悬浮轴承3产生的不平衡力载荷,可加强外固定永磁环403在洋流流动方向上的永磁磁场强度,以克服该不平衡力载荷。因此,外固定永磁环403的永磁磁场强度根据洋流流向、戈尔洛夫螺旋型垂直轴涡轮机浮力和整机轴重而非均匀充磁。为了易于非均匀充磁,可以采用多个永磁体拼装结构的海尔贝克阵列(Halbach Array)形式的制造工艺来形成外固定永磁环403。
参见附图5,低速永磁直驱多相容错发电机2由定子轭501、定子齿502、发电相绕组503、定子槽504、转子永磁体505、转子轭506、转子转轴507组成。根据永磁容错电机原理,发电相绕组503在定子齿502上间隔排列,转子永磁体505可按海尔贝克阵列方式进行充磁,其转子上的箭头方向即为永磁体充磁方向。由于本例中,相数m=4,因此,附图5所示低速永磁直驱多相容错发电机2有4个发电相绕组503(图中所示A、B、C、D),转子永磁体505为6极结构。当转子转轴507由戈尔洛夫螺旋型垂直轴涡轮机1的主轴带动旋转时,4个发电相绕组503即发出4组正弦波电能,4个发电相绕组可以分别独立控制以进行最大洋流功率跟踪。而且各发电相绕组之间均由定子齿进行电、磁、热的隔离,因此,任意1个发电相绕组发生短路或断路故障时,控制器可将该故障发电相绕组通过电力电子电路快速隔离,其他非故障发电相绕组不受影响。进一步地,控制器可以通过调节非故障发电相绕组的发电功率及其发电相角的办法,来弥补因切除故障发电相绕组而造成的整机发电功率损失和发电转矩不平衡。所述低速永磁直驱多相容错发电机的转子转轴为双伸轴结构。
参见附图6,本例中,当k=2,m=4时,3个低速永磁直驱多相容错发电机之间的“错相”安装角度为2π/(mk)=π/4。以附图1中,三个功能部件舱7编号#1、#2和#3为序,若#1功能部件舱内发电机的A相安装位置角度为0弧度,则#2功能部件舱内发电机的A相安装位置角度为π/4弧度,#3功能部件舱内发电机的A相安装位置角度为π/2弧度。这种发电机“错相”安装方法可以使得,机组轴上因发电机齿槽效应和磁阻效应而固有的转矩脉动最小化,即应用“相数较小的简单结构发电机”得到了整机转矩脉动小、平滑性好、启动力矩小的良好特性。

Claims (4)

1.一种高传动效率的螺旋型永磁轴承容错结构洋流发电机,其特征是:包括戈尔洛夫螺旋型垂直轴涡轮机、低速永磁直驱多相容错发电机、全永磁悬浮轴承、密封轴承、联轴器、刹车副、功能部件舱和桩基;所述戈尔洛夫螺旋型垂直轴涡轮机的主轴依次通过联轴器、密封轴承、全永磁悬浮轴承与低速永磁直驱多相容错发电机的转子转轴相连;低速永磁直驱多相容错发电机、全永磁悬浮轴承和刹车副安装于功能部件舱内,密封轴承安装于功能部件舱的转轴出口处;桩基与功能部件舱相连;所述戈尔洛夫螺旋型垂直轴涡轮机、低速永磁直驱多相容错发电机、全永磁悬浮轴承和桩基的数量比为k:(k+1):2(k+1):(k+1);所述(k+1)个低速永磁直驱多相容错发电机之间的安装“错相”角度为2π/(mk),式中m为发电机相数;所述全永磁悬浮轴承采用被动型斥力悬浮结构,包括外固定套筒、内旋转套筒,在外固定套筒内侧设置外固定隔磁环,在内旋转套筒外周设置内旋转隔磁环,在外固定隔磁环、内旋转隔磁环之间设置外固定永磁环、内旋转永磁环,在外固定永磁环、内旋转永磁环之间设置径向悬浮气隙,内旋转套筒内设置内转轴,在外固定套筒上设置辅助机械轴承。
2.根据权利要求1所述的高传动效率的螺旋型永磁轴承容错结构洋流发电机,其特征是:所述外固定永磁环的永磁磁场强度根据洋流流向、戈尔洛夫螺旋型垂直轴涡轮机浮力和整机轴重而非均匀充磁。
3.根据权利要求1或2所述的高传动效率的螺旋型永磁轴承容错结构洋流发电机,其特征是:所述桩基固定在海床上。
4.根据权利要求1或2所述的高传动效率的螺旋型永磁轴承容错结构洋流发电机,其特征是:所述桩基固定于可操纵的水平横梁上。
CN201510760954.7A 2014-04-24 2014-04-24 高传动效率的螺旋型永磁轴承容错结构洋流发电机 Expired - Fee Related CN105402078B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510760954.7A CN105402078B (zh) 2014-04-24 2014-04-24 高传动效率的螺旋型永磁轴承容错结构洋流发电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410169377.XA CN103939263B (zh) 2014-04-24 2014-04-24 螺旋型永磁轴承容错结构洋流发电机组
CN201510760954.7A CN105402078B (zh) 2014-04-24 2014-04-24 高传动效率的螺旋型永磁轴承容错结构洋流发电机

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410169377.XA Division CN103939263B (zh) 2014-04-24 2014-04-24 螺旋型永磁轴承容错结构洋流发电机组

Publications (2)

Publication Number Publication Date
CN105402078A CN105402078A (zh) 2016-03-16
CN105402078B true CN105402078B (zh) 2017-08-11

Family

ID=51187096

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201510761008.4A Expired - Fee Related CN105257460B (zh) 2014-04-24 2014-04-24 模块化错相安装多相容错结构洋流发电机组
CN201510763338.7A Expired - Fee Related CN105298726B (zh) 2014-04-24 2014-04-24 螺旋型多相容错结构洋流发电机组
CN201410169377.XA Expired - Fee Related CN103939263B (zh) 2014-04-24 2014-04-24 螺旋型永磁轴承容错结构洋流发电机组
CN201510760954.7A Expired - Fee Related CN105402078B (zh) 2014-04-24 2014-04-24 高传动效率的螺旋型永磁轴承容错结构洋流发电机
CN201510762084.7A Expired - Fee Related CN105298716B (zh) 2014-04-24 2014-04-24 带故障运行能力强的多相容错结构洋流发电机组

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201510761008.4A Expired - Fee Related CN105257460B (zh) 2014-04-24 2014-04-24 模块化错相安装多相容错结构洋流发电机组
CN201510763338.7A Expired - Fee Related CN105298726B (zh) 2014-04-24 2014-04-24 螺旋型多相容错结构洋流发电机组
CN201410169377.XA Expired - Fee Related CN103939263B (zh) 2014-04-24 2014-04-24 螺旋型永磁轴承容错结构洋流发电机组

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510762084.7A Expired - Fee Related CN105298716B (zh) 2014-04-24 2014-04-24 带故障运行能力强的多相容错结构洋流发电机组

Country Status (1)

Country Link
CN (5) CN105257460B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257460B (zh) * 2014-04-24 2017-09-22 南通大学 模块化错相安装多相容错结构洋流发电机组
CN111425354B (zh) * 2020-04-03 2021-06-08 西安热工研究院有限公司 一种与近海水平轴风力机塔筒相结合的垂直轴磁悬浮潮流能发电装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229689A (en) * 1979-11-05 1980-10-21 Nickoladze Leo G AC Synchronized generator
DE102004058258A1 (de) * 2004-12-03 2006-06-08 Voith Turbo Gmbh & Co. Kg Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung
CN2779097Y (zh) * 2005-02-28 2006-05-10 林梦魁 高效漂浮水轮机
CN1936321A (zh) * 2006-09-04 2007-03-28 陈亚洲 发电机轴串联连接的风力发电机
US7849596B2 (en) * 2007-11-19 2010-12-14 Ocean Renewable Power Company, Llc High efficiency turbine and method of making the same
US8393853B2 (en) * 2007-11-19 2013-03-12 Ocean Renewable Power Company, Llc High efficiency turbine and method of generating power
CN201260109Y (zh) * 2008-09-22 2009-06-17 韩金福 多转子组合式恒压直流发电机组
CN201650563U (zh) * 2010-01-12 2010-11-24 冯永鸿 高压力多机组串联式水力发电系统
WO2011156435A1 (en) * 2010-06-09 2011-12-15 Michael Fuquan Lee Intelligent control wave energy power generating system
CN101922418B (zh) * 2010-09-19 2011-11-09 重庆大学 海上风力及洋流发电系统
CN202117834U (zh) * 2011-06-21 2012-01-18 国电联合动力技术有限公司 一种双馈异步发电机变速恒频型海流发电系统
US9945348B2 (en) * 2011-12-22 2018-04-17 Ocean Power Technologies, Inc. Ocean wave energy converter including control system for disabling active rectification when generator output power is less than a conversion loss
CN102588193A (zh) * 2012-03-21 2012-07-18 国电联合动力技术有限公司 一种全密封紧凑型漂浮式洋流发电系统
CN103047085B (zh) * 2012-12-22 2014-12-03 中国科学院工程热物理研究所 一种深海能源综合利用系统
CN103133226A (zh) * 2013-03-15 2013-06-05 江苏中蕴风电科技有限公司 集聚风发电和洋流发电于一体的发电系统
CN105257460B (zh) * 2014-04-24 2017-09-22 南通大学 模块化错相安装多相容错结构洋流发电机组

Also Published As

Publication number Publication date
CN105257460A (zh) 2016-01-20
CN105298726A (zh) 2016-02-03
CN105257460B (zh) 2017-09-22
CN105402078A (zh) 2016-03-16
CN103939263A (zh) 2014-07-23
CN105298726B (zh) 2017-09-08
CN105298716B (zh) 2017-06-16
CN103939263B (zh) 2016-04-13
CN105298716A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
Davey et al. Axial flux cycloidal magnetic gears
CN104600930A (zh) 永磁励磁无刷双馈风力发电机
CN104578630A (zh) 双定子永磁无刷双馈风力发电机
CN105141069A (zh) 一种高性价比磁悬浮水平轴风力发电机组
CN108425804B (zh) 一种低风速垂直轴风力发电机及其控制方法
CN102780340A (zh) 同步风力涡轮发电机
CN102364094A (zh) 一种双向风筒式磁悬浮风力发电装置
CN106917723A (zh) 大型感应子可带磁悬浮结构风力发电机组
CN105402078B (zh) 高传动效率的螺旋型永磁轴承容错结构洋流发电机
CN104158377B (zh) 一种应用于海上平台的风浪开关磁阻发电机系统
CN109488541A (zh) 磁悬浮轴承垂直轴双风力发电装置
GB2449436A (en) Fluid driven generator
Patel et al. Design and performance analysis of a magnetically levitated vertical axis wind turbine based axial flux PM generator
CN108282120A (zh) 用于风力发电的双定子永磁同步发电机控制系统及方法
CN103904856B (zh) 一种具有初始自励磁能力的无刷谐波励磁同步发电机
CN209569120U (zh) 基于径向励磁与永磁的混合磁轴承双风力发电机
CN108282064B (zh) 一种交流及永磁混合励磁双馈风力发电机及发电系统
CN203796479U (zh) 新型螺旋型永磁轴承容错结构洋流发电机组
CN108521195A (zh) 低转速直驱发电机
CN104775984B (zh) 一种电液发电机及风力电液发电系统
CN106972696A (zh) 分布式流能发电装置
KR20120119233A (ko) 영구 및 전자석을 사용한 하이브리드 여자 방식의 발전기
CN102359436A (zh) 一种直驱式高空发电的地面风力发电机组
TW201020391A (en) Synchronous generator for direct driving wind power/tide
CN107276111A (zh) 新型水利发电配置系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170811

Termination date: 20180424