CN105401937B - 一种基于孔隙结构的饱和度指数预测方法 - Google Patents

一种基于孔隙结构的饱和度指数预测方法 Download PDF

Info

Publication number
CN105401937B
CN105401937B CN201510767072.3A CN201510767072A CN105401937B CN 105401937 B CN105401937 B CN 105401937B CN 201510767072 A CN201510767072 A CN 201510767072A CN 105401937 B CN105401937 B CN 105401937B
Authority
CN
China
Prior art keywords
saturation
rock core
spectrum
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510767072.3A
Other languages
English (en)
Other versions
CN105401937A (zh
Inventor
李霞
徐红军
王铜山
王昌学
朱大伟
李潮流
李长喜
胡法龙
刘忠华
俞军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201510767072.3A priority Critical patent/CN105401937B/zh
Publication of CN105401937A publication Critical patent/CN105401937A/zh
Application granted granted Critical
Publication of CN105401937B publication Critical patent/CN105401937B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种基于孔隙结构的饱和度指数预测方法,包括:步骤1,选取目的层有代表性的岩心样品,用一定浓度的盐溶液进行饱和,测量饱和状态岩心的核磁共振T2谱;步骤2,利用离心机在不同的转速下对饱和状态岩心进行离心,并分别测量不同离心状态下岩心的核磁共振T2谱;步骤3,计算饱和状态岩心的核磁共振T2谱的T2几何均值,不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度;步骤4,构建T2谱分布变化率,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′;步骤5,根据岩心孔隙度指数n′预测岩心饱和度指数,并确定目的层饱和度指数。

Description

一种基于孔隙结构的饱和度指数预测方法
技术领域
本发明涉及石油勘探中的油气藏储层测井评价技术领域,特别涉及一种基于孔隙结构的饱和度指数预测方法。
背景技术
在石油勘探开发中,测井评价的主要任务是基于测井获得的一系列参数以完成对测井油气层的识别和定量评价油气层。其中,一系列参数中的含油饱和度参数能够影响产层类型判断和储量计算的精度,因此在油气藏储层测井评价中显得极为重要。
含油饱和度一方面是油气层识别的基本依据。目前进行测井评价时,通常需要以饱和度作为划分产层依据,来确定油层、水层、油水同层、含油水层等类型,若含油饱和度计算不准确,则会影响并误判产层的类型。
另一方面,含油饱和度计算的结果决定了油气层定量评价的精度,其会直接影响以含油饱和度为主要参数的储量计算的精度。
现有的确定含油饱和度的方法,主要是利用阿尔奇公式计算含水饱和度,进而得到含油饱和度。Archie(阿尔奇)最早提出了油气层电阻率—含水饱和度之间的关系式,即Archie公式,如下所示:
其中,Rw为地层水电阻率,单位为Ω·m(欧姆·米);
Rt为岩石电阻率,单位为Ω·m;
φ为岩石孔隙度,小数;
Sw为含水饱和度,小数;
n为饱和度指数,单位为无因次量纲;
m为胶结指数,单位为无因次量纲;
a、b为与岩性有关的系数,其取值通常为1.0。
上述Archie公式主要适用于粒间孔隙且物性较好,即具有较单一的孔隙大小分布的砂岩储层。目前,随着油气勘探的不断深入,非常规致密砂岩油气、页岩油气等复杂储层油气藏逐渐成为勘探的潜力区。对于测井评价而言,复杂的孔隙结构控制了复杂储层的渗流与导电能力,直接影响了储集层的物性参数和油气水层的电性响应特征。对致密砂岩储集层而言,由于其孔隙度和渗透率很低,特别是储层喉道细小,孔喉结构复杂,经常导致致密砂岩的岩石电性实验难以开展,即通常的驱替方法难以驱替出致密砂岩中的水,即开展致密砂岩电学实验难度大且耗时长。
对于中高孔渗砂岩储层,其储集空间通常为粒间孔隙,并且孔隙和喉道的大小发育较为均一,可认为是均质储层,即孔隙结构相对简单(可近似认为具有相同的孔隙结构),因此,其饱和度指数n通常为固定值。
而对于致密砂岩储层,通常其储集空间类型多样,粒间孔隙、粒内孔隙及微孔隙均有发育,且孔隙和喉道的大小分布也不均一,通常为非均质储层,即具有复杂的孔隙结构。因此,致密砂岩储层的电性响应不再是含油饱和度的单调函数,而是含油饱和度和孔隙结构的综合函数。也就是说,对孔隙结构具有一定响应的致密砂岩储层饱和度指数n也不再是固定值,而是随着孔隙结构的变化而变化,因此,为了准确计算复杂孔隙结构致密砂岩储层的含油饱和度,需要确定饱和度指数n值随孔隙结构变化的规律。
发明内容
本发明提出了一种基于孔隙结构并利用核磁共振测井技术进行预测砂岩储层饱和度指数的方法,该方法实现了考虑孔隙结构变化获取致密砂岩储层的饱和度指数,能够较为准确地确定致密砂岩储层含油饱和度。
核磁共振测井信号是唯一能够提供反映孔径分布信息的测井资料。假设岩石为水润湿并饱和水,并且核磁共振测井或实验室采集/测量模式适当(有足够长的极化时间Tw和足够小的回波间隔TE),经反演得到的T2分布可以反映岩石的孔径分布。因此,可以考虑从核磁共振T2谱中提取孔隙结构参数间接的反映岩石的电性变化规律。
本发明提出的一种基于孔隙结构的饱和度指数预测方法包括:步骤1,选取目的层有代表性的岩心样品,用一定浓度的盐溶液进行饱和,测量饱和状态岩心的核磁共振T2谱;步骤2,利用离心机在不同的转速下对饱和状态岩心进行离心,并分别测量不同离心状态下岩心的核磁共振T2谱;步骤3,计算饱和状态岩心的核磁共振T2谱的T2几何均值,不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度;步骤4,构建T2谱分布变化率,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′;步骤5,根据岩心孔隙度指数n′预测岩心饱和度指数,并确定目的层饱和度指数。
进一步的,在步骤1中,盐溶液采用氯化钠溶液,浓度大小根据研究目的层位的地层水矿化度来确定。
进一步的,在步骤2中,利用离心机在不同的转速下对饱和状态岩心进行离心,并分别测量不同转速离心后岩心离心状态的核磁共振T2谱,包括:根据离心机的最大转速选取多个固定的转速值,对每块岩心分别采用选定的多个固定的转速值进行离心,逐渐驱替岩心中的可动水,改变岩心的含水饱和度,并分别测量不同离心状态下岩心的核磁共振T2谱。
进一步的,在步骤3中,计算饱和状态的核磁共振T2谱的T2几何均值,利用的公式如下:
其中,T2go为饱和状态的核磁共振T2谱的T2几何均值,单位为ms;
φnmr为在饱和状态下核磁共振T2谱确定的孔隙度,单位为%;
T2i为横向弛豫时间分量,单位为ms;
φi为孔隙度分量,单位为%;
N为T2横向弛豫时间分量的个数。
进一步的,在步骤3中,计算不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度,利用的公式如下:
其中,T2gt为离心状态T2谱几何均值,单位为ms;
φpsa为在离心状态下核磁共振T2谱确定的孔隙度,单位为%;
Sw为含水饱和度,无量纲。
进一步的,在步骤4中,构建T2谱分布变化率,利用的公式如下:
其中,G为T2谱分布变化率,无量纲;
T2go为饱和状态T2谱几何均值,单位为ms;
T2gt为离心状态T2谱几何均值,单位为ms;
在步骤4中,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′,利用的公式如下:
其中,n′为孔隙结构指数,无量纲;
Sw为含水饱和度,无量纲;
b′为系数,取值为1。
进一步的,在步骤5中,建立函数关系:n=f(n′),根据岩心孔隙度指数n′预测岩心饱和度指数n,并根据目的层所有实验岩心的T2谱分布变化率与含水饱和度变化关系曲线采用最小二乘法拟合确定目的层饱和度指数
本发明提出的基于孔隙结构的饱和度指数预测方法,通过从不同含水饱和度核磁共振T2谱中提取反映电性变化的孔隙结构参数,预测致密砂岩储层的饱和度指数,由于考虑了孔隙结构对电性影响的因素,因此,本发明能够较为准确地确定致密砂岩储层含油饱和度,为测井油气层识别和定量评价提供准确依据。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1是本发明一实施例的基于孔隙结构的饱和度指数预测方法流程图。
图2是本发明一具体实施例中对一块岩心样品进行饱和及4种不同转速离心后,进行核磁共振T2谱实验获得的饱和状态和离心状态核磁共振T2谱示意图。
图3是本发明一具体实施例中对一块致密砂岩岩心计算的饱和状态和离心状态下的T2几何均值与含水饱和度的变化关系示意图。
图4是本发明一具体实施例中确定的一块致密砂岩岩心的T2分布变化率与含水饱和度关系图。
图5是本发明一具体实施例中确定的所有岩心孔隙结构指数与饱和度指数的相关关系图。
图6是本发明一具体实施例中目的层位所有岩心的T2分布变化率与含水饱和度关系图。
具体实施方式
下面将结合附图和具体实施例,对本发明的技术方案作详细说明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求所限定的范围内。
本发明提供一种确定致密砂岩储层饱和度的方法,其通过确定饱和度指数随孔隙结构变化的规律,能够较为准确地确定致密砂岩储层饱和度,以为测井油气层识别和定量评价的精度提供准确依据。
图1是本发明一实施例的基于孔隙结构的饱和度指数预测方法流程图。如图1所示,该方法包括:
步骤1,选取目的层有代表性的岩心样品,用一定浓度的盐溶液进行饱和,测量饱和状态岩心的核磁共振T2谱。
其中,具有代表性的岩心样品主要是指,岩心参数(孔隙度、渗透率参数)能够代表研究目的层位参数分布的大部分范围的岩心,选择的岩心不能是其参数分布在一个很局限的范围内,而不反映整个目的层孔隙度和渗透率参数分布的情况。
在本实施例中,一定浓度的盐溶液一般是根据研究目的层位的地层水类型及其矿化度大小来确定。具体的,如目的层位地层水为氯化钠型,矿化度为20000ppm,则在实验室配置的盐溶液也选用氯化钠,矿化度为20000ppm。
饱和状态岩心的核磁共振T2谱实验测量是按照《岩样核磁共振参数实验室测量规范(SY/T6490-2014)》标准流程进行。
步骤2,利用离心机在不同的转速下对饱和状态岩心进行离心,并分别测量不同离心状态下岩心的核磁共振T2谱。
不同离心转速的设定主要根据致密砂岩的致密程度(即渗透率大小)和离心机允许的最大转速来综合选取,可以选取多个固定的转速值。例如,对渗透率大于或等于0.05×10-3μm2的致密砂岩岩心,离心速率可选为3000转、6000转、9000转和12000转四个转速。对饱和状态岩心分别用离心机按照上述4个转速(依次从小到大)进行高速离心,目的是逐渐驱替岩心中的可动水,改变岩心的含水饱和度,并测量每一次离心后岩心的核磁共振离心T2谱,实验测量方式按照《岩样核磁共振参数实验室测量规范(SY/T6490-2014)》标准流程进行。
步骤3,计算饱和状态岩心的核磁共振T2谱的T2几何均值,不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度。
在优选的实施方式中,计算饱和状态的核磁共振T2谱的T2几何均值,利用的公式如下:
其中,T2go为饱和状态的核磁共振T2谱的T2几何均值,单位为ms;
φnmr为在饱和状态下核磁共振T2谱确定的孔隙度,单位为%;
T2i为横向弛豫时间分量,单位为ms;
φi为孔隙度分量,单位为%;
N为T2横向弛豫时间分量的个数。
在优选的实施方式中,计算不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度,利用的公式如下:
其中,T2gt为离心状态T2谱几何均值,单位为ms;
φpsa为在离心状态下核磁共振T2谱确定的孔隙度,单位为%;
Sw为含水饱和度,无量纲。
步骤4,构建T2谱分布变化率,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′。
在优选的实施方式中,构建T2谱分布变化率,利用的公式如下:
其中,G为T2谱分布变化率,无量纲;
T2go为饱和状态T2谱几何均值,单位为ms;
T2gt为离心状态T2谱几何均值,单位为ms。
在优选的实施方式中,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′,利用的公式如下:
其中,n′为孔隙结构指数,无量纲;
Sw为含水饱和度,无量纲;
b′为系数,取值为1。
步骤5,根据岩心孔隙度指数n′预测岩心饱和度指数,并确定目的层饱和度指数。
在优选的实施方式中,根据岩心孔隙度指数n′预测岩心饱和度指数n,即建立函数关系:n=f(n′),并根据目的层所有实验岩心的T2谱分布变化率与含水饱和度变化关系曲线采用最小二乘法拟合确定目的层饱和度指数
为了对上述基于孔隙结构的饱和度指数预测方法进行更为清楚的解释,下面结合一个具体的实施例来进行说明,然而值得注意的是该实施例仅是为了更好地说明本发明,并不构成对本发明不当的限定。
结合图1所述方法的步骤1,选择某一油田区块一个层位的致密砂岩油气储层段作为待研究的目的层,收集目的层段的岩心资料和测井资料,并根据这些资料选出了具有代表性的岩心样品7块。岩心样品的孔隙度在6.0%~12.0%之间,渗透率在0.005×10-3μm2至0.3×10-3μm2之间。
对每块岩心采用矿化度为20000ppm的氯化钠溶液进行饱和,按照《岩样核磁共振参数实验室测量规范(SY/T6490-2014)》标准流程对岩心进行核磁共振饱和T2谱实验测量。
结合步骤2,对饱和状态岩心用离心机选取不同转速进行离心,并分别测量不同转速离心后,离心状态岩心的核磁共振T2谱。离心速率选为3000转、6000转、9000转和12000转四个转速。对饱和岩心分别用离心机按照上述4个转速(依次从小到大)进行高速离心,目的是逐渐驱替岩心中的可动水,改变岩心的含水饱和度,并测量每一次离心后岩心的核磁共振离心T2谱,实验测量方式按照《岩样核磁共振参数实验室测量规范(SY/T6490-2014)》标准流程进行。
请参照图2,图2是本发明一具体实施例中对一块岩心样品进行饱和及4种不同转速离心后,进行核磁共振T2谱实验获得的饱和状态和离心状态核磁共振T2谱示意图。
结合步骤3,对每块岩心样品计算饱和状态岩心的核磁共振T2谱的T2几何均值,不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度。
请参照图3,图3是本发明一具体实施例中对一块致密砂岩岩心计算的饱和状态和离心状态下的T2几何均值与含水饱和度的变化关系示意图。
结合步骤4,构建T2谱分布变化率,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′,利用这个参数可以反映不同含水饱和度下岩心中导电部分的孔隙结构的变化规律。
请参见图4,图4是本发明一具体实施例中确定的一块致密砂岩岩心的T2分布变化率与含水饱和度关系图。对于图4中致密砂岩岩心,根据T2谱分布变化率与含水饱和度变化关系曲线并利用计算公式通过最小二乘拟合法可以得到该岩心的孔隙结构指数n′=2.036,系数b′=1。
进一步的,可以对本具体实施例中的7块岩心均采用上述方法,计算每块岩心对应的孔隙结构指数n′。
结合步骤5,将孔隙结构指数n′与这些岩心利用岩电实验获得的饱和度指数n进行相关性对比分析。
图5是本发明一具体实施例中确定的所有岩心孔隙结构指数n′与饱和度指数n的相关关系图。由该图可以看出,孔隙结构指数n′能够较好的反映饱和度指数n的大小,两者基本在45度线附近,进一步说明了利用不同含水饱和度下核磁T2谱几何均值的变化可以反映致密砂岩电性的变化规律(n值的变化规律)。
根据岩心孔隙结构指数n′与岩心饱和度指数n的关系,可以建立如下函数关系:n=f(n′),即可以利用孔隙结构指数n′来预测岩心饱和度指数n的大小。在本具体实施例中,n=A·n′,其中系数A=1。
对本具体实施例中研究目的层的7块岩心,绘制T2谱分布变化率与含水饱和度变化关系图,请参见图6,并根据目的层所有实验岩心的T2谱分布变化率与含水饱和度变化关系曲线采用最小二乘法拟合确定目的层饱和度指数 完成饱和度指数预测。
本说明书中的上述实施例均采用递进的方式描述,各个实施例之间相同或相似部分可以作为相互参照。
本发明提出的基于孔隙结构的饱和度指数预测方法,通过从不同含水饱和度核磁共振T2谱中提取反映电性变化的孔隙结构参数,预测致密砂岩储层的饱和度指数,由于考虑了孔隙结构对电性影响的因素,因此,本发明能够较为准确地确定致密砂岩储层含油饱和度,为测井油气层识别和定量评价提供准确依据。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于孔隙结构的饱和度指数预测方法,其特征在于,包括:
步骤1,选取目的层有代表性的岩心样品,用一定浓度的盐溶液进行饱和,测量饱和状态岩心的核磁共振T2谱;
步骤2,利用离心机在不同的转速下对饱和状态岩心进行离心,并分别测量不同离心状态下岩心的核磁共振T2谱;
步骤3,计算饱和状态岩心的核磁共振T2谱的T2几何均值,不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度;
步骤4,构建T2谱分布变化率,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′;
步骤5,根据岩心孔隙度指数n′预测岩心饱和度指数,并确定目的层饱和度指数;
其中,在步骤4中,构建T2谱分布变化率,利用的公式如下:
其中,G为T2谱分布变化率,无量纲;
T2go为饱和状态T2谱几何均值,单位为ms;
T2gt为离心状态T2谱几何均值,单位为ms;
在步骤4中,根据T2谱分布变化率与含水饱和度变化关系曲线,获取岩心孔隙结构指数n′,利用的公式如下:
其中,n′为孔隙结构指数,无量纲;
Sw为含水饱和度,无量纲;
b′为系数,取值为1。
2.根据权利要求1所述的基于孔隙结构的饱和度指数预测方法,其特征在于,在步骤1中,盐溶液采用氯化钠溶液,浓度大小根据研究目的层位的地层水矿化度来确定。
3.根据权利要求1所述的基于孔隙结构的饱和度指数预测方法,其特征在于,在步骤2中,利用离心机在不同的转速下对饱和状态岩心进行离心,并分别测量不同转速离心后岩心离心状态的核磁共振T2谱,包括:
根据离心机的最大转速选取多个固定的转速值,对每块岩心分别采用选定的多个固定的转速值进行离心,逐渐驱替岩心中的可动水,改变岩心的含水饱和度,并分别测量不同离心状态下岩心的核磁共振T2谱。
4.根据权利要求1所述的基于孔隙结构的饱和度指数预测方法,其特征在于,在步骤3中,计算饱和状态的核磁共振T2谱的T2几何均值,利用的公式如下:
其中,T2go为饱和状态的核磁共振T2谱的T2几何均值,单位为ms;
φnmr为在饱和状态下核磁共振T2谱确定的孔隙度,单位为%;
T2i为横向弛豫时间分量,单位为ms;
φi为孔隙度分量,单位为%;
N为T2横向弛豫时间分量的个数。
5.根据权利要求4所述的基于孔隙结构的饱和度指数预测方法,其特征在于,在步骤3中,计算不同离心状态下岩心的核磁共振T2谱的T2几何均值及岩心含水饱和度,利用的公式如下:
其中,T2gt为离心状态T2谱几何均值,单位为ms;
φpsa为在离心状态下核磁共振T2谱确定的孔隙度,单位为%;
Sw为含水饱和度,无量纲。
6.如权利要求1所述的基于孔隙结构的饱和度指数预测方法,其特征在于,在步骤5中,建立函数关系:n=f(n′),根据岩心孔隙度指数n′预测岩心饱和度指数n,并根据目的层所有实验岩心的T2谱分布变化率与含水饱和度变化关系曲线采用最小二乘法拟合确定目的层饱和度指数
CN201510767072.3A 2015-11-11 2015-11-11 一种基于孔隙结构的饱和度指数预测方法 Active CN105401937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510767072.3A CN105401937B (zh) 2015-11-11 2015-11-11 一种基于孔隙结构的饱和度指数预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510767072.3A CN105401937B (zh) 2015-11-11 2015-11-11 一种基于孔隙结构的饱和度指数预测方法

Publications (2)

Publication Number Publication Date
CN105401937A CN105401937A (zh) 2016-03-16
CN105401937B true CN105401937B (zh) 2018-09-04

Family

ID=55467652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510767072.3A Active CN105401937B (zh) 2015-11-11 2015-11-11 一种基于孔隙结构的饱和度指数预测方法

Country Status (1)

Country Link
CN (1) CN105401937B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050225B (zh) * 2016-06-06 2019-03-12 中国石油天然气集团公司 一种核磁共振测井t2谱100%纯水谱的确定方法
CN111352155B (zh) * 2018-12-21 2022-06-03 中国石油天然气股份有限公司 流体识别方法及装置
CN111441765B (zh) * 2019-01-16 2023-12-26 中国石油天然气股份有限公司 一种含裂缝致密油藏空气重力驱潜力评价实验方法及装置
CN112147172A (zh) * 2019-06-27 2020-12-29 中国石油化工股份有限公司 基于核磁共振t2谱评估含水饱和度的方法和装置
CN112782477B (zh) * 2019-11-11 2024-05-14 中国石油化工股份有限公司 一种测定岩心不同润湿状态下电性响应特征的方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725344B (zh) * 2008-10-29 2015-02-25 中国石油天然气集团公司 一种确定岩电参数的方法
CN102141637B (zh) * 2010-01-28 2012-10-17 中国石油天然气股份有限公司 一种利用核磁共振测井资料连续定量评价储集层孔隙结构的方法
CN102434152B (zh) * 2011-12-05 2014-07-23 中国石油天然气股份有限公司 一种储层含油饱和度的计算方法
CN104278989B (zh) * 2013-07-02 2017-02-15 中国石油天然气股份有限公司 一种获取低孔低渗储层饱和度指数的方法
CN104453874B (zh) * 2014-10-23 2017-04-12 中国石油天然气集团公司 一种基于核磁共振的砂砾岩储层含油饱和度的计算方法

Also Published As

Publication number Publication date
CN105401937A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
US11112527B2 (en) Method and system for determining heterogeneous carbonate reservoir saturation exponent
CN105114064B (zh) 确定致密砂岩储层饱和度的方法
CN105401937B (zh) 一种基于孔隙结构的饱和度指数预测方法
CN105464654B (zh) 确定致密砂岩饱和度指数的方法及装置
CN109838230B (zh) 油藏水淹层的定量评价方法
CN106501144B (zh) 一种基于核磁共振双截止值的致密砂岩渗透率计算方法
Xiao et al. Estimation of water saturation from nuclear magnetic resonance (NMR) and conventional logs in low permeability sandstone reservoirs
CN102434152B (zh) 一种储层含油饱和度的计算方法
CN101892837B (zh) 地层因数确定方法及含油饱和度确定方法
US8362767B2 (en) Continuous wettability logging based on NMR measurements
CN104863574B (zh) 一种适用于致密砂岩储层的流体识别方法
CN106951660A (zh) 一种海相碎屑岩水平井储层测井解释方法及装置
CN104453874B (zh) 一种基于核磁共振的砂砾岩储层含油饱和度的计算方法
CN105525917B (zh) 识别储层的方法以及识别储层中流体类型的方法
EP3665471B1 (en) Methods and systems for determining bulk density, porosity, and pore size distribution of subsurface formations
CN106154343B (zh) 计算致密油储层的含油饱和度的方法
CN106050225A (zh) 一种核磁共振测井t2谱100%纯水谱的确定方法
CN105447762B (zh) 一种流体替换的低渗透油藏水淹信息的计算方法
CN106323835B (zh) 确定非均质碳酸盐岩储层胶结指数的方法
CN110320139A (zh) 缝洞型储层裂缝孔隙度定量评价方法及系统
CN106355571B (zh) 一种白云岩储层质量的确定方法及装置
CN108020488A (zh) 致密砂岩的润湿性获取方法、装置、介质及电子设备
CN109117505A (zh) 一种基于介电实验的孔隙结构储层冲洗带含水饱和度计算方法
Wang et al. A novel model of predicting Archie’s cementation factor from nuclear magnetic resonance (NMR) logs in low permeability reservoirs
Liang et al. Tight gas sandstone reservoirs evaluation from nuclear magnetic resonance (NMR) logs: case studies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant