CN105399061B - A kind of preparation method of one-dimensional tin selenide monocrystal nanowire - Google Patents

A kind of preparation method of one-dimensional tin selenide monocrystal nanowire Download PDF

Info

Publication number
CN105399061B
CN105399061B CN201510796786.7A CN201510796786A CN105399061B CN 105399061 B CN105399061 B CN 105399061B CN 201510796786 A CN201510796786 A CN 201510796786A CN 105399061 B CN105399061 B CN 105399061B
Authority
CN
China
Prior art keywords
temperature resistant
high temperature
preparation
boiler tube
snse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510796786.7A
Other languages
Chinese (zh)
Other versions
CN105399061A (en
Inventor
刘玫
高翾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Normal University
Case Western Reserve University
Original Assignee
Shandong Normal University
Case Western Reserve University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University, Case Western Reserve University filed Critical Shandong Normal University
Priority to CN201510796786.7A priority Critical patent/CN105399061B/en
Publication of CN105399061A publication Critical patent/CN105399061A/en
Application granted granted Critical
Publication of CN105399061B publication Critical patent/CN105399061B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a kind of preparation method of one-dimensional tin selenide monocrystal nanowire; SnSe powder is placed in high-temperature resistant container; and put it into high temperature resistant boiler tube; boiler tube is put into vacuum tube furnace; base material with catalyst is placed in the boiler tube, closed boiler tube, makes to be in anaerobic vacuum state inside the boiler tube; protective gas is passed through afterwards, and adjusts intraductal pressure to 10 50 Torr;Open heater, the central high temperature area of the vacuum tube furnace is heated to 550 650 DEG C, mobile boiler tube pipe, the high-temperature resistant container in the placement source is located at central high temperature area, the substrate with catalyst and be located at low-temperature region, stopping heating obtaining one-dimensional inorganic nanometer wire structural material after the completion of maintenance said temperature treats nanowire growth.The method of SnSe nano wires prepared by the method is simple, practical, and product component is single, and the length of obtained SnSe nano wires, diameter are easily controlled, and yield is high.

Description

A kind of preparation method of one-dimensional tin selenide monocrystal nanowire
Technical field
The present invention relates to a kind of preparation method of one-dimensional tin selenide monocrystal nanowire, belong to semiconductor phase-change storage material skill Art field.
Background technology
Stannic selenide (SnSe) is a kind of important group IV-VI semiconductor, belongs to typical laminated metal chalcogen compound (LMCs), the indirect band gap of its body phase material is 0.90eV, and direct band gap is 1.30eV, can absorb the exhausted big portion of solar spectrum Point, with superior electricity, optical property, while also having, thermal property is excellent, earth resource is abundant, environment-friendly, change Property stabilization and the low feature of cost are learned, in infrared electro instrument, memory switching switch, thermoelectric-cooled material, optical filter, optics Deposited in terms of recording materials, solar cell material, super-ionic material, sensor and laser material, the solid-phase media of hologram In huge application value.
In terms of the research of early stage is concentrated mainly on the thermoelectric property research of SnSe crystalline materials.In recent years, as phase transformation is deposited The rise of investigation of materials upsurge is stored up, SnSe materials are due to average with the phase-change storage material-GeTe identicals of current main flow Valence electron number, approximate energy gap (GeTe:0.73-0.95eV, SnSe:0.95eV), and room temperature heat endurance is good, crystallization Speed is big, and the advantages of crystallization time is short is very suitable for the lifting of data holding ability, gradually causes the concern of people.But with Going deep into for research, people gradually have found, it is single that the phase change memory device of SnSe crystal series has an energy gap, continues resistance to By poor in terms of property, the problem of can only maintaining less in terms of individual erasable circulation.And compare, low-dimension nano material has huge Big specific surface area and the contribution of enhanced surface conductance.The anisotropic geometry feature of its one-dimensional material and the two of exciton Dimension limitation, makes that the transmission of its carrier is limited in two dimensional surface, density of electronic states is greatly improved, and electrical conductivity is accordingly reduced, from And the electricity completely different with body material, optically and thermally machinery, property are shown, therefore show the nano particle than zero dimension More superior property.
But, from the point of view of the preparation and progress with regard to current low-dimensional SnSe nano materials, however it remains yield is small, easily by oxygen Change, containing the problems such as impurity is more, electrical properties are unstable, such as:2003, Qian etc. with hydro-thermal method it is tentative be prepared for selenizing Stannum nanowire (Chem.Lett., 2003,32,426), but its obtained stannic selenide nanowire diameter reaches 50nm, product amount It is extremely few, and pattern is difficult to control to, simultaneously containing very many impurity (pattern and tin oxide of such as non-nano line);2006 Year, Zhao etc. using Woelm Alumina and porous silicon be template prepare SnSe nano wires (Angew.Chem.Int.Ed., 2006, 45,311), but its obtained selenizing stannum nanowire is polycrystalline, and the reaction time is up to 36 hours, obtains before pure products more Cumbersome operation is needed to remove alumina formwork;2011, the molten liquid-liquid phase-solid phase method of the utilization such as Liu (Solution- Liquid-Solid, SLS) by the use of Bi nano particles as catalyst, SnSe nano wires are prepared for, but XRD test results are shown The SnSe prepared using this method crystal orientation is not single (Angew.Chem.Int.Ed., 2011,50,12050);2014, Butt etc. is by the use of Sn and Se simple substance as raw material using chemical vapor deposition (Chemical Vapor Deposition, CVD) side Method prepares SnSe nano wires, but prepare in product still containing many nanometer plates or lance type nanobelt (CrystEngComm, 2014,16,3470).So the system of high-quality one-dimensional SnSe monocrystal nanowires that are thinner, can accurately controlling Sn, Se ratio Standby is still at present urgent problem to be solved.
The content of the invention
The purpose of the present invention is just to provide for a kind of preparation method of one-dimensional tin selenide monocrystal nanowire, using solution-air- Gu the high-quality one-dimensional SnSe nano wires of growth mechanism.The method has that preparation method is simple, easily controllable, stable components uniform, The advantages of nanowire diameter is homogeneous adjustable, the SnSe nano wires prepared with the method also have more preferable electric property.
To achieve the above object, the present invention takes following technical scheme:The present invention is gas-liquid-solid using catalyst auxiliary (Vapor-liquid-solid) growing technology, including processing step are as follows:
A kind of preparation method of one-dimensional tin selenide monocrystal nanowire, is comprised the following steps that:
(1) SnSe powder is placed in high-temperature resistant container (preferably porcelain boat), then the high-temperature resistant container that SnSe powder will be filled It is put into high temperature resistant boiler tube, high temperature resistant boiler tube is put into vacuum tube furnace, SnSe powder is located at vacuum tube furnace fire door Position, the base material with catalyst is placed in the high temperature resistant boiler tube, the closed high temperature resistant boiler tube, makes the vacuum Anaerobic vacuum state is in inside tube furnace, protective gas is passed through afterwards, and adjust the high temperature resistant boiler tube pressure to 10- 50Torr;
(2) heater is opened, the central high temperature area of the vacuum tube furnace is heated to 550-650 DEG C, mobile resistance to height Warm boiler tube, makes the high-temperature resistant container be located at central high temperature area, the substrate with catalyst and is located at low-temperature region, maintain above-mentioned temperature Degree is treated to stop heating after the completion of nanowire growth, obtains one-dimensional tin selenide monocrystal nanowire.
High temperature resistant furnace tube material is corundum or quartz in the step (1).
Catalyst is the Au nano-colloid particles that particle diameter is 10-60nm in the step (1).
Base material is the resistance to backing material for being higher than 500 DEG C in the step (1), and the base material is single crystalline Si or cloud It is female.
Make in the step (1) specific as follows in the method for anaerobic vacuum state in the furnace chamber of the vacuum tube furnace:Profit It is not higher than after 50mTorr, is passed through into pipe in protective gas to the furnace chamber with pressure in mechanical pumpijg gas to the furnace chamber Pressure be not less than 1Torr, then be evacuated body to intraductal pressure not higher than 50mTorr, so repeatedly 2-4 (preferably 3) secondary anaerobic is true Dummy status.
Protective gas in the step (1) is that nitrogen, argon gas or volume ratio are 90:The mixing of 10 argon gas and hydrogen, Gas flow is 50-1000sccm.
The nanowire growth time in the step (2) is 60-300min.
In the step (2) 550-650 DEG C is heated to 70 DEG C/min of speed.
One-dimensional tin selenide monocrystal nanowire prepared by above-mentioned method.
Nano wire made from the above method is preparing phase-change storage material, infrared electro instrument, memory switching switch, thermoelectricity Coolant, optical filter, optical writing material, solar cell material, super-ionic material, sensor and laser material, holography Application in the solid-phase media of figure.
The low-temperature space of vacuum tube furnace in the step (2) is specially temperature range at 450-610 DEG C.
One-dimensional inorganic nanometer wire structural material in the step (2) is the SnSe nanometers along direction of growth uniform diameter Line.
Beneficial effect:
The invention provides a kind of method using the one-dimensional SnSe nano-materials of gas-liquid-solid growth mechanism.This method profit With pure SnSe as source, by being thermally formed gaseous state and incorporating the Sn-Au of formation nanoscale in Au nano particles in bases Alloy solution drop, with the gradually increase of Sn contents in the nano-liquid droplet, solution progressivelyes reach supersaturation.Continue evaporation source material Material, then can be such that solid-state Sn is gradually separated out from drop, and generate SnSe with the Se reactions in atmosphere, form the one-dimensional of uniform diameter SnSe nano wires.Therefore the one-dimensional SnSe nano thread structures of uniform diameter are prepared by the size control of catalyst, and by adjusting Reaction condition is controlled, such as growth time, evaporating temperature, growth pressure, gas flow rate realize the company of one-dimensional SnSe nanowire lengths Continuous change.
Compared with current one-dimensional SnSe nano thread structures material, the present invention has:
(1) preparation method is simple, equipment is cheap, it is easily controllable, toxic organic compound when preparing source material can be reduced, such as:Two Glycol (diethylene glycol), the contact of ethylenediamine (ethylenediamine) etc. and is used.
(2) nano wire using the metal simple-substance of uniform particle diameter nano particle as catalyst preparation have diameter it is homogeneous, can The advantages of tune.
(3) also ensure that product proportioning is stable, products collection efficiency is high, impurity is few, chemical property is stable as source with SnSe The features such as.
(4) SnSe nano wire uniform components prepared by the inventive method.
Brief description of the drawings
Fig. 1 is SEM (SEM) figure of the product of embodiment 1;
Fig. 2 is X-ray diffraction (XRD) figure of the product of embodiment 1;
Fig. 3 is X-ray diffraction transmission electron microscope (TEM) figure of the product of embodiment 1.
Embodiment
The preferred embodiments of the present invention are illustrated below in conjunction with accompanying drawing, it will be appreciated that preferred reality described herein Apply example and be only limitted to the interpretation present invention, be not intended to limit the present invention.Unless otherwise specified, it is conventional method;The examination Agent and material can be obtained from open commercial sources unless otherwise instructed.
SnSe powder used in following embodiments, is Tin Selenide, CAS:1315-06-5, Fw:197.65, Density:6.18g/mL.
Embodiment 1
Take a certain amount of SnSe blocks to be put into porcelain alms bowl to pulverize, take out be placed in porcelain boat afterwards, porcelain boat is put in stone Ying Guanzhong, and be positioned over the fire door position of vacuum tube furnace, carry the top of air-flow;Particle diameter is molten for 20nm Au nano-colloids Drop is in Si<100>A period of time is stood in substrate, afterwards Si substrates are dried up using drying nitrogen, is placed on and carries air-flow Lower section, the position apart from SnSe sources 9-14cm, closed quartz tube;Intraductal pressure not higher than 50mTorr is pumped to using mechanical pump Afterwards, the pressure being passed through into pipe in argon gas to the pipe that flow is 100sccm is not less than 1Torr, then is evacuated in body to furnace chamber Pressure is not higher than 50mTorr, and it is anaerobic vacuum state that so repeatedly 3 times, which make in furnace chamber, is passed through argon gas again afterwards and keeps stream Measure as 70sccm, while it is 10torr to adjust intraductal pressure;With 70 DEG C/min speed heating furnace body center temperature to 600 ℃;After mobile quartz ampoule after temperature stabilization, SnSe sources powder is set to be located exactly at body of heater center heating zone.Maintain above-mentioned 120 points of state Clock;Bell is opened afterwards, quartz ampoule is naturally cooled to room temperature;Adjustment is passed through the flow of argon gas in quartz ampoule, makes intraductal pressure For an atmospheric pressure, quartz ampoule is opened, the one-dimensional SnSe nano thread structures of uniform diameter are obtained in Si substrates.
Sample is taken out from quartz ampoule, observed under a scanning electron microscope, (as shown in Figure 1) is that 2-5 can be observed The long SnSe nano thread structures of micron;Through X-ray diffraction measurements determination:Using the above method growth SnSe nano wires, directly Footpath about 20nm (accompanying drawing 3) crystalline quality preferably (accompanying drawing 2), does not contain other impurities.Tested (EDS) point through electron spectrum simultaneously Analysis, gained nano wire Sn, Se proportioning is Sn:Se=1:1.
Embodiment 2
According to the method growth of one-dimensional SnSe nano thread structure materials of embodiment 1.Difference is:Institute in the present embodiment Metallic catalyst is the Au nano-colloid particles that particle diameter is 60nm, and non-oxidizable protective gas used is argon hydrogen gaseous mixture (volume ratio is 90 to body:10), growth pressure used is 50torr, is passed through gas flow for 1000sccm, growth temperature is 610 DEG C, 120min is maintained at this temperature.
Sample is taken out from quartz ampoule, you can obtain corresponding SnSe nano wires.
Embodiment 3
According to the method growth of one-dimensional SnSe nano thread structure materials of embodiment 1.Difference is:Institute in the present embodiment Metallic catalyst is the Au nano-colloid particles that particle diameter is 10nm, and non-oxidizable protective gas used is nitrogen, used Growth pressure be 10torr, be passed through gas flow for 50sccm, growth temperature is 650 DEG C, and 60min is maintained at this temperature.
Sample is taken out from quartz ampoule, you can obtain corresponding SnSe nano wires.
Embodiment 4
According to the method growth of one-dimensional SnSe nano thread structure materials of embodiment 1.Difference is:Institute in the present embodiment Metallic catalyst is the Au nano-colloid particles that particle diameter is 60nm, and non-oxidizable protective gas used is nitrogen, used Growth pressure be 50torr, be passed through gas flow for 700sccm, growth temperature is 550 DEG C, is maintained at this temperature 300min。
Sample is taken out from quartz ampoule, you can obtain corresponding SnSe nano wires.
Although above-mentioned the embodiment of the present invention is described with reference to accompanying drawing, not to present invention protection model The limitation enclosed, one of ordinary skill in the art should be understood that on the basis of technical scheme those skilled in the art are not Need to pay various modifications or deform still within protection scope of the present invention that creative work can make.

Claims (7)

1. a kind of preparation method of one-dimensional tin selenide monocrystal nanowire, it is characterized in that, comprise the following steps that:
(1) SnSe powder is placed in high-temperature resistant container, then the high-temperature resistant container for filling SnSe powder is put into high temperature resistant boiler tube It is interior, high temperature resistant boiler tube is put into vacuum tube furnace, SnSe powder is located at the position of vacuum tube furnace fire door, will have particle diameter Base material for 10-60nm Au nano-colloid beaded catalysts is placed in the high temperature resistant boiler tube, the closed high temperature resistant Boiler tube, makes the electron tubes type furnace interior be in anaerobic vacuum state, protective gas is passed through afterwards, and adjust the high temperature resistant stove Pipe pressure is to 10-50Torr;
(2) heater is opened, the central high temperature area of the vacuum tube furnace is heated to 550-650 DEG C, mobile high temperature resistant stove Pipe, makes the high-temperature resistant container be located at central high temperature area, the substrate with catalyst and is located at low-temperature region, maintain said temperature to treat Stop heating after the completion of nanowire growth, obtain one-dimensional tin selenide monocrystal nanowire.
2. preparation method as claimed in claim 1, it is characterized in that, in the step (1) high temperature resistant furnace tube material be corundum or Quartz.
3. preparation method as claimed in claim 1, it is characterized in that, base material is higher than 500 DEG C to be resistance in the step (1) Backing material.
4. preparation method as claimed in claim 3, it is characterized in that, the base material is single crystalline Si or mica.
5. preparation method as claimed in claim 1, it is characterized in that, make the furnace chamber of the vacuum tube furnace in the step (1) The interior method in anaerobic vacuum state is specific as follows:50mTorr is not higher than using pressure in mechanical pumpijg gas to the furnace chamber Afterwards, the pressure being passed through into pipe in protective gas to the furnace chamber is not less than 1Torr, then is evacuated body to intraductal pressure and is not higher than 50mTorr, it is anaerobic vacuum state that so repeatedly 2-4 times, which makes furnace chamber interior,.
6. preparation method as claimed in claim 1, it is characterized in that, the protective gas in the step (1) is nitrogen, argon gas or Volume ratio is 90:The mixing of 10 argon gas and hydrogen, gas flow is 50-1000sccm.
7. preparation method as claimed in claim 1, it is characterized in that, it is heated in the step (2) with 70 DEG C/min of speed 550-650 DEG C, the nanowire growth time is 60-300min.
CN201510796786.7A 2015-11-18 2015-11-18 A kind of preparation method of one-dimensional tin selenide monocrystal nanowire Expired - Fee Related CN105399061B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510796786.7A CN105399061B (en) 2015-11-18 2015-11-18 A kind of preparation method of one-dimensional tin selenide monocrystal nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510796786.7A CN105399061B (en) 2015-11-18 2015-11-18 A kind of preparation method of one-dimensional tin selenide monocrystal nanowire

Publications (2)

Publication Number Publication Date
CN105399061A CN105399061A (en) 2016-03-16
CN105399061B true CN105399061B (en) 2017-11-07

Family

ID=55464876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510796786.7A Expired - Fee Related CN105399061B (en) 2015-11-18 2015-11-18 A kind of preparation method of one-dimensional tin selenide monocrystal nanowire

Country Status (1)

Country Link
CN (1) CN105399061B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108239787A (en) * 2016-12-27 2018-07-03 中国科学院宁波材料技术与工程研究所 A kind of method for preparing SnSe crystal
CN109972202B (en) * 2019-04-29 2020-10-20 国家纳米科学中心 Preparation method of tungsten trioxide single crystal nanowire
CN110937582B (en) * 2019-12-10 2021-10-19 山东师范大学 Zinc selenide nanowire and application thereof as surface enhanced Raman scattering substrate
CN113324662A (en) * 2021-05-17 2021-08-31 深圳先进技术研究院 Uncooled infrared detector and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745468B (en) * 2002-09-30 2010-09-01 纳米系统公司 Large-area nanoenabled macroelectronic substrates and uses therefor
CN103060889A (en) * 2011-10-19 2013-04-24 中国科学院大连化学物理研究所 Solution phase method for synthesizing tin selenide monocrystal nanowire
CN103482589B (en) * 2013-09-29 2015-09-16 国家纳米科学中心 A kind of one dimension Tin diselenide nano-array, its preparation method and application

Also Published As

Publication number Publication date
CN105399061A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
CN104058458B (en) Preparation method of high-quality single-layer and double-layer controllable molybdenum disulfide
CN105399061B (en) A kind of preparation method of one-dimensional tin selenide monocrystal nanowire
Xiao et al. Metastable Copper‐Phthalocyanine Single‐Crystal Nanowires and Their Use in Fabricating High‐Performance Field‐Effect Transistors
CN104389016B (en) Method for quickly preparing large-size single-crystal graphene
Kim et al. Structure and optical properties of Bi2S3 and Bi2O3 nanostructures synthesized via thermal evaporation and thermal oxidation routes
CN109809372B (en) Method for preparing single-layer tungsten diselenide nanobelt based on space confinement strategy
Wang et al. Control growth of catalyst-free high-quality ZnO nanowire arrays on transparent quartz glass substrate by chemical vapor deposition
Han et al. Two-step vapor deposition of self-catalyzed large-size PbI 2 nanobelts for high-performance photodetectors
CN106335897B (en) A kind of large single crystal bilayer graphene and preparation method thereof
Xing et al. Solid–liquid–solid (SLS) growth of coaxial nanocables: silicon carbide sheathed with silicon oxide
CN105800602A (en) Method for directly growing graphene on insulating substrate through remote catalysis of copper particle
Wang et al. Solution synthesis of ZnO nanotubes via a template-free hydrothermal route
CN111392685B (en) Two-dimensional self-assembled M1/M2-VO 2 Homojunction nanosheet and preparation method thereof
CN110656375A (en) Lead iodide single crystal nanowire and preparation method thereof
CN106185897A (en) A kind of controlled method preparing graphene nanobelt in multiple substrate
CN109881246A (en) A kind of preparation method of large size single crystal beta-gallium oxide nanobelt
CN107699856B (en) Using evaporation coating-electric field induction controllable preparation orientation Bi-Te-Se nano column array method
CN109023296A (en) A method of the chemical vapor deposition growth molybdenum tungsten selenium alloy on fluorophologopite substrate
KR100945251B1 (en) Single crystal nano-structures manufacturing method capable of the synthesis of morphology controlled and device thereof
CN111206284B (en) Palladium selenide single crystal and preparation and application thereof
JP2002154819A (en) Method for manufacturing nanowire of silicon oxide
Schumm et al. CdTe nanoparticles for the deposition of CdTe films using close spaced sublimation
CN108220879B (en) Method for preparing antimony telluride base film with inclined nanowire array structure by adopting evaporation coating
AKHIRUDDIN et al. Growth of ZnO Nanowires by Vapour Solid Mechanism
Moloto et al. Schottky solar cells: Anisotropic versus isotropic CuSe nanocrystals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171107

Termination date: 20181118

CF01 Termination of patent right due to non-payment of annual fee