CN105391548A - Node trust-based quantum trust assessment method - Google Patents
Node trust-based quantum trust assessment method Download PDFInfo
- Publication number
- CN105391548A CN105391548A CN201510836918.4A CN201510836918A CN105391548A CN 105391548 A CN105391548 A CN 105391548A CN 201510836918 A CN201510836918 A CN 201510836918A CN 105391548 A CN105391548 A CN 105391548A
- Authority
- CN
- China
- Prior art keywords
- trust
- quantum
- ttp
- node
- factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000006854 communication Effects 0.000 claims abstract description 35
- 238000004891 communication Methods 0.000 claims abstract description 34
- 238000011156 evaluation Methods 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 26
- 238000005259 measurement Methods 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 4
- 238000011160 research Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000002096 quantum dot Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0852—Quantum cryptography
- H04L9/0855—Quantum cryptography involving additional nodes, e.g. quantum relays, repeaters, intermediate nodes or remote nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
- H04B10/85—Protection from unauthorised access, e.g. eavesdrop protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
- H04L9/083—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Computer Security & Cryptography (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了基于节点信任的量子信任评估方法,包括量子信任模型的建模和量子信任评估的方法,与现有技术相比,本发明以基于信任节点的可信量子中继网络为研究对象,将信任管理引入到量子通信网络中,以评价节点的信任值作为基础来构建安全可信的量子通信网络,并以信任值作为评判量子通信网络中各用户是否可信的依据;借助于量子纠缠效应和量子隐形传态等独有特性,研究并提出了基于节点信任的量子信任评估方法,对量子信任评估的思路及过程进行了详细的说明;最后分析了本发明提出的基于节点信任的量子信任评估方法的可行性、合理性和安全性,这为建立安全可信的量子通信网络提供了一种有价值的新思路和新方法。
The invention discloses a quantum trust evaluation method based on node trust, including the modeling of the quantum trust model and the method of quantum trust evaluation. Compared with the prior art, the invention takes the trusted quantum relay network based on trust nodes as the research object , introduce trust management into the quantum communication network, build a safe and credible quantum communication network based on the trust value of evaluation nodes, and use the trust value as the basis for judging whether each user in the quantum communication network is credible; with the help of quantum Unique characteristics such as entanglement effect and quantum teleportation, research and propose a quantum trust evaluation method based on node trust, and describe the idea and process of quantum trust evaluation in detail; finally analyze the node trust based on the present invention The feasibility, rationality and security of the quantum trust evaluation method provide a valuable new idea and new method for establishing a safe and credible quantum communication network.
Description
技术领域technical field
本发明涉及一种量子信任评估方法,尤其涉及基于节点信任的量子信任评估方法。The invention relates to a quantum trust assessment method, in particular to a node trust-based quantum trust assessment method.
背景技术Background technique
量子通信是指利用量子相干叠加、量子纠缠效应和量子隐形传态进行信息传递的一种新型的通讯方式,而现有的量子通信安全协议和技术等都隐含地与信任相关,或者预先假定了某种信任前提,或者目的是为了创建或获得某种信任关系。因此,类似于经典网络,量子通信网络中对信任的研究主要讨论两种相互关联的信任关系:(1)客观信任(对客体节点的信任)是基于证据的信任,因而可以精确地描述、推理和验证;(2)主观信任(主体节点的信任,主体节点是指由人或人和客体节点的混合体所构成的个体或群体),作为一种认知现象,是一种主观信念,是对主体节点的特定特征或行为的特定级别的主观判断,而这种主观判断是独立于对主体特征和行为的监控的。主观信任是客观信任的重要前提和基础,其本质上是基于信念的,具有很大的不确定性(表现为随机性、多样性和模糊性),无法精确地加以描述和验证。而对主观信任进行形式化研究的主要困难也在于如何对这种不确定性进行建模。Quantum communication refers to a new type of communication method that uses quantum coherent superposition, quantum entanglement effect and quantum teleportation for information transmission. However, existing quantum communication security protocols and technologies are implicitly related to trust, or presuppose A certain trust premise is established, or the purpose is to create or obtain a certain trust relationship. Therefore, similar to classical networks, the research on trust in quantum communication networks mainly discusses two interrelated trust relationships: (1) Objective trust (trust on object nodes) is based on evidence, so it can be accurately described and reasoned and verification; (2) Subjective trust (trust of subject nodes, subject nodes refer to individuals or groups composed of people or a mixture of people and object nodes), as a cognitive phenomenon, is a subjective belief and is A specific level of subjective judgment of a specific characteristic or behavior of an agent node independent of monitoring of the agent's characteristics and behavior. Subjective trust is an important premise and foundation of objective trust. It is essentially based on belief and has great uncertainty (manifested as randomness, diversity and ambiguity), so it cannot be accurately described and verified. The main difficulty in formalizing subjective trust lies in how to model this uncertainty.
发明内容Contents of the invention
本发明的目的就在于为了解决上述问题而提出基于节点信任的量子信任评估方法。The object of the present invention is to propose a quantum trust evaluation method based on node trust in order to solve the above problems.
本发明通过以下技术方案来实现上述目的:The present invention achieves the above object through the following technical solutions:
本发明包括量子信任模型的建模和量子信任评估的方法,The present invention includes the modeling of quantum trust model and the method of quantum trust evaluation,
量子信任模型的建模:Modeling of the Quantum Trust Model:
在量子通信中,一个量子态可以表示为|ψ>=α|0>+β|1>,其中α2+β2=1;同时还考虑到量子通信网络中,信任具有随机性、多样性和模糊性等不确定性因素,因此借助于直觉模糊集的隶属度和非隶属度理论来描述各个节点隶属于某个因数的隶属度;In quantum communication, a quantum state can be expressed as |ψ>=α|0>+β|1>, where α 2 +β 2 =1; at the same time, trust has randomness and diversity in quantum communication network Uncertain factors such as fuzziness and fuzziness, so use the membership degree and non-membership degree theory of intuitionistic fuzzy sets to describe the membership degree of each node belonging to a certain factor;
定义1:设U为非空集合,ui为U中的元素,U上的一个直觉模糊集定义为:Definition 1: Suppose U is a non-empty set, u i is the element in U, an intuitionistic fuzzy set on U is defined as:
A={<ui,μA(ui),υA(ui)>|ui∈U}A={<u i , μ A (u i ),υ A (u i )>|u i ∈ U}
定义2:假定量子通信网络中的第i个节点ui,评价其信任值的第j个因素用量子态表示;但由于在实际应用中,每个信任因素的重要程度不同,在此给每个信任因素增加一个权重因素tj;这样,评价第i个用户的信任值可以表示为:Definition 2: Assuming the i-th node u i in the quantum communication network, the j-th factor to evaluate its trust value is the quantum state However, since in practical applications, the importance of each trust factor is different, a weight factor t j is added to each trust factor here; thus, the trust value of the i-th user can be expressed as:
根据定义1和公式(1)中的cos2θj是ui对第j个信任因素的隶属度,sin2θj是ui对第j个因素的非隶属度,cos2θj+sin2θj=1;tj(j=1,2,...,m)为每个信任因素的权重系数,满足 According to definition 1 and cos 2 θ j in formula (1) is the membership degree of u i to the jth trust factor, sin 2 θ j is the non-membership degree of u i to the jth factor, cos 2 θ j + sin 2 θ j = 1; t j (j = 1,2,...,m) is the weight coefficient of each trust factor, satisfying
把量子通信网络中评价各节点ui信任值的各因数用模糊直觉集理论的隶属度和非隶属度来描述,完成了各节点主观信任的建模,将该模型称之为量子信任模型;In the quantum communication network, each factor that evaluates the trust value of each node u i is described by the membership degree and non-membership degree of the fuzzy intuitionistic set theory, and the modeling of each node's subjective trust is completed, which is called the quantum trust model;
量子信任评估的方法:Methods of Quantum Trust Assessment:
步骤1:初始化阶段Step 1: Initialization phase
假定事先ui已通过注册的方式将其有关信任的信息存储在TTP那里,用量子态表示为:It is assumed that u i has stored its trust information in TTP through registration in advance, expressed in quantum state as:
在式(2)中,各信任因素的权重系数tj满足θj对应第j个信任因素;γi对应第i个节点综合信任的描述,cos2γi是ui对j个信任因素的隶属度,sin2γi是ui对j个信任因素的非隶属度,cos2γi+sin2γi=1,其中i=1,2,...,n;In formula (2), the weight coefficient t j of each trust factor satisfies θ j corresponds to the jth trust factor; γ i corresponds to the description of the i-th node's comprehensive trust, cos 2 γ i is the membership degree of u i to j trust factors, sin 2 γ i is the membership degree of u i to j trust factors Degree of non-membership, cos 2 γ i + sin 2 γ i = 1, where i = 1,2,...,n;
假定TTP与各用户ui之间共享一对处于纠缠态中的量子比特其中粒子T归TTP所有,粒子A归ui所有,为了举例方便,设定u3想和u1通信;It is assumed that a pair of qubits in an entangled state is shared between the TTP and each user u i Among them, particle T is owned by TTP, and particle A is owned by u i . For the convenience of examples, set u 3 to communicate with u 1 ;
步骤2:u3通过经典信道向TTP发送希望与u1通信的请求;Step 2: u 3 sends a request to communicate with u 1 to TTP through the classic channel;
步骤3:TTP收到请求并确认是u3后,并告知u1,u3想和他通信;Step 3: TTP receives the request and confirms that it is u 3 , and informs u 1 that u 3 wants to communicate with him;
步骤4:借助于量子隐形传态实现信任值的传递;Step 4: Realize the transfer of trust value by means of quantum teleportation;
TTP将u1预先保存在它那里的信任值信息,由TTP制备成u1信任值的量子态通过量子信道发送给u3,具体过程如下:TTP pre-saves the trust value information of u 1 in it, and prepares it into the quantum state of u 1 trust value by TTP Send to u 3 through the quantum channel, the specific process is as follows:
①TTP对量子态和粒子T进行Bell基联合测量,得到测量结果;①TTP pair quantum state Carry out Bell-based joint measurement with particle T to obtain the measurement result;
具体做法是:TTP将其制备成的量子态与他们共享的处于纠缠态中的量子态的粒子T和粒子A进行运算,得到三粒子体系所处的量子态为:The specific method is: the quantum state prepared by TTP Quantum states in entanglement shared with them Particle T and particle A perform operation to get the three-particle system The quantum state in which is:
在式(3)中的为张量积,|φ+>TA、|φ->TA、|ψ+>TA和|ψ->TA为四个Bell态,分别为:in formula (3) is the tensor product, |φ + > TA , |φ - > TA , |ψ + > TA and |ψ - > TA are four Bell states, respectively:
②TTP把测量结果发送给u3;②TTP sends the measurement result to u 3 ;
③u3根据收到的经典信息,只需对他拥有的粒子A做相对应的操作,恢复出u1信任值的原始量子态 ③ According to the received classical information, u 3 only needs to perform corresponding operations on the particle A he owns to restore the original quantum state of u 1 ’s trust value
设定节点事先与TTP已约定:经典信息00、01、10和11分别代表TTP的测量结果|φ+>TA、|φ->TA、|ψ+>TA和|ψ->TA。当u3收到TTP发送的信息00、01、10和11时,就做相对应的幺正操作,即可得到u1信任值的量子态 The set node has agreed with TTP in advance: the classic information 00, 01, 10 and 11 respectively represent the measurement results of TTP |φ + > TA , |φ - > TA , |ψ + > TA and |ψ - > TA . When u 3 receives the information 00, 01, 10 and 11 sent by TTP, it performs the corresponding unitary operation to obtain the quantum state of u 1 ’s trust value
步骤5:u3根据恢复出的计算出u1的信任值,并根据计算出的信任值评判是否信任u1。Step 5: u 3 according to the restored Calculate the trust value of u 1 , and judge whether to trust u 1 according to the calculated trust value.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明是基于节点信任的量子信任评估方法,与现有技术相比,本发明以基于信任节点的可信量子中继网络为研究对象,将信任管理引入到量子通信网络中,以评价节点的信任值作为基础来构建安全可信的量子通信网络,并以信任值作为评判量子通信网络中各用户是否可信的依据;借助于量子纠缠效应和量子隐形传态等独有特性,研究并提出了基于节点信任的量子信任评估方法,对量子信任评估的思路及过程进行了详细的说明;最后分析了本发明提出的基于节点信任的量子信任评估方法的可行性、合理性和安全性,这为建立安全可信的量子通信网络提供了一种有价值的新思路和新方法。The present invention is a quantum trust evaluation method based on node trust. Compared with the prior art, the present invention takes the trusted quantum relay network based on trust nodes as the research object, and introduces trust management into the quantum communication network to evaluate the node's The trust value is used as the basis to build a safe and credible quantum communication network, and the trust value is used as the basis for judging whether each user in the quantum communication network is credible; with the help of unique characteristics such as quantum entanglement effect and quantum teleportation, research and propose The quantum trust evaluation method based on node trust is introduced, and the idea and process of quantum trust evaluation are described in detail; finally, the feasibility, rationality and security of the quantum trust evaluation method based on node trust proposed by the present invention are analyzed. It provides a valuable new idea and method for establishing a safe and reliable quantum communication network.
附图说明Description of drawings
图1是具有可信第三方TTP的量子通信网络结构图;Figure 1 is a quantum communication network structure diagram with a trusted third party TTP;
图2是具有可信第三方TTP的量子信任评估流程图。Figure 2 is a flowchart of quantum trust evaluation with a trusted third party TTP.
具体实施方式detailed description
下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
基于节点信任的量子信任评估方法的思路:The idea of quantum trust evaluation method based on node trust:
通过分析发现,在基于信任节点的可信中继网络中,各节点之间的信任评估可以借助于可信第三方TTP(trustedthirdparty)来进行评价。假若在量子通信网络中有n个节点(用户)u1,u2,...,un和一个可信第三方TTP,各节点在加入到量子通信网络时首先要在TTP进行注册登记(比如提交历史信誉度、身份信息等属性);注册登记时,借助于直觉模糊集的隶属度和非隶属度理论来刻画各节点属性的不确定性,完成主观信任的定量描述(即主观信任的数学建模);各节点间在进行安全通信前,借助于量子纠缠态、量子隐形传态等获取某节点有关信任的信息;然后根据获取节点的信任值信息,计算某节点的信任值,再根据计算出来的信任值来评价对方是否可信。Through the analysis, it is found that in the trusted relay network based on trusted nodes, the trust evaluation between nodes can be evaluated by means of trusted third party TTP (trusted third party). If there are n nodes (users) u 1 , u 2 ,..., u n in the quantum communication network and a trusted third party TTP, each node must first register with the TTP when joining the quantum communication network ( Such as submitting historical reputation, identity information and other attributes); when registering, use the membership degree and non-membership degree theory of intuitionistic fuzzy sets to describe the uncertainty of each node attribute, and complete the quantitative description of subjective trust (that is, the subjective trust Mathematical modeling); before the secure communication between nodes, the information about the trust of a certain node is obtained by means of quantum entanglement, quantum teleportation, etc; Evaluate whether the other party is trustworthy based on the calculated trust value.
基于节点信任的量子信任评估的具体思路(如图1所示):假定节点u3想和节点u1通信,但是u3并不知道u1是否可信,为了防止u1欺骗u3,u3从TTP那里获取有关评价u1信任的相关信息,u3借助于TTP提供的信息,计算出u1的信任值,并根据信任值来评判u1是否可信。注:图1中考虑到网络结构图的清晰,图中TTP只标注了u1、u3、u3;The specific idea of quantum trust evaluation based on node trust (as shown in Figure 1): Assuming that node u 3 wants to communicate with node u 1 , but u 3 does not know whether u 1 is trustworthy, in order to prevent u 1 from deceiving u 3 , u 3 Obtain relevant information about evaluating the trust of u 1 from TTP, u 3 calculates the trust value of u 1 with the help of the information provided by TTP, and judges whether u 1 is credible according to the trust value. Note: Considering the clarity of the network structure diagram in Figure 1, only u 1 , u 3 , and u 3 are marked for TTP in the figure;
如图2所示,本发明包括量子信任模型的建模和量子信任评估的方法,As shown in Figure 2, the present invention includes the modeling of quantum trust model and the method of quantum trust assessment,
量子信任模型的建模:Modeling of the Quantum Trust Model:
在量子通信中,一个量子态可以表示为|ψ>=α|0>+β|1>,其中α2+β2=1;同时还考虑到量子通信网络中,信任具有随机性、多样性和模糊性等不确定性因素,因此借助于直觉模糊集的隶属度和非隶属度理论来描述各个节点隶属于某个因数的隶属度;In quantum communication, a quantum state can be expressed as |ψ>=α|0>+β|1>, where α 2 +β 2 =1; at the same time, trust has randomness and diversity in quantum communication network Uncertain factors such as fuzziness and fuzziness, so use the membership degree and non-membership degree theory of intuitionistic fuzzy sets to describe the membership degree of each node belonging to a certain factor;
定义1:设U为非空集合,ui(i=1,2,...,n)为U中的元素,U上的一个直觉模糊集定义为:Definition 1: Suppose U is a non-empty set, u i (i=1,2,...,n) are elements in U, and an intuitionistic fuzzy set on U is defined as:
A={<ui,μA(ui),υA(ui)>|ui∈U}A={<u i , μ A (u i ),υ A (u i )>|u i ∈ U}
其中,μA:U→[0,1],υA:U→[0,1], Among them, μ A : U→[0,1], υ A : U→[0,1],
对于0≤μA(ui)+υA(ui)≤1。for 0≤μA (u i )+υA ( u i ) ≤1.
μA(ui)表示ui对集合A的隶属度,υA(ui)表示ui对集合A的非隶属度。μ A (u i ) represents u i 's membership degree to set A, and υ A (u i ) represents u i 's non-membership degree to set A.
定义2:如图1所示,假定量子通信网络中的第i个节点ui(i=1,2,...,n),评价其信任值的第j(j=1,2,...,m)个因素用量子态表示;但由于在实际应用中,每个信任因素的重要程度不同,在此给每个信任因素增加一个权重因素tj(j=1,2,...,m);这样,评价第i个用户的信任值可以表示为:Definition 2: As shown in Figure 1, assuming the i-th node u i (i=1,2,...,n) in the quantum communication network, the j-th node (j=1,2,. ..,m) factors with quantum states However, since in practical applications, the importance of each trust factor is different, a weight factor t j (j=1,2,...,m) is added to each trust factor here; thus, the evaluation of the i-th The trust value of a user can be expressed as:
根据定义1和公式(1)中的cos2θj是ui对第j个信任因素的隶属度,sin2θj是ui对第j个因素的非隶属度,cos2θj+sin2θj=1;tj(j=1,2,...,m)为每个信任因素的权重系数,满足 According to definition 1 and cos 2 θ j in formula (1) is the membership degree of u i to the jth trust factor, sin 2 θ j is the non-membership degree of u i to the jth factor, cos 2 θ j + sin 2 θ j = 1; t j (j = 1,2,...,m) is the weight coefficient of each trust factor, satisfying
把量子通信网络中评价各节点ui(i=1,2,...,n)信任值的各因数用模糊直觉集理论的隶属度和非隶属度来描述,比较客观地反映了主观信任的实际情况(主观信任的不确定性),完成了各节点主观信任的建模,本发明将该模型称之为量子信任模型。The factors for evaluating the trust value of each node u i (i=1,2,...,n) in the quantum communication network are described by the membership degree and non-membership degree of fuzzy intuitionistic set theory, which objectively reflects the subjective trust According to the actual situation (uncertainty of subjective trust), the modeling of subjective trust of each node is completed, and the present invention calls this model a quantum trust model.
量子信任评估的方法:Methods of Quantum Trust Assessment:
步骤1:初始化阶段Step 1: Initialization phase
假定事先ui(i=1,2,...,n)已通过注册的方式将其有关信任的信息存储在TTP那里,用量子态(在发送前由TTP制备)表示为:Assume that u i (i=1,2,...,n) has stored its trust information in TTP through registration in advance, expressed as a quantum state (prepared by TTP before sending):
在(2)式中,各信任因素的权重系数tj满足θj对应第j个信任因素;γi对应第i个节点综合信任的描述,cos2γi是ui对j个信任因素的隶属度,sin2γi是ui对j个信任因素的非隶属度,cos2γi+sin2γi=1,其中i=1,2,...,n。In formula (2), the weight coefficient t j of each trust factor satisfies θ j corresponds to the jth trust factor; γ i corresponds to the description of the i-th node's comprehensive trust, cos 2 γ i is the membership degree of u i to j trust factors, sin 2 γ i is the membership degree of u i to j trust factors Degree of non-membership, cos 2 γ i +sin 2 γ i =1, where i=1,2,...,n.
假定TTP与各用户ui(i=1,2,...,n)之间共享一对处于纠缠态中的量子比特其中粒子T(第1个量子比特)归TTP所有,粒子A(第2个量子比特)归ui(i=1,2,...,n)所有。为了举例方便,我们假定u3想和u1通信(图1中用加粗线条表示)。Assume that TTP shares a pair of qubits in entangled state with each user u i (i=1,2,...,n) The particle T (the first qubit) is owned by TTP, and the particle A (the second qubit) is owned by u i (i=1,2,...,n). For the convenience of examples, we assume that u 3 wants to communicate with u 1 (indicated by a bold line in Figure 1).
步骤2:u3通过经典信道向TTP发送希望与u1通信的请求。Step 2: u 3 sends a request to TTP to communicate with u 1 through the classic channel.
步骤3:TTP收到请求并确认是u3后,并告知u1,u3想和他通信。Step 3: TTP receives the request and confirms that it is u 3 , and informs u 1 that u 3 wants to communicate with him.
步骤4:借助于量子隐形传态实现信任值的传递。Step 4: Realize the transfer of trust value by means of quantum teleportation.
TTP将u1预先保存在它那里的信任值信息,由TTP制备成u1信任值的量子态(即要隐形传态的量子态),通过量子信道发送给u3,具体过程如下:TTP pre-saves the trust value information of u 1 in it, and prepares it into the quantum state of u 1 trust value by TTP (that is, the quantum state to be teleported), and send it to u 3 through the quantum channel, the specific process is as follows:
①TTP对量子态和粒子T进行Bell基联合测量,得到测量结果(经典信息)。①TTP pair quantum state Carry out Bell-based joint measurement with particle T, and obtain the measurement result (classical information).
具体做法是:TTP将其制备成的量子态与他们共享的处于纠缠态中的量子态的粒子T和粒子A进行运算,得到三粒子体系所处的量子态为:The specific method is: the quantum state prepared by TTP Quantum states in entanglement shared with them Particle T and particle A perform operation to get the three-particle system The quantum state in which is:
在公式(3)中的为张量积,|φ+>TA、|φ->TA、|ψ+>TA和|ψ->TA为四个Bell态,分别为:in formula (3) is the tensor product, |φ + > TA , |φ - > TA , |ψ + > TA and |ψ - > TA are four Bell states, respectively:
②TTP把测量结果(经典信息)发送给u3。②TTP sends the measurement result (classic information) to u 3 .
③u3根据收到的经典信息,只需对他拥有的粒子A做相对应的操作(如表1所示),恢复出u1信任值的原始量子态 ③ According to the received classical information, u 3 only needs to perform corresponding operations on the particle A he owns (as shown in Table 1) to restore the original quantum state of u 1 ’s trust value
假定节点事先与TTP已约定:经典信息00、01、10和11分别代表TTP的测量结果|φ+>TA、|φ->TA、|ψ+>TA和|ψ->TA。当u3收到TTP发送的经典信息00、01、10和11时,就做相对应的幺正操作,即可得到u1信任值的量子态 It is assumed that the nodes have agreed with TTP in advance: the classic information 00, 01, 10 and 11 respectively represent the measurement results of TTP |φ + > TA , |φ − > TA , |ψ + > TA and |ψ − > TA . When u 3 receives the classical information 00, 01, 10 and 11 sent by TTP, it performs the corresponding unitary operation to obtain the quantum state of u 1 ’s trust value
表1与经典信息00、01、10和11相对应的幺正操作Table 1 Unitary operations corresponding to classical information 00, 01, 10 and 11
例如:由表1可知,如果TTP事先与u3约定好,收到01就做
步骤5:u3根据恢复出的计算出u1的信任值,并根据计算出的信任值评判是否信任u1。Step 5: u 3 according to the restored Calculate the trust value of u 1 , and judge whether to trust u 1 according to the calculated trust value.
可行性分析:Feasibility Analysis:
通过量子隐形传态和量子纠缠分发来实现远距离量子通信,特别是传输未知量子态,是远距离量子通信和分布式量子网络必不可少的环节。目前,量子隐形传态和量子纠缠分发已经在中等距离的光纤得到了实现。本发明提出的量子信任评估方法用到了量子隐形传态、量子纠缠等特性,在未来的量子通信网络的应用中是可行的。具体来说,表现在以下两个方面:The realization of long-distance quantum communication through quantum teleportation and quantum entanglement distribution, especially the transmission of unknown quantum states, is an indispensable link in long-distance quantum communication and distributed quantum networks. At present, quantum teleportation and quantum entanglement distribution have been realized in medium-distance optical fibers. The quantum trust evaluation method proposed by the present invention uses the characteristics of quantum teleportation, quantum entanglement, etc., and is feasible in the application of quantum communication networks in the future. Specifically, it manifests in the following two aspects:
(1)在量子隐形传态方面,当代表u1信任信息转化为TTP要传送给u3的原始量子态时,是由TTP制备u1信任值的量子态通过量子信道发送给u3;随后TTP使用该量子态与各用户ui(i=1,2,...,n)共享的、处于纠缠态中的量子比特进行运算,将转化成为一个Bell态的一部分(或是|0>态和|1>态之一)。这说明当量子状态转移到粒子A上时,就说明u3已经收到TTP通过量子信道发送过来的未知量子态所以隐形传态与量子不可克隆定理并不矛盾,同时也说明本发明借助于量子隐形传态实现信任值的传递与计算是可行的,是未来实际应用中也是合理的。(1) In terms of quantum teleportation, when the trust information representing u 1 is transformed into the original quantum state that TTP will transmit to u 3 , the quantum state of u 1 trust value is prepared by TTP Send to u 3 through the quantum channel; then TTP uses the qubit in the entangled state shared by each user u i (i=1,2,...,n) conduct operation, will Transition becomes part of a Bell state (or one of the |0> and |1> states). This means that when When the quantum state is transferred to particle A, it means that u 3 has received the unknown quantum state sent by TTP through the quantum channel Therefore, teleportation is not contradictory to the quantum non-cloning theorem, and it also shows that the present invention is feasible to realize the transfer and calculation of trust value by means of quantum teleportation, and it is also reasonable in future practical applications.
(2)在量子纠缠方面,不管共享纠缠态的双方相距多远,只要一方(本发明中的TTP)测量了自己手中的两个粒子,则另一方(本发明中的u3)手中的粒子就会相应的塌缩。在本发明中,u3根据TTP在经典信道发来的测量结果,对TTP通过量子信道发送过来的未知量子态做相对应的操作(如表1所示),就会得到与TTP根据u1的信任信息制备的原始量子态因此,本发明借助于量子纠缠来实现信任值的传递与计算是可行的,是未来实际应用中也是合理的。(2) In terms of quantum entanglement, no matter how far apart the two parties sharing the entangled state are, as long as one party (TTP in the present invention) measures the two particles in its own hand, the particle in the other party (u 3 in the present invention) will will collapse accordingly. In the present invention, according to the measurement results sent by TTP in the classical channel, u 3 evaluates the unknown quantum state sent by TTP through the quantum channel Do the corresponding operations (as shown in Table 1), and you will get the original quantum state prepared by TTP based on the trust information of u 1 Therefore, it is feasible for the present invention to realize the transmission and calculation of trust value by means of quantum entanglement, and it is also reasonable in future practical applications.
安全性分析:Security Analysis:
分析本发明提出的量子信任评估的安全性,主要从防止欺骗(通信一方(比如本发明的u1)欺骗通信的另一方(比如本发明的u1))和防止窃听等方面进行分析。The security of the quantum trust evaluation proposed by the present invention is mainly analyzed from the aspects of preventing deception (a communication party (such as u 1 in the present invention) deceives the other party in communication (such as u 1 in the present invention)) and preventing eavesdropping.
(1)可防止欺骗性(1) Can prevent deception
在防止欺骗性方面,由于u3想和u1通信,u3通过经典信道向TTP发送希望与u1通信的请求,TTP收到请求并告知u1想和他通信后,将自己制备的u1信任值的量子态通过量子信道传送给u3,同时将测量结果(经典信息)通过经典信道发送给u3,u3通过收到的测量结果恢复出并计算出u1的信任值。由于TTP是u1和u3都信任的第三方,在通信前TTP已经告诉u1,u3想和他通信;u3是根据TTP通过量子隐形传态传递过来的关于u1信任信息,并计算出u1的信任值是真实可靠的,因此u1和u3双方都不存在欺骗性的问题。In terms of deception prevention, because u 3 wants to communicate with u 1 , u 3 sends a request to TTP to communicate with u 1 through the classical channel. After receiving the request and telling u 1 that he wants to communicate with him, TTP sends u 1 Quantum state of trust value Send it to u 3 through the quantum channel, and send the measurement result (classical information) to u 3 through the classical channel at the same time, and u 3 recovers the And calculate the trust value of u 1 . Since TTP is a third party trusted by both u 1 and u 3 , TTP has told u 1 before communication that u 3 wants to communicate with him; u 3 is based on the trust information about u 1 transmitted by TTP through quantum teleportation, and The calculated trust value of u 1 is true and reliable, so there is no problem of deception between u 1 and u 3 .
(2)防窃听(2) Anti-eavesdropping
在分析前,首先假定在通信过程中有窃听者Eve(Eve可以是系统内部(如图1)的窃听者,也可以是系统外部的窃听者),他想通过窃听获得TTP发送给用户u3的原始量子态 Before the analysis, first assume that there is an eavesdropper Eve in the communication process (Eve can be an eavesdropper inside the system (as shown in Figure 1) or an eavesdropper outside the system), and he wants to obtain TTP through eavesdropping and send it to user u 3 the original quantum state of
①如果Eve是外围窃听者① If Eve is a peripheral eavesdropper
在本发明中,TTP和u3共享一对处于纠缠态中的量子比特TTP拥有粒子T(第1个量子比特),u3拥有粒子A(第2个量子比特),而攻击者Eve没有处于纠缠态中的量子比特中的任何量子比特信息。如果Eve截取了TTP通过经典信道发给用户u3的信息(即是说,Eve得到TTP的测量结果),但由于Eve没有量子纠缠态中的量子比特信息,所以即使他得到经典信息,他也不能通过一些操作(而且Eve也不知道该进行什么样的操作)恢复原来的量子态很显然,在这种情况下Eve不能得到任何关于未知量子态的可用信息,因此本发明提出的信任模型能防止外围窃听者Eve的窃听。In the present invention, TTP and u3 share a pair of qubits in an entangled state TTP owns the particle T (the 1st qubit), u 3 owns the particle A (2nd qubit), and the attacker Eve does not have any qubit information among the qubits in the entangled state. If Eve intercepts the information sent by TTP to user u 3 through the classical channel (that is, Eve obtains the measurement result of TTP), but since Eve does not have the qubit information in the quantum entangled state, even if he obtains the classical information, he cannot The original quantum state cannot be restored through some operations (and Eve does not know what kind of operations to perform) Obviously, in this case, Eve cannot obtain any available information about the unknown quantum state, so the trust model proposed by the present invention can prevent the eavesdropping of the peripheral eavesdropper Eve.
②如果Eve是系统内部窃听者②If Eve is an eavesdropper inside the system
在本发明中,虽然TTP、u3和Eve共享一对处于纠缠态中的量子比特|φ+>TA,如果Eve截取了发送给u3的经典信息,但是Eve不知道该进行什么样的操作,他也不可能恢复出原来的量子态因此,本发明提出的信任模型能防止系统内部窃听者Eve的窃听。In the present invention, although TTP, u 3 and Eve share a pair of qubits in an entangled state |φ + > TA , if Eve intercepts the classical information sent to u 3 , Eve does not know what kind of operation to perform , it is impossible for him to recover the original quantum state Therefore, the trust model proposed by the present invention can prevent the eavesdropping of the eavesdropper Eve inside the system.
此外,在本发明研究的信任评估方法中,u1信任值信息的量子态是由TTP根据u1的一些属性(比如历史信誉度、用户的身份等)制备的,然后通过量子信道发送给u3,具有一定权威性。根据量子力学中量子测不准原理和量子不可克隆定理(在量子信道中传输的量子信号对任何接收者都是测不准的),如果攻击者(包本量子网络系统中的其他用户和外围用户)希望通过测量去确定则导致被测量后就不存在了。从这个角度来说,在理论上u3获得的(由TTP提供的、表示u1信任值信息的量子态)可以是绝对安全的。In addition, in the trust evaluation method studied in the present invention, the quantum state of u 1 trust value information It is prepared by TTP according to some attributes of u 1 (such as historical reputation, user identity, etc.), and then sent to u 3 through a quantum channel, which has certain authority. According to the quantum uncertainty principle and quantum non-cloning theorem in quantum mechanics (the quantum signal transmitted in the quantum channel is uncertain to any receiver), if the attacker (including other users and peripherals in the quantum network system) users) want to determine by measurement then lead to Once measured, it ceases to exist. From this point of view, theoretically u 3 obtains (provided by TTP, the quantum state representing the trust value information of u 1 ) can be perfectly safe.
以上显示和描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510836918.4A CN105391548B (en) | 2015-11-26 | 2015-11-26 | The quantum method for evaluating trust trusted based on node |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510836918.4A CN105391548B (en) | 2015-11-26 | 2015-11-26 | The quantum method for evaluating trust trusted based on node |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105391548A true CN105391548A (en) | 2016-03-09 |
CN105391548B CN105391548B (en) | 2018-04-20 |
Family
ID=55423403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510836918.4A Active CN105391548B (en) | 2015-11-26 | 2015-11-26 | The quantum method for evaluating trust trusted based on node |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105391548B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106789083A (en) * | 2017-01-12 | 2017-05-31 | 成都信息工程大学 | Ring-type quantum Trust Valuation Model based on trusted third party |
CN109257166A (en) * | 2018-08-31 | 2019-01-22 | 西安电子科技大学 | A kind of Quantum error correction coding method for quantum repeater |
CN109274420A (en) * | 2018-11-16 | 2019-01-25 | 西安电子科技大学 | An entangled photon pair transmission rate estimation method for satellite downlink |
CN110912695A (en) * | 2019-12-05 | 2020-03-24 | 成都信息工程大学 | A quantum arbitration signature method and system based on six-particle teleportation |
CN110943833A (en) * | 2019-12-05 | 2020-03-31 | 成都信息工程大学 | Method and system for constructing flexible quantum trust model based on node trust assessment |
CN119051856A (en) * | 2024-08-27 | 2024-11-29 | 安徽墨荷信息技术有限公司 | Internet of things data acquisition processing method and host based on quantum encryption secure communication |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101835158A (en) * | 2010-04-12 | 2010-09-15 | 北京航空航天大学 | A Trust Evaluation Method for Sensor Networks Based on Node Behavior and D-S Evidence Theory |
CN102244587A (en) * | 2011-07-15 | 2011-11-16 | 杭州信雅达数码科技有限公司 | Method for trust evaluation of nodes in network |
CN102324982A (en) * | 2011-07-21 | 2012-01-18 | 中国科学院上海技术物理研究所 | Space quantum communication single-photon far-field distribution detection device |
CN202150859U (en) * | 2011-08-17 | 2012-02-22 | 上海朗研光电科技有限公司 | Remote Quantum Secure Communication System |
US20140079387A1 (en) * | 2012-09-14 | 2014-03-20 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Adaptive quantum information processing |
WO2014068959A1 (en) * | 2012-11-01 | 2014-05-08 | 日本電気株式会社 | Light-receiving device in optical communication system, photon-detector control method and device, and photon-detector dark-count-rate evaluation method |
CN104601248A (en) * | 2014-12-23 | 2015-05-06 | 上海电机学院 | Multi-party combined remote quantum state preparation method based on single atom operations |
-
2015
- 2015-11-26 CN CN201510836918.4A patent/CN105391548B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101835158A (en) * | 2010-04-12 | 2010-09-15 | 北京航空航天大学 | A Trust Evaluation Method for Sensor Networks Based on Node Behavior and D-S Evidence Theory |
CN102244587A (en) * | 2011-07-15 | 2011-11-16 | 杭州信雅达数码科技有限公司 | Method for trust evaluation of nodes in network |
CN102324982A (en) * | 2011-07-21 | 2012-01-18 | 中国科学院上海技术物理研究所 | Space quantum communication single-photon far-field distribution detection device |
CN202150859U (en) * | 2011-08-17 | 2012-02-22 | 上海朗研光电科技有限公司 | Remote Quantum Secure Communication System |
US20140079387A1 (en) * | 2012-09-14 | 2014-03-20 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Adaptive quantum information processing |
WO2014068959A1 (en) * | 2012-11-01 | 2014-05-08 | 日本電気株式会社 | Light-receiving device in optical communication system, photon-detector control method and device, and photon-detector dark-count-rate evaluation method |
CN104601248A (en) * | 2014-12-23 | 2015-05-06 | 上海电机学院 | Multi-party combined remote quantum state preparation method based on single atom operations |
Non-Patent Citations (8)
Title |
---|
BA BELL,D MARKHAM,DA HERRERAMARTÍ,A MARIN,WJ WADSWORTH: "Experimental demonstration of graph-state quantum secret sharing", 《NATURE COMMUNICATIONS》 * |
F GAO,SJ QIN,FZ GUO,QY WEN: "Cryptanalysis of quantum", 《CHINESE PHYSICS LETTERS》 * |
张仕斌,许春香: "基于云模型的信任评估方法研究", 《计算机学报》 * |
昌燕,张仕斌,闫丽丽,盛志伟: "基于三粒子W态蜜罐的受控量子安全直接通信协议", 《电子科技大学学报》 * |
杨静,王川,张茹: "Quantum Secure Direct Communication with Authentication Expansion Using Single", 《CHINESE SCIENCE BULLETIN》 * |
陈建钧,张仕斌: "基于云模型和信任链的信任评价模型研究", 《计算机应用研究》 * |
龙桂鲁,王川,李岩松,邓富国: "量子安全直接通信", 《中国科学:物理学 力学 天文学》 * |
龚晶,何敏,邓元庆,刘斌: "基于网络的量子身份认证方案", 《量子光学学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106789083A (en) * | 2017-01-12 | 2017-05-31 | 成都信息工程大学 | Ring-type quantum Trust Valuation Model based on trusted third party |
CN106789083B (en) * | 2017-01-12 | 2019-12-17 | 成都信息工程大学 | A ring-shaped quantum trust evaluation model based on a trusted third party |
CN109257166A (en) * | 2018-08-31 | 2019-01-22 | 西安电子科技大学 | A kind of Quantum error correction coding method for quantum repeater |
CN109274420A (en) * | 2018-11-16 | 2019-01-25 | 西安电子科技大学 | An entangled photon pair transmission rate estimation method for satellite downlink |
CN109274420B (en) * | 2018-11-16 | 2020-05-05 | 西安电子科技大学 | Method for estimating transmission rate of entangled photon pair for satellite-ground downlink |
CN110912695A (en) * | 2019-12-05 | 2020-03-24 | 成都信息工程大学 | A quantum arbitration signature method and system based on six-particle teleportation |
CN110943833A (en) * | 2019-12-05 | 2020-03-31 | 成都信息工程大学 | Method and system for constructing flexible quantum trust model based on node trust assessment |
CN110943833B (en) * | 2019-12-05 | 2021-03-05 | 成都信息工程大学 | Quantum trust model construction method and computer readable storage medium |
CN119051856A (en) * | 2024-08-27 | 2024-11-29 | 安徽墨荷信息技术有限公司 | Internet of things data acquisition processing method and host based on quantum encryption secure communication |
Also Published As
Publication number | Publication date |
---|---|
CN105391548B (en) | 2018-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105391548B (en) | The quantum method for evaluating trust trusted based on node | |
CN110602077B (en) | Anonymous election method and storage medium for quantum blockchain network based on trust evaluation | |
CN111162913B (en) | Arbitration quantum signature method based on Bose sampling random unitary operation | |
Zhu et al. | Semi-quantum key distribution protocols with GHZ states | |
CN107070651B (en) | Device-independent quantum privacy query method based on EPR pair | |
CN110071814B (en) | A quantum blind signature method and system based on Bell state entanglement exchange | |
CN108964926A (en) | User trust negotiation establishing method based on two-layer block chain in heterogeneous alliance system | |
CN107947941B (en) | A Hamiltonian Quantum Arbitration Signature and Verification Method Based on Quantum Blind Computation | |
CN108833353B (en) | Quantum Byzantine agreement method based on three-party participation | |
Zheng et al. | A practical quantum designated verifier signature scheme for E-voting applications | |
Dong et al. | Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement | |
CN110166251A (en) | A kind of half quantum group signature method and system based on quantum walking | |
Ting-Ting et al. | Participant attack on quantum secret sharing based on entanglement swapping | |
CN101692676A (en) | Hybrid trust management system and trust evaluation method thereof under open environment | |
CN103227800A (en) | Quantum secure communication wiretap detection method based on five-qubit Cluster state | |
CN106788990B (en) | Single-Agent Qubit Commitment Protocol | |
Lu et al. | A dynamic quantum group blind signature scheme based on four-particle cluster state | |
Kanjilal et al. | Remote state preparation using correlations beyond discord | |
CN108964907A (en) | A kind of quantum-key distribution equipment determines method and system at code rate | |
CN116961883B (en) | Quantum privacy comparison method based on three-particle GHZ-like state | |
CN109039477B (en) | A Fault-Tolerant Quantum Dialogue Method Based on Non-Decoherent Subspaces | |
CN102546602B (en) | Network transaction method based on privacy protection trust evaluation | |
CN106789083B (en) | A ring-shaped quantum trust evaluation model based on a trusted third party | |
Chen et al. | Controllable quantum network coding scheme based on quantum walk | |
CN107508676A (en) | A kind of measuring apparatus unrelated quantum key distribution protocol safety detection method under the conditions of joint rotational noise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |