CN105388938A - 应用于大尺寸非准直式地球模拟器的精密温控装置 - Google Patents

应用于大尺寸非准直式地球模拟器的精密温控装置 Download PDF

Info

Publication number
CN105388938A
CN105388938A CN201510822088.XA CN201510822088A CN105388938A CN 105388938 A CN105388938 A CN 105388938A CN 201510822088 A CN201510822088 A CN 201510822088A CN 105388938 A CN105388938 A CN 105388938A
Authority
CN
China
Prior art keywords
temperature
emulation
radiation plate
terrestrial radiation
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510822088.XA
Other languages
English (en)
Inventor
邹晓君
张蕊
董德胜
张延顺
任维松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Equipment
Original Assignee
Shanghai Institute of Satellite Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Equipment filed Critical Shanghai Institute of Satellite Equipment
Priority to CN201510822088.XA priority Critical patent/CN105388938A/zh
Publication of CN105388938A publication Critical patent/CN105388938A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • G05D23/32Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature with provision for adjustment of the effect of the auxiliary heating device, e.g. a function of time

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明提供了一种应用于大尺寸非准直式地球模拟器的精密温控装置,包括多路PID控制器、程控电源组、温度传感器组、温度采集器、电加热膜组、保温后盖。本发明在卫星图像导航与配准全物理仿真试验对地球敏感器进行性能测试和精度标定时,实现大尺寸非准直式地球模拟器仿真地球辐射板的均匀、稳定、控温,提高了地球模拟器的模拟精度,且结构简单,取得了操作便捷、效率高、安全可靠等有益效果。

Description

应用于大尺寸非准直式地球模拟器的精密温控装置
技术领域
本发明涉及一种精密温控装置,更具体地说,涉及一种用于非准直式地球模拟器的精密温控装置。
背景技术
图像导航与配准全物理仿真试验系统是卫星图像导航与配准最重要的研制保障条件之一,该系统对各卫星型号的研制都发挥着重要作用。地球敏感器是图像导航与配准全物理仿真试验需要验证的重要星上部件,地球模拟器为地球敏感器提供热辐射输入信号。
地球模拟器主要有两种形式:准直式和非准直式。准直式地球模拟器通常采用大口径红外准直透镜,输出准直光束到地球敏感器来仿真无穷远目标,精度较高,但结构复杂;非准直式则是将仿真用地球圆盘放置在距地球敏感器有限而较短的距离上来仿真无穷远目标,虽然对地球敏感器光学系统来说会有一定误差,但装置比较简单,易于实现。
非准直式地球模拟器通常由仿真地球辐射板、安装支架以及温度控制装置组成,目前国内研究所或高校研制的大尺寸非准直型地球模拟器温度均匀性和稳定性较差,温控精度较低,难以应用于图像导航与配准全物理仿真试验系统。因此有必要设计一种应用于大尺寸非准直式地球模拟器的精密温控装置解决仿真地球辐射板温度不均匀、温度控制精度不高、温度稳定性低等问题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种应用于大尺寸非准直式地球模拟器的精密温控装置。
根据本发明提供的一种应用于大尺寸非准直式地球模拟器的精密温控装置,包括多路PID控制器、程控电源组、温度传感器组、温度采集器、电加热膜组、保温后盖;
所述多路PID控制器与所述程控电源组、所述温度采集器连接,多路PID控制器用于根据设定温度和由温度采集器采集的仿真地球辐射板实际温度,向所述程控电源组提供电流控制信号;
所述程控电源组与所述电加热膜组连接,程控电源组向所述电加热膜组供电;
所述电加热膜组粘贴在仿真地球辐射板非辐射面,电加热膜组将仿真地球辐射板加热到设定温度;
所述温度传感器组设置在仿真地球辐射板非辐射面,并与所述温度采集器连接,温度传感器组向温度采集器提供仿真地球辐射板实际温度;
所述温度采集器向所述多路PID控制器提供仿真地球辐射板实际温度;
所述保温后盖覆盖仿真地球辐射板的全部非辐射面,以阻止仿真地球辐射板非辐射面的热量散失。
优选地,多路PID控制器将设定温度与当前仿真地球辐射板实际温度进行对比,并根据对比结果控制所述程控电源组向电加热膜组的供电,使得仿真地球辐射板实际温度与设定温度一致。
优选地,电加热膜组包括加热片,加热片均使用单组份室温硫化硅橡胶GD414粘贴固化在仿真地球辐射板的非辐射面,电加热膜组完全或基本完全覆盖仿真地球辐射板的非辐射面,实现均匀加热,使仿真地球辐射板的温度在室温至+70℃范围内可控;
温度传感器组包括多个Pt100温度传感器,每一路独立闭环控温回路中加热片的中心位置均安装有一个反馈该位置控温效果的温度传感器即可。
优选地,保温后盖内表面黏贴有多层隔热材料;
所述多层隔热材料由10层隔热层和2层16μm双面镀铝聚酯薄膜组成;每层隔热层由一层20d锦纶丝网和一层6μm双面镀铝聚酯薄膜组成,所述多层隔热材料的最外层和最内层为16μm双面镀铝聚酯薄膜,所述多层隔热材料的边缘内侧5~10mm处采用缝纫线缝合。
与现有技术相比,本发明具有如下的有益效果:
1、本发明中仿真地球辐射板的温度均匀性、温控精度和温度稳定性,从而提高地球模拟器的模拟精度。
2、在卫星图像导航与配准全物理仿真试验对地球敏感器进行性能测试和精度标定时,实现大尺寸非准直式地球模拟器仿真地球辐射板的均匀、稳定、控温,提高了地球模拟器的模拟精度,且结构简单,取得了操作便捷、效率高、安全可靠等有益效果。
3、本发明中电加热膜组根据仿真地球辐射板外形设计,由数片电加热膜组成,分若干区域使用耐高温硅橡胶粘贴在仿真地球辐射板非辐射面,除留出温度传感器安装位置外尽可能多的覆盖住仿真地球辐射板非辐射面,且各区域电加热膜独立控温,从而提高了仿真地球辐射板整体的温度均匀性。
4、本发明中温度传感器采用薄片型外形,保证与仿真地球辐射板之间接触良好,从而提高测温精度。
5、本发明中温度传感器与仿真地球辐射板之间加垫导热性优良的银箔,并使用小压板压紧,进一步提高测温精度。
6、本发明中程控电源采用模拟量控制方式,接收来自多路PID控制器输出的模拟量控制信号,调节精度高,电流输出连续、平稳,从而提高仿真地球辐射板控温精度。
7、本发明中保温后盖采用隔热性能良好的聚四氟乙烯制成,内表面粘贴多层隔热材料,多层隔热材料由10层隔热层和2层16μm双面镀铝聚酯薄膜组成。每层隔热层由下面一层20d锦纶丝网和上面一层6μm双面镀铝聚酯薄膜组成,最外层和最内层为16μm双面镀铝聚酯薄膜。保温后盖覆盖仿真地球辐射板的全部非辐射面,有效减少非辐射面向四周的热量扩散,提高仿真地球辐射板的加热效率和模拟精度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例提供的应用于大尺寸非准直式地球模拟器的精密温控装置工作原理图;
图2为本发明实施例提供的电加热膜组和温度传感器组在仿真地球辐射板上的安装位置示意图;
图3、图4为本发明实施例提供的温度传感器安装方式示意图;
图5、图6为本发明实施例提供的保温后盖安装示意图;
图7为本发明实施例提供的多层隔热材料结构示意图;
图中:1-仿真地球辐射板,2-A型加热片,3-Pt100温度传感器,4-B型加热片,5-C型加热片,7-压紧片,8-内六角螺钉,11-银箔,13-保温后盖,14-多层隔热材料,15-支撑垫块,17-6μm双面镀铝聚酯薄膜,18-20d锦纶丝网。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
图1为本发明实施例提供的一种应用于大尺寸非准直式地球模拟器的精密温控装置工作原理图。如图1所示,所述应用于大尺寸非准直式地球模拟器的精密温控装置,其特征在于,包括多路PID控制器、程控电源组、温度传感器组、温度采集器、电加热膜组、保温后盖;由多路PID控制器、程控电源组、电加热膜组、仿真地球辐射板、温度传感器组、温度采集器构成的闭环回路组成了本实施例的温度控制系统。
所述多路PID控制器与所述程控电源组、所述温度采集器连接,多路PID控制器用于根据设定温度和由温度采集器采集的仿真地球辐射板实际温度,向所述程控电源组提供电流控制信号;
所述程控电源组与所述电加热膜组连接,程控电源组向所述电加热膜组供电;
所述电加热膜组粘贴在仿真地球辐射板非辐射面,电加热膜组将仿真地球辐射板加热到设定温度;
所述温度传感器组设置在仿真地球辐射板非辐射面,并与所述温度采集器连接,温度传感器组向温度采集器提供仿真地球辐射板实际温度;
所述温度采集器向所述多路PID控制器提供仿真地球辐射板实际温度;
所述保温后盖覆盖仿真地球辐射板的全部非辐射面,以阻止仿真地球辐射板非辐射面的热量散失。
其工作原理如下:首先根据试验要求由多路PID控制器设定所需加热温度,假设试验要求仿真地球辐射板需要加热到70℃;多路PID控制器比较输入的当前温度和目标温度值,经过计算向程控电源发出模拟量控制信号,控制程控电源向贴在仿真地球辐射板非辐射面的电加热膜供电,从而对仿真地球辐射板加热;温度传感器采集仿真地球辐射板的实时温度,由温度采集器读取温度值后发送给多路PID控制器,由其控制对仿真地球辐射板的加热过程,最终将仿真地球辐射板加热到试验所需的70℃。
图2为本发明实施例提供的电加热膜组和温度传感器组在仿真地球辐射板上的安装位置示意图。如图2所示电加热膜组由8片A型加热片2、4片B型加热片4和4片C型加热片5组成,加热片均使用GD414单组分室温硫化硅橡胶粘贴固化在仿真地球辐射板1的非辐射面,可在-60℃~+200℃范围内长期使用并有十分优异的耐气候老化及良好的电绝缘性,安全可靠。温度传感器组由12个A级精度的Pt100温度传感器3组成,其测温范围达到-50℃~+150℃,经优选获取的Pt100温度传感器其精度可达到±0.05℃,能更灵敏的反应电加热膜组的加热效果,实现控温,使仿真地球辐射板的温度不均匀性控制在±0.5℃内,10小时内温度稳定性控制在±0.2℃内。电加热膜组基本完全覆盖仿真地球辐射板1的非辐射面,实现均匀加热,使仿真地球辐射板1的温度在室温~+70℃范围内可控。
如图2所示本实施例中的每一片A型加热片2由一台程控电源供电,其中心位置安装一个Pt100温度传感器3,通过温度采集器和多路PID控制器构成一路独立闭环控温回路;而每一片B型加热片4和相邻的一片C型加热片5串联,在两片加热片的中心位置安装一个Pt100温度传感器3,通过温度采集器和多路PID控制器也构成一路独立闭环控温回路。在此需要说明的是本实施例中的8片A型加热片2、4片B型加热片4和4片C型加热片5的组合形式提供上述电加热膜组的一种实现方式,但并不限于此,只要保证每一路独立闭环控温回路中加热片的中心位置安装一个反馈该区域控温效果的温度传感器即可,具体视仿真地球辐射板的结构而定。
图3、图4为本发明实施例提供的温度传感器安装方式示意图,如图3、图4所示内六角螺钉8穿过压紧片7固定在仿真地球辐射板1上,Pt100温度传感器3底部垫银箔11,通过内六角螺钉8压紧在仿真地球辐射板1上。Pt100温度传感器3采用长方形薄片形状,银箔11具有优异的延展性和导热性,通过银箔11压紧在仿真地球辐射板1上,可保证接触充分,传热迅速,从而提高测温精度。
图5、图6为本发明实施例提供的保温后盖安装示意图,如图5、图6所示4个内六角螺钉8穿过保温后盖13、多层隔热材料14和支撑垫块15拧入仿真地球辐射板1,将保温后盖13固定仿真地球辐射板1上,从而将非辐射面完全覆盖。保温后盖13由隔热性能良好的聚四氟乙烯制成,并在内表面粘贴多层隔热材料14,有效减少了仿真地球辐射板1非辐射面向四周的热量扩散,提高了仿真地球辐射板的加热效率和模拟精度。
图7为本发明实施例提供的多层隔热材料结构示意图,如图7所示多层隔热材料由10层隔热层和2层16μm双面镀铝聚酯薄膜17组成。每层隔热层由下面一层20d锦纶丝网18和上面一层6μm双面镀铝聚酯薄膜17组成,最外层和最内层为16μm双面镀铝聚酯薄膜17,预先用缝纫线沿多层边缘5~10mm处缝一圈,以成一体。多层隔热材料具有非常优异的保温隔热性能,且质量轻盈,易于敷设操作。
本发明已经在某型号卫星图像导航与配准全物理仿真试验中被使用,实现了某Ф500mm仿真地球辐射板温度在室温~+70℃范围可控,表面温度不均匀度在±0.5℃以内,长期工作温度稳定性在±0.2℃以内,取得了操作便捷、效率高、安全可靠等有益效果。该装置受到了型号研制及试验操作人员的欢迎。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (4)

1.一种应用于大尺寸非准直式地球模拟器的精密温控装置,其特征在于,包括多路PID控制器、程控电源组、温度传感器组、温度采集器、电加热膜组、保温后盖;
所述多路PID控制器与所述程控电源组、所述温度采集器连接,多路PID控制器用于根据设定温度和由温度采集器采集的仿真地球辐射板实际温度,向所述程控电源组提供电流控制信号;
所述程控电源组与所述电加热膜组连接,程控电源组向所述电加热膜组供电;
所述电加热膜组粘贴在仿真地球辐射板非辐射面,电加热膜组将仿真地球辐射板加热到设定温度;
所述温度传感器组设置在仿真地球辐射板非辐射面,并与所述温度采集器连接,温度传感器组向温度采集器提供仿真地球辐射板实际温度;
所述温度采集器向所述多路PID控制器提供仿真地球辐射板实际温度;
所述保温后盖覆盖仿真地球辐射板的全部非辐射面,以阻止仿真地球辐射板非辐射面的热量散失。
2.根据权利要求1所述的应用于大尺寸非准直式地球模拟器的精密温控装置,其特征在于,多路PID控制器将设定温度与当前仿真地球辐射板实际温度进行对比,并根据对比结果控制所述程控电源组向电加热膜组的供电,使得仿真地球辐射板实际温度与设定温度一致。
3.根据权利要求1所述的应用于大尺寸非准直式地球模拟器的精密温控装置,其特征在于,电加热膜组包括加热片,加热片均使用单组份室温硫化硅橡胶GD414粘贴固化在仿真地球辐射板的非辐射面,电加热膜组完全或基本完全覆盖仿真地球辐射板的非辐射面,实现均匀加热,使仿真地球辐射板的温度在室温至+70℃范围内可控;
温度传感器组包括多个Pt100温度传感器,每一路独立闭环控温回路中加热片的中心位置均安装有一个反馈该位置控温效果的温度传感器即可。
4.根据权利要求1所述的应用于大尺寸非准直式地球模拟器的精密温控装置,其特征在于,保温后盖内表面黏贴有多层隔热材料;
所述多层隔热材料由10层隔热层和2层16μm双面镀铝聚酯薄膜组成;每层隔热层由一层20d锦纶丝网和一层6μm双面镀铝聚酯薄膜组成,所述多层隔热材料的最外层和最内层为16μm双面镀铝聚酯薄膜,所述多层隔热材料的边缘内侧5~10mm处采用缝纫线缝合。
CN201510822088.XA 2015-11-23 2015-11-23 应用于大尺寸非准直式地球模拟器的精密温控装置 Pending CN105388938A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510822088.XA CN105388938A (zh) 2015-11-23 2015-11-23 应用于大尺寸非准直式地球模拟器的精密温控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510822088.XA CN105388938A (zh) 2015-11-23 2015-11-23 应用于大尺寸非准直式地球模拟器的精密温控装置

Publications (1)

Publication Number Publication Date
CN105388938A true CN105388938A (zh) 2016-03-09

Family

ID=55421308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510822088.XA Pending CN105388938A (zh) 2015-11-23 2015-11-23 应用于大尺寸非准直式地球模拟器的精密温控装置

Country Status (1)

Country Link
CN (1) CN105388938A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444905A (zh) * 2016-09-19 2017-02-22 中国科学院合肥物质科学研究院 一种高温超导焊接温度同步测量控制器
CN109473025A (zh) * 2018-12-27 2019-03-15 北京航天长征飞行器研究所 空间不同轨道高度光热耦合环境地面模拟装置及方法
CN110018679A (zh) * 2019-04-11 2019-07-16 上海卫星工程研究所 航天器自主温控系统闭环测试系统及测试方法
CN110244800A (zh) * 2019-06-25 2019-09-17 北京卫星环境工程研究所 高温热试验传感器粘贴固化装置
CN110514120A (zh) * 2019-08-26 2019-11-29 北京卫星环境工程研究所 用于真空低温环境的位移测量系统
CN111405687A (zh) * 2020-03-30 2020-07-10 中国科学院西安光学精密机械研究所 一种空间环境模拟器光学窗口的控温装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177362A (en) * 1990-10-31 1993-01-05 Grumman Aerospace Corporation Sensor chamber
WO2002039062A1 (fr) * 2000-11-08 2002-05-16 Centre National D'etudes Spatiales Banc de test au sol d'un senseur stellaire
CN102310953A (zh) * 2010-06-29 2012-01-11 长春理工大学 便携式地球模拟器
CN102564482A (zh) * 2011-11-15 2012-07-11 上海卫星工程研究所 一种用于真空容器内的联合承载装置
CN104571176A (zh) * 2014-12-05 2015-04-29 上海卫星装备研究所 一种分区控制高精度温度模拟装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177362A (en) * 1990-10-31 1993-01-05 Grumman Aerospace Corporation Sensor chamber
WO2002039062A1 (fr) * 2000-11-08 2002-05-16 Centre National D'etudes Spatiales Banc de test au sol d'un senseur stellaire
CN102310953A (zh) * 2010-06-29 2012-01-11 长春理工大学 便携式地球模拟器
CN102564482A (zh) * 2011-11-15 2012-07-11 上海卫星工程研究所 一种用于真空容器内的联合承载装置
CN104571176A (zh) * 2014-12-05 2015-04-29 上海卫星装备研究所 一种分区控制高精度温度模拟装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
付东辉 等: "地球模拟器中热地球温度分析", 《光机电信息》 *
张培寅: "《电热设备》", 28 February 2006, 化学工业出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444905A (zh) * 2016-09-19 2017-02-22 中国科学院合肥物质科学研究院 一种高温超导焊接温度同步测量控制器
CN109473025A (zh) * 2018-12-27 2019-03-15 北京航天长征飞行器研究所 空间不同轨道高度光热耦合环境地面模拟装置及方法
CN109473025B (zh) * 2018-12-27 2019-09-03 北京航天长征飞行器研究所 空间不同轨道高度光热耦合环境地面模拟装置及方法
CN110018679A (zh) * 2019-04-11 2019-07-16 上海卫星工程研究所 航天器自主温控系统闭环测试系统及测试方法
CN110244800A (zh) * 2019-06-25 2019-09-17 北京卫星环境工程研究所 高温热试验传感器粘贴固化装置
CN110514120A (zh) * 2019-08-26 2019-11-29 北京卫星环境工程研究所 用于真空低温环境的位移测量系统
CN111405687A (zh) * 2020-03-30 2020-07-10 中国科学院西安光学精密机械研究所 一种空间环境模拟器光学窗口的控温装置及方法

Similar Documents

Publication Publication Date Title
CN105388938A (zh) 应用于大尺寸非准直式地球模拟器的精密温控装置
CN103600851B (zh) 航天器真空热试验高热流模拟器
CN108120613B (zh) 一种运载火箭上面级瞬态热平衡试验装置及方法
Huang et al. Solar cell junction temperature measurement of PV module
CN100465631C (zh) 一种热防护服装或织物的热防护性能测试装置
CN104071360B (zh) 一种基于辐射耦合传热等效模拟的瞬态热平衡试验方法及系统
CN104516087B (zh) 一种用于空间光学遥感器反射镜的夹层式精密热控装置
CN103863581B (zh) 一种用于高分辨率光学遥感器精密控温的间接热控装置
CN104111269A (zh) 一种用于高温大热流环境的热流传感器标定装置
CN109900738A (zh) 基于大功率激光器加热材料的装置及方法
CN102090884B (zh) 一种黑体辐射源的腔体装置
CN105092213A (zh) 太阳模拟器辐照不均匀度和不稳定度测试装置及方法
CN104215659A (zh) 真空热环境下红外灯单灯辐射特性测试系统
CN105929872A (zh) 一种中温面源辐射源的温度控制装置及方法
CN107515058B (zh) 真空热环境下光纤光栅温度传感器温度标定用恒温装置
CN106301220A (zh) 光伏组件温度系数获取方法
KR20240035962A (ko) 두 물질 표면 사이의 복사열전달 측정방법 및 장치
CN104192325A (zh) 保证星敏感器试验件特殊姿态的支撑装置
CN201929948U (zh) 一种黑体辐射源的腔体装置
CN107972895A (zh) 真空低温环境下的高热流密度外热流模拟装置
CN110208881B (zh) 用于光电式日照计的全辐射环境定标装置
CN104897720B (zh) 一种便于温控的传热系数评价用温度实时采集系统
CN203720120U (zh) 一种测试管状材料轴向导热系数的装置
CN110207829A (zh) 一种基于红外光谱仪同时获取材料温度及光谱方向发射率的测量方法
CN207523959U (zh) 用于线阵红外地球敏感器变轨道极性测量的地球模拟器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160309

RJ01 Rejection of invention patent application after publication