CN105388563B - 基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪 - Google Patents
基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪 Download PDFInfo
- Publication number
- CN105388563B CN105388563B CN201510918073.3A CN201510918073A CN105388563B CN 105388563 B CN105388563 B CN 105388563B CN 201510918073 A CN201510918073 A CN 201510918073A CN 105388563 B CN105388563 B CN 105388563B
- Authority
- CN
- China
- Prior art keywords
- interferometer
- graphene
- waveguide
- ring resonator
- upper arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 48
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 239000002356 single layer Substances 0.000 title claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- 230000003287 optical effect Effects 0.000 abstract description 24
- 230000000644 propagated effect Effects 0.000 abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 239000000835 fiber Substances 0.000 abstract description 3
- 238000004891 communication Methods 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- -1 Graphite Alkene Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1226—Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明提供一种基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪,包括环境介质二氧化硅,石墨烯输入波导,石墨烯输出波导,第一环形谐振腔,第二环形谐振腔,干涉仪上臂,干涉仪下臂,其特征在于:石墨烯波导及谐振腔固定于方形环境介质二氧化硅中,干涉仪上臂内有长为200nm的电压可调区域。使用时,光信号通过耦合硅波导或锥形光纤引入到石墨烯输入波导中,通过第一环形谐振腔耦合进干涉仪上臂和干涉仪下臂,调节干涉仪上臂电压可调区域的外加电压在0.1eV到0.5eV之间改变,进而改变光信号在其上传播时的光程,最终实现光信号在石墨烯输出波导的干涉加强或减弱。本发明结构简单、体积小,主动可调,可应用于红外波段,在光通讯、光集成、光信息处理等方面有广泛的应用前景。
Description
技术领域
本发明为一种微纳光学器件,具体涉及一种基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪。
背景技术
表面等离子体波导器件具有许多优点,例如结构简单紧凑、尺寸小、不受衍射极限的限制、为电子回路与光子器件的兼容提供了可能等,在诸多领域,尤其光集成、光计算和光信息处理等领域,有广泛的应用前景。
在THz波段和红外波段,光子可以很容易的耦合进石墨烯,产生表面等离子体波,可以通过调制电压和掺杂等方式来进行调制,其能耗也非常的低,并且能够在不同的调制下分别支持TM模式和TE模式,这使得石墨烯成为表面等离子体波导材料的热门选择。石墨烯表面波导已经广泛应用在光子超材料,激光,生物传感和变换光学等领域。
表面等离子体马赫曾德尔干涉仪作为一种重要的可集成光子器件,有效的解决了传统M-Z干涉仪受到衍射极限的限制而导致体积庞大、难以集成等缺点。表面等离子体是一种由外部电磁场与金属表面自由电子形成的相干共振,入射光能量主要束缚在金属表面并向前传播,它能够有效克服衍射极限,为微纳光子器件的研制提供了新的途径,但是传统的利用金属作为表面等离子体波导材料制作而成的马赫曾德尔干涉仪,一方面其能耗比较大,另一方面由于金属介电常数不可调,当其结构固定之后,难以实现对马赫曾德尔干涉仪的主动调节。
发明内容
本发明提供一种基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪,主要提供了一种通过改变马赫曾德尔干涉仪上臂石墨烯的外加电压来控制表面等离子体波在其上传播时的有效折射率,从而改变光程差来实现马赫曾德尔干涉仪主动可调的方法。
本发明的技术方案如下:该基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪包括环境介质二氧化硅,石墨烯输入波导,石墨烯输出波导,第一环形谐振腔,第二环形谐振腔,干涉仪上臂,干涉仪下臂,其特征在于:石墨烯波导及谐振腔固定于方形环境介质二氧化硅中,干涉仪上臂内有长为200nm的电压可调区域,干涉仪上臂与干涉仪下臂长度一致,第一环形谐振腔和第二环形谐振腔完全一样,干涉仪两臂、输入波导和输出波导均与两环形谐振腔之间留有一定间隙,环形谐振腔为环形纳米谐振腔,所用石墨烯皆为单层。
使用时,石墨烯输入波导、石墨烯输出波导、干涉仪上臂和干涉仪下臂外加电压设置为0.4eV,第一环形谐振腔和第二环形谐振腔外加电压设置为0.5eV,可在谐振腔中实现共振的光信号通过耦合硅波导或锥形光纤引入到石墨烯输入波导中,在石墨烯输入波导上以表面等离子体波的形式传播,通过第一环形谐振腔耦合进干涉仪上臂和干涉仪下臂,石墨烯波导的有效折射率随外加电压的改变而改变,通过调节干涉仪上臂电压可调区域的外加电压在0.1eV到0.5eV之间改变,进而改变光信号在其上传播时的光程,干涉仪上臂和干涉仪下臂的两束光程不同的光信号通过第二环形谐振腔耦合进入石墨烯输出波导,当干涉仪上臂和干涉仪下臂的两束光信号的光程差为π的偶数倍时,两信号在石墨烯输出波导干涉加强,得到强信号,当干涉仪上臂和干涉仪下臂的两束光信号的光程差为π的奇数倍时,两信号在石墨烯输出波导干涉减弱,得到弱信号。
本发明的有益效果如下:表面等离子体马赫曾德尔干涉仪由单层石墨烯和二氧化硅组成,该结构具有极强的光束缚效应,能突破衍射极限的限制,在纳米尺度对光进行传输。该马赫曾德尔干涉仪集成在一块几微米的二氧化硅上,结构简单、体积小,并能和电子器件和传统光子器件进行有效匹配连接,通过改变干涉仪上臂电压可调区域的外加电压实现对输出光信号强弱的主动调节,本发明应用于红外波段,在光通讯、光集成、光信息处理等方面有广泛的应用前景。
附图说明
图1为本发明的结构侧视图;
图2为石墨烯有效折射率实部随石墨烯电压可调区域外加电压关系图;
图3为马赫曾德尔干涉仪上下两臂相位差以及马赫曾德尔干涉仪透射率与电压可调区域外加电压关系图;
图4为马赫曾德尔干涉仪中光信号的电磁场分布图;
图中:1-石墨烯输入波导;2-环境介质二氧化硅;3-第一环形谐振腔;4-干涉仪上臂;5-电压可调区域;6-第二环形谐振腔;7-石墨烯输出波导;8-干涉仪下臂。
具体实施方式
下面结合附图详细阐述本发明的实施方式:
如图1所示,本发明基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪主要由环境介质二氧化硅,石墨烯输入波导,石墨烯输出波导,第一环形谐振腔,第二环形谐振腔,干涉仪上臂,干涉仪下臂几部分构成。其特征在于:石墨烯波导及谐振腔固定于方形环境介质二氧化硅中,干涉仪上臂内有长为200nm的电压可调区域,干涉仪上臂与干涉仪下臂长度一致,第一环形谐振腔和第二环形谐振腔完全一样,干涉仪两臂、输入波导和输出波导均与两环形谐振腔之间留有一定间隙,环形谐振腔为环形纳米谐振腔,所用石墨烯皆为单层。
使用时,石墨烯输入波导1、石墨烯输出波导7、干涉仪上臂4和干涉仪下臂8外加电压设置为0.4eV,第一环形谐振腔3和第二环形谐振腔6外加电压设置为0.5eV,可在谐振腔中实现共振的光信号通过耦合硅波导或锥形光纤引入到石墨烯输入波导1中,在石墨烯输入波导1上以表面等离子体波的形式传播,通过第一环形谐振腔3耦合进干涉仪上臂4和干涉仪下臂8,石墨烯波导的有效折射率随外加电压的改变而改变(详见图2),进而可以通过调节干涉仪上臂4电压可调区域5的外加电压来改变光信号在其上传播时的光程,干涉仪上臂4和干涉仪下臂8的两束光程不同的光信号通过第二环形谐振腔6耦合进入石墨烯输出波导7,当干涉仪上臂4和干涉仪下臂8的两束光信号的光程差为π的偶数倍时,两信号在石墨烯输出波导7干涉加强,得到强信号,当干涉仪上臂4和干涉仪下臂8的两束光信号的光程差为π的奇数倍时,两信号在石墨烯输出波导7干涉减弱,得到弱信号,图3绘制了电压可调区域的电压在0.1eV~0.5eV之间变化时,相应的干涉仪上下两臂的光信号相位差(虚线)以及光信号的透过率(实线)。图4(a)为电压可调区域5电压为0.4eV时,马赫曾德尔干涉仪中光信号的电磁场分布图,图4(b)为电压可调区域5电压为0.278eV时,马赫曾德尔干涉仪中光信号的电磁场分布图,与前述透射结果完全吻合。
Claims (3)
1.一种基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪,包括环境介质二氧化硅,石墨烯输入波导,石墨烯输出波导,第一环形谐振腔,第二环形谐振腔,干涉仪上臂,干涉仪下臂,其特征在于:石墨烯波导及谐振腔固定于方形环境介质二氧化硅中,干涉仪上臂内有长为200nm的电压可调区域,干涉仪上臂与干涉仪下臂长度一致,第一环形谐振腔和第二环形谐振腔完全一样,干涉仪两臂、输入波导和输出波导均与两环形谐振腔之间留有一定间隙。
2.根据权利要求1所述的基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪,其特征在于:环形谐振腔为环形纳米谐振腔。
3.根据权利要求2所述的基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪,其特征在于:所述石墨烯皆为单层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510918073.3A CN105388563B (zh) | 2015-12-11 | 2015-12-11 | 基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510918073.3A CN105388563B (zh) | 2015-12-11 | 2015-12-11 | 基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105388563A CN105388563A (zh) | 2016-03-09 |
CN105388563B true CN105388563B (zh) | 2019-01-25 |
Family
ID=55421034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510918073.3A Expired - Fee Related CN105388563B (zh) | 2015-12-11 | 2015-12-11 | 基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105388563B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107453012B (zh) * | 2017-09-11 | 2022-02-22 | 桂林电子科技大学 | 基于金属-石墨烯混合超表面的双功能调制器 |
CN107908056B (zh) * | 2017-10-24 | 2021-03-02 | 宁波大学 | 基于石墨烯表面等离子激元的异或/同或门 |
CN110441975A (zh) * | 2019-07-16 | 2019-11-12 | 湖北工程学院 | 一种基于石墨烯纳米条波导耦合谐振腔的逻辑与门器件 |
CN111999961A (zh) * | 2020-08-11 | 2020-11-27 | 湖北工程学院 | 一种基于纳米条波导耦合谐振腔的石墨烯逻辑异或门器件 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1546774A2 (en) * | 2002-09-06 | 2005-06-29 | Micro Managed Photons A/S | Long range surface plasmon polariton modulator |
KR100801278B1 (ko) * | 2006-08-29 | 2008-02-04 | 삼성전기주식회사 | 하이브리드형 광도파로 센서 |
US9557223B2 (en) * | 2010-07-23 | 2017-01-31 | The Regents Of The University Of Michigan | Mach-Zehnder interferometer having a doubly-corrugated spoofed surface plasmon polariton waveguide |
US9013784B2 (en) * | 2010-10-29 | 2015-04-21 | Hewlett-Packard Development Company, L.P. | Nanoparticle waveguide apparatus, system and method |
-
2015
- 2015-12-11 CN CN201510918073.3A patent/CN105388563B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105388563A (zh) | 2016-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides | |
Rakhshani et al. | Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application | |
CN105388563B (zh) | 基于单层石墨烯片和环形谐振腔的表面等离子体马赫曾德尔干涉仪 | |
Zuo et al. | Broadband multi-wavelength optical sensing based on photothermal effect of 2D MXene films | |
Yin et al. | Ultra-broadband TE-pass polarizer using a cascade of multiple few-layer graphene embedded silicon waveguides | |
Fang et al. | Single-and dual-band convertible terahertz absorber based on bulk Dirac semimetal | |
Wei et al. | All-optical PtSe2 silicon photonic modulator with ultra-high stability | |
Benmerkhi et al. | Analysis of a photonic crystal temperature sensor based on Z-shaped ring resonator | |
Wang et al. | Outstanding slow-light effect for graphene metasurface in terahertz | |
Mousavi et al. | Strong THz and infrared optical forces on a suspended single-layer graphene sheet | |
Luo et al. | Narrow-band plasmonic filter based on graphene waveguide with asymmetrical structure | |
Hao et al. | Recent developments in graphene-based optical modulators | |
Li et al. | Tunable mid-infrared plasmonic anti-symmetric coupling resonator based on the parallel interlaced graphene pair | |
Sun et al. | Tunable terahertz metamaterial with multi-resonance characteristic for refractive index sensing application | |
Zhang et al. | Three-stimulus control ultrasensitive Dirac point modulator using an electromagnetically induced transparency-like terahertz metasurface with graphene | |
Gaun et al. | Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide | |
Khirallah et al. | Nanoelectromechanical systems-based metal-insulator-metal plasmonics tunable filter | |
Qiu et al. | Ultra-compact tunable graphene-based plasmonic multimode interference power splitter in mid infrared frequencies | |
Wen et al. | Tunable multimode plasmonic filter based on side-coupled ring-groove joint resonator | |
CN107102402A (zh) | 基于极化共振和布拉格共振作用的超透射波导设计方法 | |
Wang et al. | All-optical AND, XOR, and NOT logic gates based on Y-branch photonic crystal waveguide | |
Li et al. | Graphene light modulator based on dual-ring resonator structure | |
Liu et al. | Vertical coupling to photonic crystal waveguide using chiral plasmonic lenses | |
He et al. | Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator | |
Ye et al. | Tunable plasmon-induced transparency in dual hexagonal resonators with rotatable embedded bar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190125 Termination date: 20191211 |